Robotics 1 - Sheet for Exercise 2

September 9, 2022

With reference to the inverse kinematics problem of robot manipulators, check if each of the following statements is True or False, and provide mandatorily a very short motivation/explanation sentence.

1. When the robot is in a singularity, there is always an infinite number of inverse solutions.
True

False \square
2. A 6 -dof Cartesian robot with a spherical wrist has two inverse solutions, out of singularities.

3. If a closed-form inverse solution is not known in advance, a numerical method cannot provide one.

4. A 6R industrial robot may have sixteen inverse solutions in its workspace, out of singularities.
\square False \square
5. A planar manipulator with $n \geq 3$ revolute joints has up to n inverse solutions for a positioning task.

> True
\square False \square
6. At workspace boundaries, there is never an analytic solution to the inverse kinematics.

True \square False \square
7. A 3 R robot with twist angles α_{i} different from $0, \pm \pi / 2$, or $\pm \pi$ has no closed-form inverse solution. True \square False

8. The number of inverse solutions under joint limits is always strictly less than that without limits. True \square False \square
9. A 6 R spatial robot without spherical wrist or spherical shoulder has no closed-form inverse solution.

True \square False \square
10. A 3-dof gantry-type robot has only one inverse kinematic solution in its workspace.

True \square False \square

