Robotics 1 - Sheet for Exercise 2

September 9, 2022

With reference to the inverse kinematics problem of robot manipulators, check if each of the following statements is **True** or **False**, and provide mandatorily a *very short* motivation/explanation sentence.

1.	When the robot is in a singularity, there is always an infinite number of inverse solutions. True False
2.	A 6-dof Cartesian robot with a spherical wrist has two inverse solutions, out of singularities. True False
3.	If a closed-form inverse solution is not known in advance, a numerical method cannot provide one. True False
4.	A 6R industrial robot may have sixteen inverse solutions in its workspace, out of singularities. True False
5.	A planar manipulator with $n \geq 3$ revolute joints has up to n inverse solutions for a positioning task. True False
6.	At workspace boundaries, there is never an analytic solution to the inverse kinematics. True False
7.	A 3R robot with twist angles α_i different from $0, \pm \pi/2$, or $\pm \pi$ has no closed-form inverse solution. True False
8.	The number of inverse solutions under joint limits is always strictly less than that without limits. True False
9.	A 6R spatial robot without spherical wrist or spherical shoulder has no closed-form inverse solution. True False
10.	A 3-dof gantry-type robot has only one inverse kinematic solution in its workspace. True False