Robotics I

April 5, 2022

Exercise 1

Consider the spatial 4R robot shown in Fig. 1

Figure 1: A 4R robot and its kinematic skeleton.

- Assign a set of frames to the robot according to the Denavit-Hartenberg convention and provide the associated table of parameters. Keep the reference frame $R F_{0}$ as shown in the figure.
- Determine the homogeneous transformation ${ }^{4} \boldsymbol{T}_{E}$ from the assigned Denavit-Hartenberg frame $R F_{4}$ to the end-effector frame $R F_{E}$ shown in the figure.
- Compute the symbolic expression of the position ${ }^{0} \boldsymbol{p}_{E}(\boldsymbol{q})$ of the origin of the end-effector frame by using the minimum amount of operations. Show all intermediate passages. For $A=B=C=1$, give the numerical value of the position ${ }^{0} \boldsymbol{p}_{E}$ when $\boldsymbol{q}=(\pi / 2, \pi / 2,0,0)$.
- Compute the angular part of the geometric Jacobian, namely the 3×4 matrix $\boldsymbol{J}_{A}(\boldsymbol{q})$ such that

$$
\boldsymbol{\omega}_{E}=\boldsymbol{J}_{A}(\boldsymbol{q}) \dot{\boldsymbol{q}},
$$

and find all its singularities.

- Find the symbolic expression (as a function of the configuration \boldsymbol{q}) of a non-trivial joint velocity $\dot{\boldsymbol{q}}_{0} \neq \mathbf{0}$ such that $\boldsymbol{\omega}_{E}=\boldsymbol{J}_{A}(\boldsymbol{q}) \dot{\boldsymbol{q}}_{0}=\mathbf{0}$ for all possible \boldsymbol{q}.

Exercise 2

Consider the motion profile in Fig. 2 for a generic robot joint, parametrized by the amplitude $J>0$ and the duration $T>0$. This time profile represents the motion jerk, namely the third time derivative of the joint position $q(t)$, for $t \in[0, T]$.

Figure 2: The jerk profile $\dddot{q}(t)$ of the joint motion.

- For a (rest-to-rest) motion with zero boundary conditions on velocity and acceleration, determine the value of the net displacement $\Delta=q(T)-q(0)$ as a function of J and T.
- For $J=100\left[\mathrm{rad} / \mathrm{s}^{3}\right]$ and $T=2[\mathrm{~s}]$, provide the numerical value of Δ. If we wish to have a displacement $\Delta=-2[\mathrm{rad}]$ in $T=4[\mathrm{~s}]$, what should be the numerical value of J ?

