Robotics I

April 5, 2022

Exercise 1

Consider the spatial 4R robot shown in Fig. 1.

Figure 1: A 4R robot and its kinematic skeleton.

- Assign a set of frames to the robot according to the Denavit-Hartenberg convention and provide the associated table of parameters. Keep the reference frame RF_0 as shown in the figure.
- Determine the homogeneous transformation ${}^{4}T_{E}$ from the assigned Denavit-Hartenberg frame RF_{4} to the end-effector frame RF_{E} shown in the figure.
- Compute the symbolic expression of the position ${}^{0}\boldsymbol{p}_{E}(\boldsymbol{q})$ of the origin of the end-effector frame by using the minimum amount of operations. Show all intermediate passages. For A = B = C = 1, give the numerical value of the position ${}^{0}\boldsymbol{p}_{E}$ when $\boldsymbol{q} = (\pi/2, \pi/2, 0, 0)$.
- Compute the angular part of the geometric Jacobian, namely the 3×4 matrix $J_A(q)$ such that

$$\boldsymbol{\omega}_E = \boldsymbol{J}_A(\boldsymbol{q})\dot{\boldsymbol{q}}_B$$

and find all its singularities.

• Find the symbolic expression (as a function of the configuration q) of a non-trivial joint velocity $\dot{q}_0 \neq 0$ such that $\omega_E = J_A(q)\dot{q}_0 = 0$ for all possible q.

Exercise 2

Consider the motion profile in Fig. 2 for a generic robot joint, parametrized by the amplitude J > 0 and the duration T > 0. This time profile represents the motion jerk, namely the third time derivative of the joint position q(t), for $t \in [0, T]$.

Figure 2: The jerk profile $\ddot{q}(t)$ of the joint motion.

- For a (rest-to-rest) motion with zero boundary conditions on velocity and acceleration, determine the value of the net displacement $\Delta = q(T) q(0)$ as a function of J and T.
- For $J = 100 \text{ [rad/s^3]}$ and T = 2 [s], provide the numerical value of Δ . If we wish to have a displacement $\Delta = -2 \text{ [rad]}$ in T = 4 [s], what should be the numerical value of J?

[180 minutes, open books]