Robotics 1

June 11, 2021

Exercise \#1

Consider the 6 -dof robot in Fig. 1. The robot has three prismatic joints in a portal arrangement and a spherical wrist. Assign a set of Denavit-Hartenberg (DH) frames and provide the associated table of parameters. Give plausible values for the joint variables \boldsymbol{q} at the configuration shown in the figure. Define the homogeneous transformation matrix ${ }^{w} \boldsymbol{T}_{0}$ relating the DH reference frame $R F_{0}$ to the world frame $R F_{w}$ (for this, introduce geometric quantities as needed).

Figure 1: A 6-dof robot with a portal structure (3P) carrying a spherical (3R) wrist. An enlarged view of the wrist is shown on the right.

Exercise \#2

A planar RPR robot is shown in Fig. 2, together with the definition of the joint coordinates ${ }^{1}$. The third link has length $L=0.6[\mathrm{~m}]$. The robot has to execute two different tasks, with the end effector placed at the point $P_{d}=(2,0.4)[\mathrm{m}]$ and pointing downward.
a) In the first task, the robot end effector should start moving inside a tube with a vertical speed $v=-2.5[\mathrm{~m} / \mathrm{s}]$. Determine the initial joint velocity $\dot{\boldsymbol{q}} \in \mathbb{R}^{3}$ that realizes this instantaneous motion.
b) In the second task, the robot should keep its initial configuration in the presence of an horizontal force $f=15[\mathrm{~N}]$ and a torque $\mu=6[\mathrm{Nm}]$ applied to its end effector. Determine the joint commands $\boldsymbol{\tau} \in \mathbb{R}^{3}$ (two torques and a force) needed for static balance.
Comments that justify intuitively some of the obtained results are welcome!

[^0]

Figure 2: A 3-dof RPR robot, with the definition of a Cartesian motion task [left] and of a static balancing task in the presence of an external force/torque [right]. Both tasks should be executed at point P_{d}, with the robot end effector pointing downward.

Exercise \#3

Plan a smooth rest-to-rest trajectory along a linear path from point $A=(1,1,1)$ [m] to point $B=(-1,5,0)[\mathrm{m}]$, with simultaneous and coordinated change of orientation from

$$
\boldsymbol{R}_{A}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

to

$$
\boldsymbol{R}_{B}=\left(\begin{array}{ccc}
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & -1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

The total motion time is $T=2.5[\mathrm{~s}]$. The trajectory should be continuous up to the acceleration for all $t \in[0, T]$. Determine the velocity $\boldsymbol{v}_{M} \in \mathbb{R}^{3}$, acceleration $\boldsymbol{a}_{M} \in \mathbb{R}^{3}$, angular velocity $\boldsymbol{\omega}_{M} \in \mathbb{R}^{3}$, and angular acceleration $\dot{\boldsymbol{\omega}}_{M} \in \mathbb{R}^{3}$ attained at the time instant(s) when these four vectors assume, respectively, their maximum value in norm. Compute also the absolute orientation $\boldsymbol{R}_{\text {mid }} \in S O(3)$ at the midpoint of the planned trajectory.
[180 minutes (3 hours); open books]

Solution

June 11, 2021

Exercise \#1

One of the (many) possible assignments of Denavit-Hartenberg frames for the 6 -dof portal robot with spherical wrist is shown in Fig. 3. The associated parameters are reported in Tab. 1.

Figure 3: A possible assignment of DH frames for the 6 -dof robot of Fig. 1. In the top figure, the world frame $R F_{w}$ and the first three frames $R F_{0}$ to $R F_{2}$ of the portal structure are drawn in black, while the extra quantities a, b and h introduced for defining ${ }^{w} \boldsymbol{T}_{0}$ are shown in green. In the bottom figure, the last four frames $R F_{3}$ to $R F_{6}$ for the spherical wrist are drawn in red.

i	α_{i}	a_{i}	d_{i}	θ_{i}
1	$\pi / 2$	0	$q_{1}>0$	$\pi / 2$
2	$\pi / 2$	0	$q_{2}>0$	$-\pi / 2$
3	0	0	$q_{3}>0$	0
4	$\pi / 2$	0	0	$q_{4}=0$
5	$\pi / 2$	0	0	$q_{5}=3 \pi / 4$
6	0	0	0	$q_{6}=0$

Table 1: DH table of parameters corresponding to Fig. 3. The joint variables q_{i} (in red) take values associated to the configuration shown in the same figure. We have assumed $O_{6} \equiv O_{5}\left(d_{6}=0\right)$.

With the geometric quantities introduced in Fig. 3, the homogenous matrix that locates the DH base frame $R F_{0}$ in the world frame is

$$
{ }^{w} \boldsymbol{T}_{0}=\left(\begin{array}{cccc}
0 & 0 & 1 & a \\
1 & 0 & 0 & b \\
0 & 1 & 0 & h \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Exercise \#2

The direct kinematics of interest for the RPR robot in Fig. 2 is

$$
\boldsymbol{r}=\binom{\boldsymbol{p}}{\alpha}=\left(\begin{array}{c}
p_{x} \tag{1}\\
p_{y} \\
\alpha
\end{array}\right)=\left(\begin{array}{c}
q_{2} \cos q_{1}+L \cos \left(q_{1}+q_{3}\right) \\
q_{2} \sin q_{1}+L \sin \left(q_{1}+q_{3}\right) \\
q_{1}+q_{3}
\end{array}\right)=\boldsymbol{f}(\boldsymbol{q}),
$$

where \boldsymbol{p} is the planar position of the robot tip and α is the absolute angle of its end-effector w.r.t. the \boldsymbol{x} axis. The associated 3×3 analytic Jacobian is

$$
J(\boldsymbol{q})=\frac{\partial \boldsymbol{f}(\boldsymbol{q})}{\partial \boldsymbol{q}}=\left(\begin{array}{ccc}
-q_{2} \sin q_{1}-L \sin \left(q_{1}+q_{3}\right) & \cos q_{1} & -L \sin \left(q_{1}+q_{3}\right) \tag{2}\\
q_{2} \cos q_{1}+L \cos \left(q_{1}+q_{3}\right) & \sin q_{1} & L \cos \left(q_{1}+q_{3}\right) \\
1 & 0 & 1
\end{array}\right)
$$

with $\operatorname{det} J(\boldsymbol{q})=-q_{2}$.
To find an initial robot configuration $\boldsymbol{q}_{d}=\left(q_{1 d}, q_{2 d}, q_{3 d}\right)$ associated to the desired end-effector pose $\boldsymbol{r}_{d}=\left(\boldsymbol{p}_{d}, \alpha_{d}\right)=\left(p_{x d}, p_{y d}, \alpha_{d}\right)=(2,0.4,-\pi / 2)$, we solve the inverse kinematics problem in general. From the third equation in (1), we have

$$
q_{1 d}+q_{3 d}=\alpha_{d}
$$

which, substituted in the first two equations, yields

$$
\begin{equation*}
p_{x d}-L \cos \alpha_{d}=q_{2 d} \cos q_{1 d}, \quad p_{y d}-L \sin \alpha_{d}=q_{2 d} \sin q_{1 d} \tag{3}
\end{equation*}
$$

By squaring and summing the two equations in (3), we find the value $q_{2 d}$ as

$$
\begin{equation*}
q_{2 d}=+\sqrt{\left(p_{x d}-L \cos \alpha_{d}\right)^{2}+\left(p_{y d}-L \sin \alpha_{d}\right)^{2}} \tag{4}
\end{equation*}
$$

where the positive sign has been chosen for simplicity. Dividing by $q_{2 d}>0$ the two equations in (3), we also obtain

$$
\begin{equation*}
q_{1 d}=\operatorname{ATAN} 2\left\{p_{y, d}-L \sin \alpha_{d}, p_{x, d}-L \cos \alpha_{d}\right\}, \tag{5}
\end{equation*}
$$

and finally

$$
\begin{equation*}
q_{3 d}=\alpha_{d}-q_{1 d} . \tag{6}
\end{equation*}
$$

For the specific data of the problem, note that eqs. (4) and (5) simplify to an intuitive geometric solution. In fact, when the desired point P_{d} is in the first quadrant and the end effector points vertically and downward $\left(\alpha_{d}=-\pi / 2\right)$, the base of the third link should be placed at the 'higher' point $P_{d}^{\prime}=P_{d}+(0, L)$, whose position is

$$
\boldsymbol{p}_{d}^{\prime}=\binom{p_{x d}}{p_{y d}+L}
$$

Therefore, the solution for the first two joints follows immediately as

$$
\begin{equation*}
q_{1 d}=\arctan \left(\frac{p_{y d}+L}{p_{x d}}\right), \quad q_{2 d}=\sqrt{p_{x d}^{2}+\left(p_{y d}+L\right)^{2}}, \tag{7}
\end{equation*}
$$

while $q_{3 d}$ is found again by (6).
With the given data, we obtain

$$
\boldsymbol{q}_{d}=\left(\begin{array}{c}
0.4636 \\
2.2361 \\
-2.0344
\end{array}\right)[\mathrm{rad} / \mathrm{m} / \mathrm{rad}]=\left(\begin{array}{c}
26.565 \\
2.2361 \\
-116.565
\end{array}\right)\left[{ }^{\circ} / \mathrm{m} /{ }^{\circ}\right]
$$

Thus, the Jacobian in this configuration becomes

$$
\boldsymbol{J}_{d}=\boldsymbol{J}\left(\boldsymbol{q}_{d}\right)=\left(\begin{array}{ccc}
-0.4000 & 0.8944 & 0.6000 \\
2.0000 & 0.4472 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

Since $\operatorname{det} \boldsymbol{J}_{d}=-2.2361$, this matrix is invertible. For the motion task, we have that

$$
\dot{\boldsymbol{r}}_{d}=\left(\begin{array}{c}
\dot{p}_{x d} \\
\dot{p}_{y d} \\
\dot{\alpha}_{d}
\end{array}\right)=\left(\begin{array}{l}
0 \\
v \\
0
\end{array}\right),
$$

because the insertion in the tube is feasible only by keeping the vertical, downward orientation of the end effector. For the static balancing task, it is

$$
\boldsymbol{F}_{d}=\left(\begin{array}{c}
f_{x d} \\
f_{y d} \\
\mu_{z d}
\end{array}\right)=\left(\begin{array}{c}
f \\
0 \\
\mu
\end{array}\right) .
$$

Using the numerical data, the solutions for the required tasks are

$$
\dot{\boldsymbol{q}}=\boldsymbol{J}_{d}^{-1} \dot{\boldsymbol{r}}_{d}=\boldsymbol{J}_{d}^{-1}\left(\begin{array}{c}
0 \tag{8}\\
-2.5 \\
0
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-1.1180 \\
1
\end{array}\right)[\mathrm{rad} / \mathrm{s}, \mathrm{~m} / \mathrm{s}, \mathrm{rad} / \mathrm{s}]
$$

and, respectively,

$$
\boldsymbol{\tau}=-\boldsymbol{J}_{d}^{T} \boldsymbol{F}_{d}=-\boldsymbol{J}_{d}^{T}\left(\begin{array}{c}
15 \tag{9}\\
0 \\
6
\end{array}\right)=\left(\begin{array}{c}
0 \\
-13.4164 \\
-15
\end{array}\right)[\mathrm{Nm}, \mathrm{~N}, \mathrm{Nm}]
$$

We note that the first and third (revolute) joints compensate their motion in (8), in order not to change the end-effector orientation. Similarly, in (9) the torque at the third joint directly annihilates the presence of the torque μ at the end effector (both acting on the same link), while the force at the second joint is the only one responsible for compensating the horizontal force component f (as projected along the direction of the prismatic joint). The fact that $\tau_{1}=0$ is just an occasional result here, due to the particular combination of input data ${ }^{2}$.

Exercise \#3

The trajectory is determined in parametric form in terms of a normalized scalar $s \in[0,1]$ for both the linear and the angular parts, in order to achieve coordinated motion. Then, a sufficiently smooth timing law $s=s(t)$ for $t \in[0, T]$ is assigned, so as to guarantee rest-to-rest motion with continuity up to the acceleration (as a consequence, also the acceleration should be zero at the initial and final instants).
For the linear motion along a straight line from point A to point B, we have

$$
\boldsymbol{p}(s)=\boldsymbol{p}_{A}+\left(\boldsymbol{p}_{B}-\boldsymbol{p}_{A}\right) s=\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right)+\left(\begin{array}{c}
-2 \\
4 \\
-1
\end{array}\right) s, \quad s \in[0,1]
$$

with path length $L=\left\|\boldsymbol{p}_{B}-\boldsymbol{p}_{A}\right\|=4.5826[\mathrm{~m}]$. The velocity and the acceleration are then

$$
\dot{\boldsymbol{p}}=\left(\boldsymbol{p}_{B}-\boldsymbol{p}_{A}\right) \dot{s}, \quad \ddot{\boldsymbol{p}}=\left(\boldsymbol{p}_{B}-\boldsymbol{p}_{A}\right) \ddot{s}
$$

and their maximum values in norm will be attained at the instants where, respectively, \dot{s} or \ddot{s} have a maximum (in absolute value for the latter), with

$$
\begin{equation*}
\boldsymbol{v}_{M}=\left(\boldsymbol{p}_{B}-\boldsymbol{p}_{A}\right) \cdot \max _{t \in[0, T]} \dot{s}(t)=\left(\boldsymbol{p}_{B}-\boldsymbol{p}_{A}\right) \dot{s}_{\max } \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{a}_{M}=\left(\boldsymbol{p}_{B}-\boldsymbol{p}_{A}\right) \cdot \max _{t \in[0, T]}|\ddot{s}(t)|=\left(\boldsymbol{p}_{B}-\boldsymbol{p}_{A}\right) \ddot{s}_{\max } \tag{11}
\end{equation*}
$$

For the angular motion, it is convenient to choose an axis-angle planning method ${ }^{3}$. In this way, it is immediate to find the resulting angular velocity and acceleration. First, we compute the relative

[^1]orientation between \boldsymbol{R}_{A} and \boldsymbol{R}_{B} :
\[

\boldsymbol{R}_{A B}=\boldsymbol{R}_{A}^{T} \boldsymbol{R}_{B}=\left($$
\begin{array}{ccc}
0 & -1 & 0 \\
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}
\end{array}
$$\right)=\left($$
\begin{array}{ccc}
R_{11} & R_{12} & R_{13} \\
R_{21} & R_{22} & R_{23} \\
R_{31} & R_{32} & R_{33}
\end{array}
$$\right)
\]

From this, we extract the axis-angle solution $\left(\boldsymbol{r}, \theta_{A B}\right)$ as

$$
\begin{aligned}
\theta_{A B} & =\text { ATAN } 2\left\{\sqrt{\left(R_{12}-R_{21}\right)^{2}+\left(R_{13}-R_{31}\right)^{2}+\left(R_{23}-R_{32}\right)^{2}}, R_{11}+R_{22}+R_{33}-1\right\} \\
& =2.5936[\mathrm{rad}], \\
\boldsymbol{r} & =\frac{1}{2 \sin \theta_{A B}}\left(\begin{array}{l}
R_{32}-R_{23} \\
R_{13}-R_{31} \\
R_{21}-R_{12}
\end{array}\right)=\left(\begin{array}{c}
-0.6786 \\
0.6786 \\
0.2811
\end{array}\right),
\end{aligned}
$$

being in a regular condition $\left(\sin \theta_{a B} \neq 0\right)$. The profile of the rotation angle around the unit vector r is then defined parametrically as

$$
\theta(s)=\theta_{A B} s, \quad s \in[0,1] .
$$

The angular velocity and acceleration vectors are aligned with the unit vector $\boldsymbol{r} \in \mathbb{R}^{3}$, with profiles

$$
\boldsymbol{\omega}=\theta_{A B} \dot{\boldsymbol{s}} \boldsymbol{r}, \quad \dot{\boldsymbol{\omega}}=\theta_{A B} \ddot{s} \boldsymbol{r} .
$$

As before, their maximum values in norm will be attained at the instants where, respectively, \dot{s} or \ddot{s} have a maximum (in absolute value), with

$$
\begin{equation*}
\boldsymbol{\omega}_{M}=\theta_{A B} \boldsymbol{r} \cdot \max _{t \in[0, T]} \dot{s}(t)=\left(\theta_{A B} \boldsymbol{r}\right) \dot{s}_{\text {max }} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{\boldsymbol{\omega}}_{M}=\theta_{A B} \boldsymbol{r} \cdot \max _{t \in[0, T]}|\ddot{s}(t)|=\left(\theta_{A B} \boldsymbol{r}\right) \ddot{s}_{\max } \tag{13}
\end{equation*}
$$

The simplest timing law that guarantees a rest-to-rest motion in time T with continuous acceleration in the whole interval $[0, T]$ is given by the doubly-normalized quintic polynomial

$$
s(t)=6\left(\frac{t}{T}\right)^{5}-15\left(\frac{t}{T}\right)^{4}+10\left(\frac{t}{T}\right)^{3} \quad \Rightarrow \quad s(0)=0, s(T)=1
$$

with first time derivative

$$
\dot{s}(t)=\frac{1}{T}\left(30\left(\frac{t}{T}\right)^{4}-60\left(\frac{t}{T}\right)^{3}+30\left(\frac{t}{T}\right)^{2}\right) \quad \Rightarrow \quad \dot{s}(0)=\dot{s}(T)=0
$$

and second time derivative

$$
\ddot{s}(t)=\frac{1}{T^{2}}\left(120\left(\frac{t}{T}\right)^{3}-180\left(\frac{t}{T}\right)^{2}+60\left(\frac{t}{T}\right)\right) \quad \Rightarrow \quad \ddot{s}(0)=\ddot{s}(T)=0 .
$$

It is easy to see that, apart from the two boundary instants $t=0$ and $t=T, \ddot{s}(t)=0$ has a root also at $t=T_{\text {mid }}=T / 2$, where the pseudo-velocity \dot{s} has a maximum. We obtain

$$
\begin{equation*}
\dot{s}_{\max }=\dot{s}\left(T_{m i d}\right)=\frac{1}{T}\left(30\left(\frac{1}{2}\right)^{4}-60\left(\frac{1}{2}\right)^{3}+30\left(\frac{1}{2}\right)^{2}\right)=\frac{7.5}{4 T}=0.75 \tag{14}
\end{equation*}
$$

where $T=2.5[\mathrm{~s}]$ has been used. On the other hand, the maximum value (in module) for the pseudo-acceleration \ddot{s} is found by solving for the roots of $\dddot{s}(t)=0$, or

$$
\begin{gathered}
6\left(\frac{t}{T}\right)^{2}-6\left(\frac{t}{T}\right)+1=0 \\
\Rightarrow \quad t=T_{a 1}=\left(0.5-\frac{\sqrt{3}}{6}\right) T=0.2113 T, \quad t=T_{a 2}=\left(0.5+\frac{\sqrt{3}}{6}\right) T=0.7887 T
\end{gathered}
$$

We obtain

$$
\begin{equation*}
\ddot{s}_{\max }=\left|\ddot{s}\left(T_{a 1}\right)\right|=\left|\ddot{s}\left(T_{a 2}\right)\right|=\frac{60}{T^{2}}\left|2\left(0.5 \pm \frac{\sqrt{3}}{6}\right)^{3}-3\left(0.5 \pm \frac{\sqrt{3}}{6}\right)^{2}+\left(0.5 \pm \frac{\sqrt{3}}{6}\right)\right|=0.9238 \tag{15}
\end{equation*}
$$

where $T=2.5$ [s] was used again. The time behaviors of $s(t), \dot{s}(t)$ and $\ddot{s}(t)$ are shown in Fig. 4.

Figure 4: Profile of the timing law $s=s(t)$, with first and second time derivatives. The maximum values of the latter two are $\dot{s}_{\text {max }}=0.75$ and $\ddot{s}_{\text {max }}=0.9238$.

Figure 5: Planned position $\boldsymbol{p}(t)$, velocity $\boldsymbol{v}(t)$, and acceleration $\boldsymbol{a}(t)(x$-components in blue, y in yellow, z in red).

According to (10-11) and (12-13) and by using (14) and (15), the values of the velocity and acceleration vectors attained at the time instant(s) when they assume their maximum value in norm are

$$
\boldsymbol{v}_{M}=\dot{\boldsymbol{p}}\left(T_{\text {mid }}\right)=\left(\begin{array}{c}
-1.50 \\
3.00 \\
-0.75
\end{array}\right)[\mathrm{m} / \mathrm{s}], \quad \boldsymbol{a}_{M}=\ddot{\boldsymbol{p}}\left(T_{a 1}\right)=-\ddot{\boldsymbol{p}}\left(T_{a 2}\right)=\left(\begin{array}{c}
-1.8475 \\
3.6950 \\
-0.9238
\end{array}\right)\left[\mathrm{m} / \mathrm{s}^{2}\right],
$$

Figure 6: Planned angle $\theta(t)=\theta_{A B} s(t)$, angular velocity $\boldsymbol{\omega}(t)=\theta_{A B} \dot{s}(t) \boldsymbol{r}$, and angular acceleration $\dot{\boldsymbol{\omega}}(t)=\theta_{A B} \ddot{s}(t) \boldsymbol{r}$ (for vectors: x-components in blue, y in yellow, z in red).
see also Fig. 5 for the time behaviors of the single components. Similarly, for the angular velocity and acceleration vectors,
$\boldsymbol{\omega}_{M}=\boldsymbol{\omega}\left(T_{\text {mid }}\right)=\left(\begin{array}{c}-1.3200 \\ 1.3200 \\ -0.5468\end{array}\right)[\mathrm{rad} / \mathrm{s}], \quad \dot{\boldsymbol{\omega}}_{M}=\dot{\boldsymbol{\omega}}\left(T_{a 1}\right)=-\dot{\boldsymbol{\omega}}\left(T_{a 2}\right)=\left(\begin{array}{c}-1.6258 \\ 1.6258 \\ 0.6734\end{array}\right)\left[\mathrm{rad} / \mathrm{s}^{2}\right]$,
see also Fig. 6.
Finally, the absolute orientation at the midpoint of the planned motion (namely, at $t=T_{\text {mid }}$, where $\left.\theta_{\text {mid }}=\theta\left(T_{\text {mid }}\right)=\theta_{A B} / 2\right)$ is expressed using the rotation matrix of the axis-angle method as

$$
\boldsymbol{R}_{m i d}=\boldsymbol{R}_{A}\left(\boldsymbol{r r}^{T}+\left(\boldsymbol{I}-\boldsymbol{r r}^{T}\right) \cos \left(\theta_{A B} / 2\right)+\boldsymbol{S}(\boldsymbol{r}) \sin \left(\theta_{A B} / 2\right)\right)=\left(\begin{array}{ccc}
-0.0653 & 0.6065 & 0.7924 \\
0.6065 & -0.6065 & 0.5142 \\
0.7924 & 0.5142 & -0.3282
\end{array}\right),
$$

where $\boldsymbol{S}(\boldsymbol{r})$ is the skew-symmetric matrix built with \boldsymbol{r}.

[^0]: ${ }^{1}$ Use these coordinates in your developments. Note that q_{1} and q_{3} are not DH variables.

[^1]: ${ }^{2}$ It is instructive to look at the outcome of the balancing $\boldsymbol{\tau}$ for $f=15$ only, for $\mu=6$ only, or for a slight perturbation of one of these two w.r.t. the given input data, e.g., for $f=15.1, \mu=6$.
 ${ }^{3}$ Indeed, one may also choose to convert the initial and final rotation matrices \boldsymbol{R}_{A} and \boldsymbol{R}_{B} into some minimal set of Euler or RPY-type angles, and then plan a trajectory for these angles in a coordinated way. However, the complete procedure would be more lengthy.

