Robotics 1

February 13, 2023

Exercise 1

Consider the planar RPPR robot in Fig. 1.

Figure 1: A planar RPPR robot

- Assign the frames according to the standard Denavit-Hartenberg (DH) convention and provide the corresponding table of parameters.
- Suppose that the two prismatic joints have a limited range: $\left|q_{i}\right|<D, i=2,3$. Determine the maximum possible distance Δ of the end-effector point P from the origin of the base frame and the robot configuration(s) \boldsymbol{q} at which this value is attained.

Exercise 2

Given two different rotation matrices ${ }^{0} \boldsymbol{R}_{c}$ and ${ }^{0} \boldsymbol{R}_{d}$, suppose that a minimal representation with a set of ZYZ Euler angles $\boldsymbol{\alpha} \in \mathbb{R}^{3}$ has been extracted from each matrix, i.e., $\boldsymbol{\alpha}_{c}$ and $\boldsymbol{\alpha}_{d}$. Then, the relative error between the two orientations can be defined as $\boldsymbol{e}_{\boldsymbol{\alpha}}=\boldsymbol{\alpha}_{d}-\boldsymbol{\alpha}_{c}$, i.e., the difference between the values of these two sets of Euler angles. As an alternative, one can define the relative rotation matrix ${ }^{c} \boldsymbol{R}_{d}$ and extract from this matrix the same set of ZYZ Euler angles $\boldsymbol{\alpha}_{c d} \in \mathbb{R}^{3}$.

Is it true that $\boldsymbol{e}_{\boldsymbol{\alpha}}=\boldsymbol{\alpha}_{c d}$ holds? If you believe so, provide a simple proof of this result. If you don't, provide then a numerical counterexample (without any representation singularity).

Exercise 3

A planar 2 R robot has its direct kinematics defined as

$$
\begin{equation*}
\boldsymbol{p}=\binom{p_{x}}{p_{y}}=\binom{l_{1} c_{1}+l_{2} c_{12}}{l_{1} s_{1}+l_{2} s_{12}}=\boldsymbol{f}(\boldsymbol{q}), \tag{1}
\end{equation*}
$$

with link lengths $l_{1}=0.5, l_{2}=0.4[\mathrm{~m}]$. Write a code that solves numerically the inverse kinematics problem for this robot using Newton iterative method. For a desired position $\boldsymbol{p}_{d}=(0.4,-0.3)$, determine two different initial configurations $\boldsymbol{q}^{[0]}$ so that the method converges in no more than $k_{\max }=3$ iterations to the two inverse kinematics solutions, respectively \boldsymbol{q}^{a} and, \boldsymbol{q}^{b}, with a final accuracy of at least $\varepsilon=10^{-4}$ on the norm of the Cartesian error $\boldsymbol{e}=\boldsymbol{p}_{d}-\boldsymbol{f}(\boldsymbol{q})$. Provide the values of $\boldsymbol{q}^{[k]}$ for $k=0,1,2,3$ in the two situations, as well as the final values of the error norm $\|\boldsymbol{e}\|$.

Exercise 4

The kinematics of a 4-dof robot manipulator is characterized by the DH parameters in Tab. 1. Build the geometric Jacobian $\boldsymbol{J}(\boldsymbol{q})$ that relates the joint velocities $\dot{\boldsymbol{q}} \in \mathbb{R}^{4}$ to the six-dimensional twist vector composed by a velocity $\boldsymbol{v}=\boldsymbol{v}_{4} \in \mathbb{R}^{3}$ of the origin of the last (end-effector) DH frame and by an angular velocity $\boldsymbol{\omega}=\boldsymbol{\omega}_{4} \in \mathbb{R}^{3}$ of the same frame:

$$
\binom{\boldsymbol{v}}{\boldsymbol{\omega}}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}} .
$$

Correspondingly, the transpose of this matrix relates the six-dimensional end-effector wrench vector composed by a force $f=f_{4} \in \mathbb{R}^{3}$ applied at the origin of the last (end-effector) DH frame and by a moment $\boldsymbol{\mu}=\boldsymbol{\mu}_{4} \in \mathbb{R}^{3}$ applied on the same frame to the joint forces/torques $\boldsymbol{\tau} \in \mathbb{R}^{4}$:

$$
\boldsymbol{\tau}=\boldsymbol{J}^{T}(\boldsymbol{q})\binom{\boldsymbol{f}}{\boldsymbol{\mu}}
$$

Find all the singular configurations of this Jacobian, i.e., all \boldsymbol{q}_{s} such that rank $\boldsymbol{J}\left(\boldsymbol{q}_{s}\right)<4$. At a singular configuration \boldsymbol{q}_{s}, determine:
i) a basis for the joint velocities $\dot{\boldsymbol{q}} \in \mathbb{R}^{4}$ that produce no end-effector twists;
ii) a basis for the end-effector twists $\boldsymbol{t} \in \mathbb{R}^{6}$ that are not realizable;
iii) all non-zero end-effector wrenches $\boldsymbol{w} \in \mathbb{R}^{6}$ that are statically balanced by $\boldsymbol{\tau}=\mathbf{0} \in \mathbb{R}^{4}$.

Hint: It is convenient to work by expressing the geometric Jacobian in the DH frame $R F_{1}$.

i	α_{i}	a_{i}	d_{i}	θ_{i}
1	$\pi / 2$	0	0	q_{1}
2	$\pi / 2$	0	0	q_{2}
3	$-\pi / 2$	0	q_{3}	0
4	0	a_{4}	0	q_{4}

Table 1: Table of DH parameters of a 4-dof robot.
[240 minutes, open books]

Solution

February 13, 2023

Exercise 1

A possible assignment of standard DH frames for the considered RPPR robot arm is shown in Fig. 2. The corresponding DH parameters are reported in Tab. 2.

Figure 2: Assignment of DH frames for the RPPR robot in Fig. 1.

i	α_{i}	a_{i}	d_{i}	θ_{i}
1	$\pi / 2$	0	0	q_{1}
2	$\pi / 2$	0	q_{2}	$\pi / 2$
3	$\pi / 2$	0	q_{3}	$\pi / 2$
4	0	L	0	q_{4}

Table 2: Table of DH parameters for the RPPR robot with frames assigned as in Fig. 2.

The position of point P in the plane $\left(x_{0}, y_{0}\right)$ is

$$
\boldsymbol{p}=\binom{q_{2} s_{1}+q_{3} c_{1}+L s_{14}}{-q_{2} c_{1}+q_{3} s_{1}-L c_{14}}=\left(\begin{array}{cc}
s_{1} & c_{1} \\
-c_{1} & s_{1}
\end{array}\right)\binom{q_{2}+L c_{4}}{q_{3}+L s_{4}} .
$$

Thus, its distance from the origin of the base frame is

$$
\|\boldsymbol{p}\|=\sqrt{q_{2}^{2}+q_{3}^{2}+L^{2}+2 L\left(q_{2} c_{4}+q_{3} s_{4}\right)}
$$

For $\left|q_{2}\right| \leq D$ and $\left|q_{3}\right| \leq D$, the maximum distance is then easily evaluated as

$$
\Delta=\max _{\boldsymbol{q} \in \mathbb{R}^{4}:\left|q_{i}\right| \leq D, i=1,2}\|\boldsymbol{p}\|=\sqrt{D^{2}+D^{2}+L^{2}+2 L\left(D \frac{\sqrt{2}}{2}+D \frac{\sqrt{2}}{2}\right)}=\sqrt{2} D+L
$$

which is attained for

$$
q_{2}= \pm D, \quad q_{3}= \pm D, \quad q_{4}=\operatorname{atan} 2\left\{q_{3}, q_{2}\right\} \quad\left(=\left\{ \pm \frac{\pi}{4}, \pm \frac{3 \pi}{4}\right\}\right)
$$

with an arbitrary value of q_{1}. Four possible classes of solutions are obtained depending on the combination of signs: $\boldsymbol{q}=\left(q_{1}, D, D, \pi / 4\right), \boldsymbol{q}=\left(q_{1}, D,-D,-\pi / 4\right), \boldsymbol{q}=\left(q_{1},-D, D, 3 \pi / 4\right)$, and $\boldsymbol{q}=\left(q_{1},-D,-D,-3 \pi / 4\right)$.

Exercise 2

In general, the difference between the set of angles $\boldsymbol{\alpha}_{c}$ and $\boldsymbol{\alpha}_{d}$ of any minimal representation that one can extract from two rotation matrices, respectively \boldsymbol{R}_{c} and \boldsymbol{R}_{d}, is different from the set of angles $\boldsymbol{\alpha}_{c d}$ of the same minimal representation that are extracted from the relative rotation matrix ${ }^{c} \boldsymbol{R}_{d}=\boldsymbol{R}_{c}^{T} \boldsymbol{R}_{d}$. This is indeed true for any choice of angles $\boldsymbol{\alpha} \in \mathbb{R}^{3}$ used for the minimal representation of orientation. This result is due to the fact that the extraction of a minimal representation from a rotation matrix is a nonlinear operation.
The choice of a counterexample in which $\boldsymbol{e}_{\boldsymbol{\alpha}} \neq \boldsymbol{\alpha}_{c d}$ with the ZYZ Euler angles is arbitrary, but should keep in mind that the representation must not run into a singularity for any of the involved rotation matrices. This means that the two elements $(1,3)$ and $(2,3)$ in last column of the matrices $\boldsymbol{R}_{c}, \boldsymbol{R}_{d}$ and ${ }^{c} \boldsymbol{R}_{d}$ should not be simultaneously zero.

Consider for example the two elementary rotation matrices by $\pi / 4$ around the x and z axes,

$$
\boldsymbol{R}_{x}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right), \quad \boldsymbol{R}_{z}=\left(\begin{array}{ccc}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\
-\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and let

$$
\boldsymbol{R}_{c}=\boldsymbol{R}_{x} \boldsymbol{R}_{z}=\left(\begin{array}{ccc}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\
-0.5 & 0.5 & \frac{\sqrt{2}}{2} \\
0.5 & -0.5 & \frac{\sqrt{2}}{2}
\end{array}\right), \quad \boldsymbol{R}_{d}=\boldsymbol{R}_{z} \boldsymbol{R}_{x}=\left(\begin{array}{ccc}
\frac{\sqrt{2}}{2} & 0.5 & 0.5 \\
-\frac{\sqrt{2}}{2} & 0.5 & 0.5 \\
0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right) .
$$

From these, we obtain the relative orientation

$$
{ }^{c} \boldsymbol{R}_{d}=\boldsymbol{R}_{c}^{T} \boldsymbol{R}_{d}=\left(\begin{array}{ccc}
0.8536 & -0.25 & 0.4571 \\
0.1464 & 0.9571 & 0.25 \\
-0.5 & -0.1464 & 0.8536
\end{array}\right) .
$$

All three matrices $\boldsymbol{R}_{c}, \boldsymbol{R}_{d}$ and ${ }^{c} \boldsymbol{R}_{d}$ satisfy the condition for not having a singularity in their ZYZ Euler representation, i.e.,

$$
\sin \theta= \pm \sqrt{R_{13}^{2}+R_{23}^{2}} \neq 0
$$

where $R_{i j}$ denotes an element of the various rotation matrices. Thus, we can extract the set of angles $\boldsymbol{\alpha}=(\phi, \theta, \psi)$ using the inverse relationships in the regular case:

$$
\theta=\operatorname{atan} 2\left\{\sin \theta, R_{33}\right\}, \quad \phi=\operatorname{atan} 2\left\{\frac{R_{31}}{\sin \theta}, \frac{R_{32}}{\sin \theta}\right\}, \quad \psi=\operatorname{atan} 2\left\{\frac{R_{13}}{\sin \theta}, \frac{-R_{23}}{\sin \theta}\right\}
$$

As a result, for each rotation matrix we obtain two regular solutions, namely

$$
\boldsymbol{\alpha}_{c}^{I}=\left(\begin{array}{c}
2.3562 \\
0.7854 \\
3.1416
\end{array}\right), \quad \boldsymbol{\alpha}_{c}^{I I}=\left(\begin{array}{c}
-0.7854 \\
-0.7854 \\
0
\end{array}\right) ; \quad \boldsymbol{\alpha}_{d}^{I}=\left(\begin{array}{c}
3.1416 \\
0.7137 \\
2.3562
\end{array}\right), \quad \boldsymbol{\alpha}_{d}^{I I}=\left(\begin{array}{c}
0 \\
-0.7137 \\
-0.7854
\end{array}\right)
$$

and

$$
\boldsymbol{\alpha}_{c d}^{I}=\left(\begin{array}{c}
1.8557 \\
0.5121 \\
3.1416
\end{array}\right), \quad \boldsymbol{\alpha}_{c d}^{I I}=\left(\begin{array}{c}
-1.2859 \\
-0.5121 \\
0
\end{array}\right)
$$

The four possible errors between the Euler angles are ${ }^{1}$

$$
\begin{array}{ll}
\boldsymbol{e}_{\boldsymbol{\alpha}}^{I I I}=\boldsymbol{\alpha}_{d}^{I}-\boldsymbol{\alpha}_{c}^{I}=\left(\begin{array}{c}
0.7854 \\
-0.0717 \\
-0.7854
\end{array}\right), & \boldsymbol{e}_{\boldsymbol{\alpha}}^{I, I I}=\boldsymbol{\alpha}_{d}^{I I}-\boldsymbol{\alpha}_{c}^{I}=\left(\begin{array}{c}
-2.3562 \\
-1.4991 \\
-3.9270
\end{array}\right) \\
\boldsymbol{e}_{\boldsymbol{\alpha}}^{I I, I}=\boldsymbol{\alpha}_{d}^{I}-\boldsymbol{\alpha}_{c}^{I I}=\left(\begin{array}{c}
3.9270 \\
1.4991 \\
2.3562
\end{array}\right), & \boldsymbol{e}_{\boldsymbol{\alpha}}^{I I, I I}=\boldsymbol{\alpha}_{d}^{I I}-\boldsymbol{\alpha}_{c}^{I I}=\left(\begin{array}{c}
0.7854 \\
0.0717 \\
-0.7854
\end{array}\right) .
\end{array}
$$

As anticipated, none of these angular errors coincide with the two possible values of ZYZ Euler angles $\boldsymbol{\alpha}_{c d}^{I}$ and $\boldsymbol{\alpha}_{c d}^{I I}$ extracted from the relative rotation matrix ${ }^{c} \boldsymbol{R}_{d}$.

Exercise 3

From (1), the analytic Jacobian of the planar 2R robot is

$$
J(\boldsymbol{q})=\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{q}}=\left(\begin{array}{cc}
-\left(l_{1} s_{1}+l_{2} s_{12}\right) & -l_{2} s_{12} \tag{2}\\
l_{1} c_{1}+l_{2} c_{12} & l_{2} c_{12}
\end{array}\right) .
$$

The basic step of Newton method at the k-th iteration is

$$
\begin{equation*}
\boldsymbol{q}^{[k+1]}=\boldsymbol{q}^{[k]}+\boldsymbol{J}^{-1}\left(\boldsymbol{q}^{[k]}\right)\left(\boldsymbol{p}_{d}-\boldsymbol{f}\left(\boldsymbol{q}^{[k]}\right)\right) \tag{3}
\end{equation*}
$$

with inversion of the Jacobian and multiplication by the current position error $\boldsymbol{e}^{[k]}=\boldsymbol{p}_{d}-\boldsymbol{f}\left(\boldsymbol{q}^{[k]}\right)$. In order to guarantee convergence, the method needs to be initialized with a configuration $\boldsymbol{q}^{[0]}$ that is close enough to a solution. A MATLAB code for the solution of the given inverse kinematics (IK) problem using Newton method is reported further below (without output instructions).
For the initialization, based on the desired \boldsymbol{p}_{d} and on the link lengths of this robot, one can use intuition to guess a configuration that is close enough to the 'elbow up' IK solution. For instance, with the initial guess

$$
\boldsymbol{q}^{[0]}=\binom{40^{\circ}}{-90^{\circ}}=\binom{0.6981}{-1.5708}[\mathrm{rad}]
$$

the method fails to converge with the desired error accuracy $\varepsilon=10^{-4}$ within the requested $k_{\max }=3$ iterations (i.e., after three evaluations of the basic step (3)). The final configuration at $k=3$ is

$$
\boldsymbol{q}^{[3]}=\binom{0.1837}{-1.9858}[\mathrm{rad}] \quad \Rightarrow \quad \boldsymbol{f}\left(\boldsymbol{q}^{[3]}\right)=\binom{0.3999}{-0.2980} \neq \boldsymbol{p}_{d} \quad \Rightarrow \quad\left\|\boldsymbol{e}^{[3]}\right\|=2 \cdot 10^{-3}[\mathrm{~m}] .
$$

However, the final configuration that was reached gives a clue for a good new guess. With

$$
\boldsymbol{q}^{[0]}=\binom{20^{\circ}}{-120^{\circ}}=\binom{0.3491}{-2.0944}[\mathrm{rad}]
$$

[^0]the method converges in fact in $k=2$ iterations, generating the solution
$$
\Rightarrow \quad \boldsymbol{q}^{[1]}=\binom{0.1736}{-1.9961} \quad \Rightarrow \quad \boldsymbol{q}^{[a]}=\boldsymbol{q}^{[2]}=\binom{0.1797}{-1.9824}[\mathrm{rad}]
$$
with a final norm of the Cartesian error $\|\boldsymbol{e}\|=\left\|\boldsymbol{p}_{d}-\boldsymbol{f}\left(\boldsymbol{q}^{[a]}\right)\right\|=7 \cdot 10^{-5} \mathrm{~m}$.
As for the 'elbow down' IK solution, the initial guess
$$
\boldsymbol{q}^{[0]}=\binom{-70^{\circ}}{100^{\circ}}=\binom{-1.2217}{1.7453}[\mathrm{rad}]
$$
leads to convergence in exactly $k=k_{\max }=3$ iterations, generating the solution
$$
\Rightarrow \quad \boldsymbol{q}^{[1]}=\binom{-1.4589}{2.0125} \quad \Rightarrow \quad \boldsymbol{q}^{[2]}=\binom{-1.4672}{1.9826} \quad \Rightarrow \quad \boldsymbol{q}^{[b]}=\boldsymbol{q}^{[3]}=\binom{-1.4665}{1.9823}[\mathrm{rad}]
$$
with a final norm of the Cartesian error $\|\boldsymbol{e}\|=\left\|\boldsymbol{p}_{d}-\boldsymbol{f}\left(\boldsymbol{q}^{[b]}\right)\right\|=9 \cdot 10^{-8} \mathrm{~m}$. Fig. 3 illustrates the fast convergence rate (in fact, quadratic) of the method for the case of the 'elbow down' IK solution: the norm of the error is plotted in logarithmic scale over iterations.

Figure 3: Error convergence of Newton method for the 'elbow down' IK solution.

MATLAB code for Newton method

\% robot data
11=0.5;12=0.4; \%[m]
\% desired task (end-effector position)
$\mathrm{pd}=[0.4 ;-0.3]$; $\%[\mathrm{~m}]$
\% parameters in Newton method
\% (final error tolerance and max number of iterations)
eps=0.0001; k_max=3;
\% two (alternative) initial guesses
$\mathrm{q} 0=[20 ;-120] * \mathrm{pi} / 180 ; \quad \%$ for elbow up IK solution
$\% \mathrm{q} 0=[-70 ; 100] * \mathrm{pi} / 180$; $\%$ for elbow down IK solution

```
% initialization
flag_sol=0;
k=1;
q(:,k)=q0;
% main loop
while k<=k_max,
        f=[l1*\operatorname{cos}(q(1,k))+l2*\operatorname{cos}(q(1,k)+q(2,k));
            l1*\operatorname{sin}(\textrm{q}(1,\textrm{k}))+l2*\operatorname{sin}(\textrm{q}(1,\textrm{k})+\textrm{q}(2,\textrm{k}))];
        e(:,k)=p_d-f;
        norm_e(k)=norm(e(:,k));
        if norm_e(k)<=eps,
            k_sol=k;
            q_sol=q(:,k);
            e_sol=e(:,k);
            norm_e_sol=norm(e(:,k));
            flag_sol=1;
            break
        else
            J=[-(l1*\operatorname{sin}(\textrm{q}(1,\textrm{k}))+l2*\operatorname{sin}(\textrm{q}(1,\textrm{k})+\textrm{q}(2,\textrm{k})))}\quad-12*\operatorname{sin}(\textrm{q}(1,\textrm{k})+q(2,k))
                l1*\operatorname{cos}(q(1,k))+l2*\operatorname{cos}(q(1,k)+q(2,k)) 12*\operatorname{cos}(q(1,k)+q(2,k))];
            % core Newton step
            q(:,k+1)=q(:,k)+inv(J)*e(:,k);
        end
        k=k+1;
end
```


Exercise 4

From Tab. 1, we compute the DH homogeneous transformations of this RRPR robot:

$$
\begin{aligned}
& { }^{0} \boldsymbol{A}_{1}\left(q_{1}\right)=\left(\begin{array}{cccc}
c_{1} & 0 & s_{1} & 0 \\
s_{1} & 0 & -c_{1} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cc}
{ }^{0} \boldsymbol{R}_{1}\left(q_{1}\right) & \mathbf{0} \\
\mathbf{0}^{T} & 1
\end{array}\right), \quad{ }^{1} \boldsymbol{A}_{2}\left(q_{2}\right)=\left(\begin{array}{cccc}
c_{2} & 0 & s_{2} & 0 \\
s_{2} & 0 & -c_{2} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \\
& { }^{2} \boldsymbol{A}_{3}\left(q_{3}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & q_{3} \\
0 & 0 & 0 & 1
\end{array}\right), \quad{ }^{3} \boldsymbol{A}_{4}\left(q_{4}\right)=\left(\begin{array}{cccc}
c_{4} & -s_{4} & 0 & a_{4} c_{4} \\
s_{4} & c_{4} & 0 & a_{4} s_{4} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

The position of the end-effector (the origin of frame 4) follows as

$$
\boldsymbol{p}_{4, \text { hom }}=\binom{\boldsymbol{p}_{4}}{1}={ }^{0} \boldsymbol{A}_{1}\left(q_{1}\right)\left({ }^{1} \boldsymbol{A}_{2}\left(q_{2}\right)\left({ }^{2} \boldsymbol{A}_{3}\left(q_{3}\right)\left(\begin{array}{c}
a_{4} c_{4} \tag{4}\\
a_{4} s_{4} \\
0 \\
1
\end{array}\right)\right)\right) \Rightarrow \boldsymbol{p}_{4}=\left(\begin{array}{c}
c_{1}\left(q_{3} s_{2}+a_{4} c_{24}\right) \\
s_{1}\left(q_{3} s_{2}+a_{4} c_{24}\right) \\
-q_{3} c_{2}+a_{4} s_{24}
\end{array}\right) .
$$

Since $\boldsymbol{v}=\boldsymbol{v}_{4}=\dot{\boldsymbol{p}}_{4}$, the linear part of the geometric Jacobian can be obtained by differentiation as

$$
\boldsymbol{J}_{L}(\boldsymbol{q})=\frac{\partial \boldsymbol{p}_{4}}{\partial \boldsymbol{q}}=\left(\begin{array}{cccc}
-s_{1}\left(q_{3} s_{2}+a_{4} c_{24}\right) & c_{1}\left(q_{3} c_{2}-a_{4} s_{24}\right) & c_{1} s_{2} & -c_{1} a_{4} s_{24} \\
c_{1}\left(q_{3} s_{2}+a_{4} c_{24}\right) & s_{1}\left(q_{3} c_{2}-a_{4} s_{24}\right) & s_{1} s_{2} & -s_{1} a_{4} s_{24} \\
0 & q_{3} s_{2}+a_{4} c_{24} & -c_{2} & a_{4} c_{24}
\end{array}\right)
$$

Setting $\boldsymbol{z}_{0}=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)^{T}$, the angular part of the geometric Jacobian is computed as

$$
\boldsymbol{J}_{A}(\boldsymbol{q})=\left(\begin{array}{llll}
\boldsymbol{z}_{0} & \boldsymbol{z}_{1} & \mathbf{0} & \boldsymbol{z}_{3}
\end{array}\right)=\left(\begin{array}{cccc}
\boldsymbol{z}_{0} & { }^{0} \boldsymbol{R}_{1}\left(q_{1}\right) \boldsymbol{z}_{0} & \mathbf{0} & { }^{0} \boldsymbol{R}_{3}\left(q_{1}, q_{2}, q_{3}\right) \boldsymbol{z}_{0}
\end{array}\right)=\left(\begin{array}{cccc}
0 & s_{1} & 0 & s_{1} \\
0 & -c_{1} & 0 & -c_{1} \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Thus, the 6×4 geometric Jacobian in the base frame is

$$
{ }^{0} \boldsymbol{J}(\boldsymbol{q})=\binom{\boldsymbol{J}_{L}(\boldsymbol{q})}{\boldsymbol{J}_{A}(\boldsymbol{q})}
$$

To simplify the following analysis, it is convenient to express the Jacobian in the rotated frame $R F_{1}$. We have

$$
\begin{align*}
{ }^{1} \boldsymbol{J}(\boldsymbol{q})={ }^{0} \overline{\boldsymbol{R}}_{1}^{T}\left(q_{1}\right){ }^{0} \boldsymbol{J}(\boldsymbol{q}) & =\left(\begin{array}{cc}
{ }^{0} \boldsymbol{R}_{1}^{T}\left(q_{1}\right) & \boldsymbol{O} \\
\boldsymbol{O} & { }^{0} \boldsymbol{R}_{1}^{T}\left(q_{1}\right)
\end{array}\right){ }^{0} \boldsymbol{J}(\boldsymbol{q})=\binom{{ }^{0} \boldsymbol{R}_{1}^{T}\left(q_{1}\right) \boldsymbol{J}_{L}(\boldsymbol{q})}{{ }^{0} \boldsymbol{R}_{1}^{v}\left(q_{1}\right) \boldsymbol{J}_{A}(\boldsymbol{q})} \\
& =\left(\begin{array}{cccc}
0 & q_{3} c_{2}-a_{4} s_{24} & s_{2} & -a_{4} s_{24} \\
0 & q_{3} s_{2}+a_{4} c_{24} & -c_{2} & a_{4} c_{24} \\
-\left(q_{3} s_{2}+a_{4} c_{24}\right) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) . \tag{5}
\end{align*}
$$

Even when the 6×4 geometric Jacobian is full (column) rank, there exist always directions along which no end-effector twists can be realized. When the range space of the Jacobian has dimension

$$
\operatorname{dim} \mathcal{R}\left({ }^{1} \boldsymbol{J}(\boldsymbol{q})\right)=\operatorname{dim} \mathcal{R}\left({ }^{0} \boldsymbol{J}(\boldsymbol{q})\right)=4
$$

being

$$
\mathcal{R}\left({ }^{1} \boldsymbol{J}(\boldsymbol{q})\right) \oplus \mathcal{N}\left({ }^{1} \boldsymbol{J}^{T}(\boldsymbol{q})\right)=\mathbb{R}^{6}
$$

it follows that the dimension of the complementary space is

$$
\operatorname{dim} \mathcal{N}\left({ }^{1} \boldsymbol{J}^{T}(\boldsymbol{q})\right)=6-\operatorname{dim} \mathcal{R}\left({ }^{1} \boldsymbol{J}(\boldsymbol{q})\right)=2
$$

In particular, a basis for such unfeasible twists is given by

$$
\mathcal{N}\left({ }^{1} \boldsymbol{J}^{T}(\boldsymbol{q})\right)=\operatorname{span}\left\{{ }^{1} \boldsymbol{t}_{1},{ }^{1} \boldsymbol{t}_{2}\right\}=\operatorname{span}\left\{\left(\begin{array}{c}
0 \tag{6}\\
0 \\
1 \\
0 \\
q_{3} s_{2}+a_{4} c_{24} \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right)\right\} .
$$

In order to evaluate the singular configurations of the robot manipulator, we compute

$$
\operatorname{det}\left({ }^{1} \boldsymbol{J}^{T}(\boldsymbol{q})^{1} \boldsymbol{J}(\boldsymbol{q})\right)=q_{3}^{2}\left(\left(q_{3} s_{2}+a_{4} c_{24}\right)^{2}+1\right)
$$

Therefore, the singularities of the geometric Jacobian occur only when $q_{3}=0$. Setting this value in the rotated Jacobian, one has

$$
{ }^{1} \boldsymbol{J}\left(\boldsymbol{q}_{s}\right)=\left.{ }^{1} \boldsymbol{J}(\boldsymbol{q})\right|_{q_{3}=0}=\left(\begin{array}{cccc}
0 & -a_{4} s_{24} & s_{2} & -a_{4} s_{24} \\
0 & a_{4} c_{24} & -c_{2} & a_{4} c_{24} \\
-a_{4} c_{24} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

It is easy to see that $\operatorname{rank}^{1} \boldsymbol{J}\left(\boldsymbol{q}_{s}\right)=3$. Thus, the null space of ${ }^{1} \boldsymbol{J}\left(\boldsymbol{q}_{s}\right)$ is one-dimensional and coincides with the null space of ${ }^{0} \boldsymbol{J}\left(\boldsymbol{q}_{s}\right)$ (because we are operating on the columns of the matrix, i.e., in the joint space, while products by $\boldsymbol{R}_{1}^{T}\left(q_{1}\right)$ affect the rows). This null space is spanned by

$$
\mathcal{N}\left({ }^{0} \boldsymbol{J}\left(\boldsymbol{q}_{s}\right)\right)=\operatorname{span}\left\{\left(\begin{array}{r}
0 \\
-1 \\
0 \\
1
\end{array}\right)\right\}
$$

Indeed, for any joint velocity $\dot{\boldsymbol{q}}_{0} \in \mathcal{N}\left({ }^{0} \boldsymbol{J}\left(\boldsymbol{q}_{s}\right)\right)$, we have

$$
{ }^{0} \boldsymbol{J}\left(\boldsymbol{q}_{s}\right) \dot{\boldsymbol{q}}_{0}={ }^{1} \boldsymbol{J}\left(\boldsymbol{q}_{s}\right) \dot{\boldsymbol{q}}_{0}={ }^{1} \boldsymbol{J}\left(\boldsymbol{q}_{s}\right)\left(\begin{array}{r}
0 \\
-\alpha \\
0 \\
\alpha
\end{array}\right)=\mathbf{0}, \quad \forall \alpha \in \mathbb{R} .
$$

In order to determine all end-effector twists $\boldsymbol{t} \in \mathbb{R}^{6}$ that are not realizable at a singular configuration \boldsymbol{q}_{s}, we should find $6-\operatorname{dim} \mathcal{R}\left({ }^{1} \boldsymbol{J}\left(\boldsymbol{q}_{s}\right)\right)=3$ independent columns to be appended to the geometric Jacobian so that its rank will increase to its maximum possible value, namely 6 . Working in the rotated frame, and following the same previous consideration about complementarity spaces, it is easy to see that we can use the two twist directions in (6) -which are never realizable, neither in a regular configuration nor in a singular configuration (where $q_{3}=0$) — and add a third independent column as follows

$$
\mathcal{N}\left({ }^{1} \boldsymbol{J}^{T}\left(\boldsymbol{q}_{s}\right)\right)=\operatorname{span}\left\{{ }^{1} \boldsymbol{t}_{1},{ }^{1} \boldsymbol{t}_{2},{ }^{1} \boldsymbol{t}_{3}\right\}=\operatorname{span}\left\{\left(\begin{array}{c}
0 \tag{7}\\
0 \\
1 \\
0 \\
a_{4} c_{24} \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
c_{2} \\
s_{2} \\
0 \\
0 \\
0 \\
a_{4} s_{4}
\end{array}\right)\right\} .
$$

Being outside the range space of ${ }^{1} \boldsymbol{J}\left(\boldsymbol{q}_{s}\right)$, the three directions in (7) represent a basis for all generalized end-effector twists that are not realizable at \boldsymbol{q}_{s}. When expressed in the base frame, these
become
${ }^{0} \boldsymbol{t}_{1}={ }^{0} \overline{\boldsymbol{R}}_{1}\left(q_{1}\right){ }^{1} \boldsymbol{t}_{1}=\left(\begin{array}{c}s_{1} \\ -c_{1} \\ 0 \\ 0 \\ 0 \\ a_{4} c_{24}\end{array}\right), \quad{ }^{0} \boldsymbol{t}_{2}={ }^{0} \overline{\boldsymbol{R}}_{1}\left(q_{1}\right){ }^{1} \boldsymbol{t}_{2}=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ c_{1} \\ s_{1} \\ 0\end{array}\right), \quad{ }^{0} \boldsymbol{t}_{3}={ }^{0} \overline{\boldsymbol{R}}_{1}\left(q_{1}\right){ }^{1} \boldsymbol{t}_{3}=\left(\begin{array}{c}c_{1} c_{2} \\ s_{1} c_{2} \\ s_{2} \\ a_{4} s_{1} s_{4} \\ -a_{4} c_{1} s_{4} \\ 0\end{array}\right)$.

To determine all end-effector wrenches $\boldsymbol{w} \in \mathbb{R}^{6}$ for which the manipulator is statically balanced at \boldsymbol{q}_{s} without the need of forces/torques $\boldsymbol{\tau} \in \mathbb{R}^{4}$ at the joints, we need to determine a basis for the null space of the transpose of the geometric Jacobian. However, such a basis has already been computed. Therefore, when working in the rotated frame, we have

$$
\mathcal{N}\left({ }^{1} \boldsymbol{J}^{T}\left(\boldsymbol{q}_{s}\right)\right)=\operatorname{span}\left\{{ }^{1} \boldsymbol{w}_{1},{ }^{1} \boldsymbol{w}_{2},{ }^{1} \boldsymbol{w}_{3}\right\}=\operatorname{span}\left\{{ }^{1} \boldsymbol{t}_{1},{ }^{1} \boldsymbol{t}_{2},{ }^{1} \boldsymbol{t}_{3}\right\} .
$$

Similarly, when expressed in the base frame as ${ }^{0} \boldsymbol{w}_{i}={ }^{0} \overline{\boldsymbol{R}}_{1}\left(q_{1}\right){ }^{1} \boldsymbol{w}_{i}$, for $i=1,2,3$, these end-effector wrenches are

$$
{ }^{0} \boldsymbol{w}_{1}={ }^{0} \boldsymbol{t}_{1}, \quad{ }^{0} \boldsymbol{w}_{2}={ }^{0} \boldsymbol{t}_{2}, \quad{ }^{0} \boldsymbol{w}_{3}={ }^{0} \boldsymbol{t}_{3} .
$$

Indeed, for any end-effector wrench $\boldsymbol{w}_{0} \in \mathcal{N}\left(\boldsymbol{J}^{T}\left(\boldsymbol{q}_{s}\right)\right)$, the balancing forces/torques at the joints is

$$
\boldsymbol{\tau}={ }^{0} \boldsymbol{J}^{T}\left(\boldsymbol{q}_{s}\right)^{0} \boldsymbol{w}_{0}={ }^{1} \boldsymbol{J}^{T}\left(\boldsymbol{q}_{s}\right)^{1} \boldsymbol{w}_{0}=\mathbf{0}
$$

[^0]: ${ }^{1}$ While most of these angles take values in $(-\pi, \pi]$, there are two angular errors exceeding this range, namely $3.9270=\pi+0.7854$ and $-3.9270=-\pi-0.7854$. Indeed, when defining an angular quantities over a 2π range, one should organize error computations so as to lead to the smallest difference (in this case, ± 0.7854). Even in this way, the results for $\boldsymbol{e}_{\boldsymbol{\alpha}}$ and $\boldsymbol{\alpha}_{c d}$ are different.

