Robotics 1 October 19, 2021

Exercise #1

Consider the 3-dof PPR robot in Fig. 1, with a jaw gripper mounted on the end effector.

Figure 1: A 3-dof PPR robot.

- a) Assign and draw the robot frames according to the Denavit-Hartenberg (DH) convention. Place the origin of frame 0 on the floor and the origin of the last frame at the center of the gripper. Compile the associated table of DH parameters.
- b) Check whether the last DH frame assigned coincides in orientation with the definition of the standard frame (n, s, a) attached to a jaw gripper. If not, determine the rotation matrix ${}^{3}R_{g}$ needed to align the two frames.
- c) Provide the expression of the direct kinematics $\boldsymbol{p} = \boldsymbol{f}(\boldsymbol{q})$ between $\boldsymbol{q} = (q_1, q_2, q_3)$ and the position $\boldsymbol{p} = (p_x, p_y, p_z)$ of the center of the gripper.
- d) Derive the 3×3 Jacobian matrix J(q) relating \dot{q} to the linear velocity $v = \dot{p}$ in two different ways, as part of the geometric Jacobian of the robot and using differentiation w.r.t. time.
- e) Find all the singular configurations of matrix J(q). In one of such configurations q_s , characterize which Cartesian directions are instantaneously accessible by the robot gripper and which not.

Exercise #2

For the robot in Fig. 1, using the associated symbolic DH parameters, determine a smooth and coordinated rest-to-rest joint trajectory that will move in T seconds the robot gripper from the initial position $\mathbf{p}_i = (a_1 + a_3, 0, 0)$ to the final position $\mathbf{p}_f = (a_1, -\delta, 0)$, with $\delta > 0$. Sketch a plot of the obtained joint trajectory $\mathbf{q}_d(t) = (q_{1d}(t), q_{2d}(t), q_{3d}(t))$. What will be the maximum value of the norm of the joint velocity $\|\dot{\mathbf{q}}_d(t)\|$ during the interval [0, T]?

[120 minutes (2 hours); open books]