Robotics 1

September 9, 2022

Exercise 1

The Fanuc cr15ia is a collaborative robot with six revolute joints and a spherical wrist. Two views are shown in Fig. 1. The drawing with a back view contains the numerical values (in [mm]) of all geometric lengths that are needed for describing the robot kinematics.

Figure 1: A front view and a drawing from the back of the 6 R Fanuc cr15ia collaborative robot.
Assign the link frames according to the Denavit-Hartenberg (DH) convention and fill in the associated table of parameters, specifying the numerical values of the constant parameters (given directly in the drawing of the robot or derived from those data). Moreover, provide the values of the joint variables when the robot is in the configuration shown in the back view. Draw the frames and fill in the table directly on the extra sheet \#1 provided separately. The two DH frames 0 (at the robot base) and 6 (at the center of the final flange) are assigned and should not be modified.

Exercise 2

A number of statements are reported on the extra sheet $\# 2$, regarding the inverse kinematics problem of robot manipulators. Check if each of the statements is True or False. Each answer will be considered only if you provide also a very short motivation/explanation sentence.

Exercise 3

For a 3 -dof robot, the task kinematics is given by

$$
\boldsymbol{r}=\boldsymbol{f}(\boldsymbol{q})=\left(\begin{array}{c}
q_{2} \cos q_{1}+L \cos \left(q_{1}+q_{3}\right) \\
q_{2} \sin q_{1}+L \sin \left(q_{1}+q_{3}\right) \\
q_{1}+q_{3}
\end{array}\right),
$$

with a constant $L>0$.

- Find the singularities of the mapping from $\dot{\boldsymbol{q}}$ to $\dot{\boldsymbol{r}}$.
- Determine all possible task velocities $\dot{\boldsymbol{r}}$ that can be realized when the robot is in a singularity.
- When the robot is at rest $(\dot{\boldsymbol{q}}=\mathbf{0})$, is it possible to obtain a task acceleration $\ddot{\boldsymbol{r}}=\mathbf{0}$ by commanding a non-zero joint acceleration $\ddot{\boldsymbol{q}}$? Support your answer with one or more numerical examples.
- Set now $L=1$. At $\boldsymbol{q}=(\pi / 2,1,0)$, with the robot having a joint velocity $\dot{\boldsymbol{q}}=(1,-1,-1)$, determine a joint acceleration $\ddot{\boldsymbol{q}}$ that realizes $\ddot{\boldsymbol{r}}=\mathbf{0}$. Is this joint acceleration unique?

Exercise 4

A single revolute joint of a robot needs to move between $q_{i}=\pi / 2[\mathrm{rad}]$ and $q_{f}=0$, under the velocity and acceleration bounds

$$
|\dot{q}| \leq V=2[\mathrm{rad} / \mathrm{s}], \quad|\ddot{q}| \leq A=4\left[\mathrm{rad} / \mathrm{s}^{2}\right] .
$$

Determine:

- the minimum time T_{0} for a rest-to-rest motion;
- the minimum time T_{1} for a motion from $\dot{q}_{i}=1.5[\mathrm{rad} / \mathrm{s}]$ to $\dot{q}_{f}=0$.

Sketch the position, velocity and acceleration profiles of the two resulting time-optimal motions.
[180 minutes, open books]

Solution

September 9, 2022

Exercise 1

A possible DH frame assignment for the Fanuc CR15ia robot is shown in Fig. 2, in the front and back views. The associated DH parameters are reported in Tab. 1.

Figure 2: DH frames for the Fanuc CR15ia robot: front view (left) and back view (right).

i	α_{i}	a_{i}	d_{i}	θ_{i}
1	$-\pi / 2$	75	648	q_{1}
2	0	640	0	q_{2}
3	$-\pi / 2$	a_{3}	0	q_{3}
4	$\pi / 2$	0	700	q_{4}
5	$-\pi / 2$	0	0	q_{5}
6	0	0	75	q_{6}

Table 1: Parameters associated to the DH frames of Fig. 2. Lengths are in [mm].
Parameter a_{3} is the only one not directly given in the data sheet. By geometric reasoning one has

$$
a_{3}=\sqrt{(2014-(648+640))^{2}-700^{2}} \simeq 192.55[\mathrm{~mm}],
$$

which is best evaluated when the forearm is pointing upward and reaches the top of the workspace.

When the robot is in the configuration shown in the back view, the values of the joint variables are:

$$
q_{1}=0, \quad q_{2}=-\frac{\pi}{2}[\mathrm{rad}], \quad q_{3}=q_{4}=q_{5}=q_{6}=0 .
$$

On the other hand, one can approximately guess the joint values (for convenience, expressed in degree) also when the robot is in the configuration shown in the front view:

$$
q_{1}=15^{\circ}, \quad q_{2}=-110^{\circ}, \quad q_{3}=5^{\circ}, \quad q_{4}=0^{\circ}, \quad q_{5}=40^{\circ}, \quad q_{1}=0^{\circ} .
$$

Exercise 2

1. When the robot is in a singularity, there is always an infinite number of inverse solutions.

False A planar 2R robot is singular at the outer boundary, with only one inverse solution.
2. A 6 -dof Cartesian robot with a spherical wrist has two inverse solutions, out of singularities.

True For such PPP-3R robot, these are the two orientation solutions of the spherical wrist.
3. If a closed-form inverse solution is not known in advance, a numerical method cannot provide one.

False This is exactly one of the main reasons for using a numerical method for inversion.
4. A 6 R industrial robot may have sixteen inverse solutions in its workspace, out of singularities.

True This maximum number of solutions has been actually reached by a 6 R robot.
5. A planar manipulator with $n \geq 3$ revolute joints has up to n inverse solutions for a positioning task.

False The robot is redundant for the task and can have an infinity of inverse solutions.
6. At workspace boundaries, there is never an analytic solution to the inverse kinematics.

False For a stretched planar 2R robot: $q_{1}=\operatorname{atan} 2\left\{p_{y}, p_{x}\right\}, q_{2}=0$.
7. A 3 R robot with twist angles α_{i} different from $0, \pm \pi / 2$, or $\pm \pi$ has no closed-form inverse solution.

False Though more complex, closed-form inverse solutions can be found in other 3R cases.
8. The number of inverse solutions under joint limits is always strictly less than that without limits.

False Not always, though this is often the case.
9. A 6 R spatial robot without spherical wrist or spherical shoulder has no closed-form inverse solution.

False Another sufficient condition is having three parallel joint axes, as in the UR10 robot.
10. A 3-dof gantry-type robot has only one inverse kinematic solution in its workspace.

True This is a PPP robot and there is a unique solution, say, $q_{1}=p_{x}, q_{2}=p_{y}, q_{3}=p_{z}$.

Exercise 3

Differentiating the given task kinematics ${ }^{1}$ gives $\dot{\boldsymbol{r}}=(\partial \boldsymbol{f}(\boldsymbol{q}) / \partial \boldsymbol{q}) \dot{\boldsymbol{q}}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}}$, with the task Jacobian

$$
\boldsymbol{J}(\boldsymbol{q})=\left(\begin{array}{ccc}
-q_{2} \sin q_{1}-L \sin \left(q_{1}+q_{3}\right) & \cos q_{1} & -L \sin \left(q_{1}+q_{3}\right) \\
q_{2} \cos q_{1}+L \cos \left(q_{1}+q_{3}\right) & \sin q_{1} & L \cos \left(q_{1}+q_{3}\right) \\
1 & 0 & 1
\end{array}\right) .
$$

Its determinant is

$$
\operatorname{det} \boldsymbol{J}(\boldsymbol{q})=-q_{2}
$$

so that the only singularity occurs when $q_{2}=0$. Substituting this value in the Jacobian yields

$$
\boldsymbol{J}_{s}=\left.\boldsymbol{J}(\boldsymbol{q})\right|_{q_{2}=0}=\left(\begin{array}{ccc}
-L \sin \left(q_{1}+q_{3}\right) & \cos q_{1} & L \sin \left(q_{1}+q_{3}\right) \\
L \cos \left(q_{1}+q_{3}\right) & \sin q_{1} & L \cos \left(q_{1}+q_{3}\right) \\
1 & 0 & 1
\end{array}\right)
$$

having rank 2. Thus, all task velocities that can be realized in a singularity by any possible choice of joint velocities $\dot{\boldsymbol{q}} \in \mathbb{R}^{3}$ span a two-dimensional subspace, namely $\mathcal{R}\left(\boldsymbol{J}_{s}\right)$, and are of the form

$$
\dot{\boldsymbol{r}}=\left(\begin{array}{c}
-L \sin \left(q_{1}+q_{3}\right) \\
L \cos \left(q_{1}+q_{3}\right) \\
1
\end{array}\right) \alpha+\left(\begin{array}{c}
\cos q_{1} \\
\sin q_{1} \\
0
\end{array}\right) \beta, \quad \text { with } \alpha=\dot{q}_{1}+\dot{q}_{3}, \beta=\dot{q}_{2} .
$$

Differentiating further $\dot{\boldsymbol{r}}$, we obtain the task acceleration

$$
\ddot{\boldsymbol{r}}=\boldsymbol{J}(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\dot{\boldsymbol{J}}(\boldsymbol{q}) \dot{\boldsymbol{q}}=\boldsymbol{J}(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\boldsymbol{h}(\boldsymbol{q}, \dot{\boldsymbol{q}})
$$

where the term \boldsymbol{h} is quadratic in $\dot{\boldsymbol{q}}$ and is given by

$$
\boldsymbol{h}(\boldsymbol{q}, \dot{\boldsymbol{q}})=\left(\begin{array}{c}
-2 \sin q_{1} \dot{q}_{1} \dot{q}_{2}-q_{2} \cos q_{1} \dot{q}_{1}^{2}-L \cos \left(q_{1}+q_{3}\right)\left(\dot{q}_{1}+\dot{q}_{3}\right)^{2} \\
2 \cos q_{1} \dot{q}_{1} \dot{q}_{2}-q_{2} \sin q_{1} \dot{q}_{1}^{2}-L \sin \left(q_{1}+q_{3}\right)\left(\dot{q}_{1}+\dot{q}_{3}\right)^{2} \\
0
\end{array}\right) .
$$

Suppose now that the robot is at rest $(\dot{\boldsymbol{q}}=\mathbf{0})$, so that $\boldsymbol{h}=\mathbf{0}$. Then, we can obtain $\ddot{\boldsymbol{r}}=\boldsymbol{J}(\boldsymbol{q}) \ddot{\boldsymbol{q}}=\mathbf{0}$ for a joint acceleration $\ddot{\boldsymbol{q}} \neq \mathbf{0}$ if and only if the task Jacobian \boldsymbol{J} is singular, i.e., it is \boldsymbol{J}_{s}. In this case, any non-zero acceleration $\ddot{\boldsymbol{q}}$ that lies in the null space of \boldsymbol{J}_{s} solves the requested problem:

$$
\ddot{\boldsymbol{q}}_{0} \in \mathcal{N}\left\{\boldsymbol{J}_{s}\right\}=\gamma\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), \forall \gamma \quad \Rightarrow \quad \boldsymbol{J}_{s} \ddot{\boldsymbol{q}}_{0}=\mathbf{0} .
$$

Note that the same acceleration applied at a generic nonsingular configuration and with zero joint velocity would produce instead

$$
\ddot{\boldsymbol{r}}=\boldsymbol{J}(\boldsymbol{q}) \ddot{\boldsymbol{q}}_{0}=\gamma\left(\begin{array}{c}
q_{2} \sin q_{1} \\
-q_{2} \cos q_{1} \\
0
\end{array}\right) \neq \mathbf{0} .
$$

[^0]When the task Jacobian is nonsingular, the unique joint acceleration $\ddot{\boldsymbol{q}}$ that produces $\ddot{\boldsymbol{r}}=\mathbf{0}$ is given by

$$
\begin{equation*}
\ddot{\boldsymbol{q}}=-\boldsymbol{J}^{-1}(\boldsymbol{q}) \boldsymbol{h}(\boldsymbol{q}, \dot{\boldsymbol{q}}) . \tag{1}
\end{equation*}
$$

Since $\boldsymbol{q}=(\pi / 2,1,0)$ is a regular configuration, plugging these values of joint position into (1), together with $L=1$ and $\dot{\boldsymbol{q}}=(1,-1,-1)$, leads to

$$
\ddot{\boldsymbol{q}}=-\left(\begin{array}{ccc}
-1 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 2
\end{array}\right)\left(\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right) .
$$

Exercise 4

The case of rest-to-rest motion is standard. Since

$$
L=\left|q_{f}-q_{i}\right|=\frac{\pi}{2}=1.570>1=\frac{V^{2}}{A}
$$

there will be a coast phase at maximum (negative) velocity $\dot{q}=-V=-2[\mathrm{~m} / \mathrm{s}]$ during motion. Applying then the known formulas for bang-coast-bang acceleration profiles, we have

$$
T_{s}=\frac{V}{A}=0.5[\mathrm{~s}], \quad T_{0}=\frac{L A+V^{2}}{A V}=\frac{2 \pi+4}{8}=\frac{\pi}{4}+0.5=1.285[\mathrm{~s}]
$$

Thus, the cruise speed is held for $T-2 T_{s}=0.285[\mathrm{~s}]$. The resulting position, velocity and acceleration profiles are shown in Fig. 3. Note the negative trapezoidal velocity profile, since the position is being reduced (rotated clockwise!) from $q_{i}=\pi / 2$ to $q_{f}=0$.

Figure 3: Motion profiles for the rest-to-rest case.
When the initial velocity is $\dot{q}_{i}=1.5[\mathrm{rad} / \mathrm{s}]$ (state-to-rest case), the joint is moving initially in the wrong direction: thus, it needs to reverse its motion, i.e., first decelerate and stop and then move back to q_{f}. However, while the joint is being brought to a first stop in a time T_{d}, the position has progressed from $q_{i}=\pi / 2$ to a larger positive value $q_{d}>q_{i}$. Applying the maximum negative acceleration $\ddot{q}=-A$ to stop the motion in the shortest possible time, these two quantities are then computed as

$$
T_{d}=\frac{\dot{q}_{i}}{A}=0.375[\mathrm{~s}], \quad q_{d}=q_{i}+\frac{1}{2} \dot{q}_{i} T_{d}=q_{i}+\frac{\dot{q}_{i}^{2}}{2 A}=\frac{\pi}{2}+0.281=1.852[\mathrm{rad}] .
$$

At this point, the remaining part of the motion is similar to the rest-to-rest case, but with the longer displacement to travel

$$
L_{d}=\left|q_{f}-q_{d}\right|=1.852>L
$$

The joint will first continue with the same negative acceleration $\ddot{q}=-A$, until reaching the cruise velocity $\dot{q}=-V$ and so on. Therefore, the total minimum time in this case will be

$$
T_{1}=T_{d}+\frac{L_{d} A+V^{2}}{A V}=0.375+1.426=1.801[\mathrm{~s}]
$$

The resulting position, velocity and acceleration profiles are shown in Fig. 4. Note that the overall motion is no longer symmetric.

Figure 4: Motion profiles for the state-to-rest case

[^0]: ${ }^{1}$ The robot is a planar RPR arm with the third link of length L, while the task is the position and orientation of its end-effector. All requested derivations are done analytically, so this information is of limited use.

