
Robotics 1

June 11, 2021

Exercise #1

Consider the 6-dof robot in Fig. 1. The robot has three prismatic joints in a portal arrangement
and a spherical wrist. Assign a set of Denavit-Hartenberg (DH) frames and provide the associated
table of parameters. Give plausible values for the joint variables q at the configuration shown in
the figure. Define the homogeneous transformation matrix wT 0 relating the DH reference frame
RF0 to the world frame RFw (for this, introduce geometric quantities as needed).

Figure 1: A 6-dof robot with a portal structure (3P) carrying a spherical (3R) wrist. An enlarged
view of the wrist is shown on the right.

Exercise #2

A planar RPR robot is shown in Fig. 2, together with the definition of the joint coordinates1. The
third link has length L = 0.6 [m]. The robot has to execute two different tasks, with the end
effector placed at the point Pd = (2, 0.4) [m] and pointing downward.

a) In the first task, the robot end effector should start moving inside a tube with a vertical speed
v = −2.5 [m/s]. Determine the initial joint velocity q̇ ∈ R3 that realizes this instantaneous
motion.

b) In the second task, the robot should keep its initial configuration in the presence of an horizontal
force f = 15 [N] and a torque µ = 6 [Nm] applied to its end effector. Determine the joint
commands τ ∈ R3 (two torques and a force) needed for static balance.

Comments that justify intuitively some of the obtained results are welcome!

1Use these coordinates in your developments. Note that q1 and q3 are not DH variables.
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Figure 2: A 3-dof RPR robot, with the definition of a Cartesian motion task [left] and of a static
balancing task in the presence of an external force/torque [right]. Both tasks should be executed
at point Pd, with the robot end effector pointing downward.

Exercise #3

Plan a smooth rest-to-rest trajectory along a linear path from point A = (1, 1, 1) [m] to point
B = (−1, 5, 0) [m], with simultaneous and coordinated change of orientation from

RA =

 0 1 0

1 0 0

0 0 −1


to

RB =

 −
1√
2

0 1√
2

0 −1 0
1√
2

0 1√
2

 .

The total motion time is T = 2.5 [s]. The trajectory should be continuous up to the acceleration for
all t ∈ [0, T ]. Determine the velocity vM ∈ R3, acceleration aM ∈ R3, angular velocity ωM ∈ R3,
and angular acceleration ω̇M ∈ R3 attained at the time instant(s) when these four vectors assume,
respectively, their maximum value in norm. Compute also the absolute orientation Rmid ∈ SO(3)
at the midpoint of the planned trajectory.

[180 minutes (3 hours); open books]
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Solution
June 11, 2021

Exercise #1

One of the (many) possible assignments of Denavit-Hartenberg frames for the 6-dof portal robot
with spherical wrist is shown in Fig. 3. The associated parameters are reported in Tab. 1.

x4 ⏊(z3,z4)

Figure 3: A possible assignment of DH frames for the 6-dof robot of Fig. 1. In the top figure,
the world frame RFw and the first three frames RF0 to RF2 of the portal structure are drawn in
black, while the extra quantities a, b and h introduced for defining wT 0 are shown in green. In the
bottom figure, the last four frames RF3 to RF6 for the spherical wrist are drawn in red.
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i αi ai di θi

1 π/2 0 q1 > 0 π/2

2 π/2 0 q2 > 0 −π/2

3 0 0 q3 > 0 0

4 π/2 0 0 q4 = 0

5 π/2 0 0 q5 = 3π/4

6 0 0 0 q6 = 0

Table 1: DH table of parameters corresponding to Fig. 3. The joint variables qi (in red) take values
associated to the configuration shown in the same figure. We have assumed O6 ≡ O5 (d6 = 0).

With the geometric quantities introduced in Fig. 3, the homogenous matrix that locates the DH
base frame RF0 in the world frame is

wT 0 =


0 0 1 a

1 0 0 b

0 1 0 h

0 0 0 1

 .

Exercise #2

The direct kinematics of interest for the RPR robot in Fig. 2 is

r =

(
p

α

)
=

 px

py

α

 =

 q2 cos q1 + L cos(q1 + q3)

q2 sin q1 + L sin(q1 + q3)

q1 + q3

 = f(q), (1)

where p is the planar position of the robot tip and α is the absolute angle of its end-effector w.r.t.
the x axis. The associated 3× 3 analytic Jacobian is

J(q) =
∂f(q)

∂q
=

 −q2 sin q1 − L sin(q1 + q3) cos q1 −L sin(q1 + q3)

q2 cos q1 + L cos(q1 + q3) sin q1 L cos(q1 + q3)

1 0 1

 , (2)

with det J(q) = −q2.

To find an initial robot configuration qd = (q1d, q2d, q3d) associated to the desired end-effector pose
rd = (pd, αd) = (pxd, pyd, αd) = (2, 0.4,−π/2), we solve the inverse kinematics problem in general.
From the third equation in (1), we have

q1d + q3d = αd,

which, substituted in the first two equations, yields

pxd − L cosαd = q2d cos q1d, pyd − L sinαd = q2d sin q1d. (3)
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By squaring and summing the two equations in (3), we find the value q2d as

q2d = +

√
(pxd − L cosαd)

2
+ (pyd − L sinαd)

2
, (4)

where the positive sign has been chosen for simplicity. Dividing by q2d > 0 the two equations
in (3), we also obtain

q1d = ATAN2 {py,d − L sinαd, px,d − L cosαd} , (5)

and finally
q3d = αd − q1d. (6)

For the specific data of the problem, note that eqs. (4) and (5) simplify to an intuitive geometric
solution. In fact, when the desired point Pd is in the first quadrant and the end effector points
vertically and downward (αd = −π/2), the base of the third link should be placed at the ‘higher’
point P ′d = Pd + (0, L), whose position is

p ′d =

(
pxd

pyd + L

)
.

Therefore, the solution for the first two joints follows immediately as

q1d = arctan

(
pyd + L

pxd

)
, q2d =

√
p2xd + (pyd + L)

2
, (7)

while q3d is found again by (6).

With the given data, we obtain

qd =

 0.4636

2.2361

−2.0344

 [rad/m/rad] =

 26.565

2.2361

−116.565

 [◦/m/◦].

Thus, the Jacobian in this configuration becomes

Jd = J(qd) =

 −0.4000 0.8944 0.6000

2.0000 0.4472 0

1 0 1

 .

Since detJd = −2.2361, this matrix is invertible. For the motion task, we have that

ṙd =

 ṗxd

ṗyd

α̇d

 =

 0

v

0

 ,

because the insertion in the tube is feasible only by keeping the vertical, downward orientation of
the end effector. For the static balancing task, it is

F d =

 fxd

fyd

µzd

 =

 f

0

µ

 .
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Using the numerical data, the solutions for the required tasks are

q̇ = J−1d ṙd = J−1d

 0

−2.5

0

 =

 −1

−1.1180

1

 [rad/s, m/s, rad/s] (8)

and, respectively,

τ = −JT
d F d = −JT

d

 15

0

6

 =

 0

−13.4164

−15

 [Nm, N, Nm]. (9)

We note that the first and third (revolute) joints compensate their motion in (8), in order not
to change the end-effector orientation. Similarly, in (9) the torque at the third joint directly
annihilates the presence of the torque µ at the end effector (both acting on the same link), while
the force at the second joint is the only one responsible for compensating the horizontal force
component f (as projected along the direction of the prismatic joint). The fact that τ1 = 0 is just
an occasional result here, due to the particular combination of input data2.

Exercise #3

The trajectory is determined in parametric form in terms of a normalized scalar s ∈ [0, 1] for both
the linear and the angular parts, in order to achieve coordinated motion. Then, a sufficiently
smooth timing law s = s(t) for t ∈ [0, T ] is assigned, so as to guarantee rest-to-rest motion with
continuity up to the acceleration (as a consequence, also the acceleration should be zero at the
initial and final instants).

For the linear motion along a straight line from point A to point B, we have

p(s) = pA + (pB − pA) s =

 1

1

1

+

 −2

4

−1

 s, s ∈ [0, 1],

with path length L = ‖pB − pA‖ = 4.5826 [m]. The velocity and the acceleration are then

ṗ = (pB − pA) ṡ, p̈ = (pB − pA) s̈,

and their maximum values in norm will be attained at the instants where, respectively, ṡ or s̈ have
a maximum (in absolute value for the latter), with

vM = (pB − pA) · max
t∈[0,T ]

ṡ(t) = (pB − pA) ṡmax (10)

and
aM = (pB − pA) · max

t∈[0,T ]
|s̈(t)| = (pB − pA) s̈max. (11)

For the angular motion, it is convenient to choose an axis-angle planning method3. In this way, it
is immediate to find the resulting angular velocity and acceleration. First, we compute the relative

2It is instructive to look at the outcome of the balancing τ for f = 15 only, for µ = 6 only, or for a slight
perturbation of one of these two w.r.t. the given input data, e.g., for f = 15.1, µ = 6.

3Indeed, one may also choose to convert the initial and final rotation matrices RA and RB into some minimal
set of Euler or RPY-type angles, and then plan a trajectory for these angles in a coordinated way. However, the
complete procedure would be more lengthy.
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orientation between RA and RB :

RAB = RT
ARB =

 0 −1 0

− 1√
2

0 1√
2

− 1√
2

0 − 1√
2

 =

 R11 R12 R13

R21 R22 R23

R31 R32 R33

 .

From this, we extract the axis-angle solution (r, θAB) as

θAB = ATAN2
{√

(R12 −R21)2 + (R13 −R31)2 + (R23 −R32)2, R11 +R22 +R33 − 1
}

= 2.5936 [rad],

r =
1

2 sin θAB

 R32 −R23

R13 −R31

R21 −R12

 =

 −0.6786

0.6786

0.2811

 ,

being in a regular condition (sin θaB 6= 0). The profile of the rotation angle around the unit vector
r is then defined parametrically as

θ(s) = θAB s, s ∈ [0, 1].

The angular velocity and acceleration vectors are aligned with the unit vector r ∈ R3, with profiles

ω = θAB ṡ r, ω̇ = θAB s̈ r.

As before, their maximum values in norm will be attained at the instants where, respectively, ṡ or
s̈ have a maximum (in absolute value), with

ωM = θABr · max
t∈[0,T ]

ṡ(t) = (θABr) ṡmax (12)

and
ω̇M = θABr · max

t∈[0,T ]
|s̈(t)| = (θABr) s̈max. (13)

The simplest timing law that guarantees a rest-to-rest motion in time T with continuous acceler-
ation in the whole interval [0, T ] is given by the doubly-normalized quintic polynomial

s(t) = 6

(
t

T

)5

− 15

(
t

T

)4

+ 10

(
t

T

)3

⇒ s(0) = 0, s(T ) = 1,

with first time derivative

ṡ(t) =
1

T

(
30

(
t

T

)4

− 60

(
t

T

)3

+ 30

(
t

T

)2
)

⇒ ṡ(0) = ṡ(T ) = 0,

and second time derivative

s̈(t) =
1

T 2

(
120

(
t

T

)3

− 180

(
t

T

)2

+ 60

(
t

T

))
⇒ s̈(0) = s̈(T ) = 0.

It is easy to see that, apart from the two boundary instants t = 0 and t = T , s̈(t) = 0 has a root
also at t = Tmid = T/2, where the pseudo-velocity ṡ has a maximum. We obtain

ṡmax = ṡ (Tmid) =
1

T

(
30

(
1

2

)4

− 60

(
1

2

)3

+ 30

(
1

2

)2
)

=
7.5

4T
= 0.75, (14)
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where T = 2.5 [s] has been used. On the other hand, the maximum value (in module) for the
pseudo-acceleration s̈ is found by solving for the roots of

...
s (t) = 0, or

6

(
t

T

)2

− 6

(
t

T

)
+ 1 = 0

⇒ t = Ta1 =

(
0.5−

√
3

6

)
T = 0.2113T, t = Ta2 =

(
0.5 +

√
3

6

)
T = 0.7887T.

We obtain

s̈max = |s̈ (Ta1)| = |s̈ (Ta2)| = 60

T 2

∣∣∣∣∣∣ 2
(

0.5±
√

3

6

)3

− 3

(
0.5±

√
3

6

)2

+

(
0.5±

√
3

6

)∣∣∣∣∣∣ = 0.9238,

(15)
where T = 2.5 [s] was used again. The time behaviors of s(t), ṡ(t) and s̈(t) are shown in Fig. 4.
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Figure 4: Profile of the timing law s = s(t), with first and second time derivatives. The maximum
values of the latter two are ṡmax = 0.75 and s̈max = 0.9238.
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Figure 5: Planned position p(t), velocity v(t), and acceleration a(t) (x-components in blue, y in
yellow, z in red).

According to (10–11) and (12–13) and by using (14) and (15), the values of the velocity and
acceleration vectors attained at the time instant(s) when they assume their maximum value in
norm are

vM = ṗ(Tmid) =

 −1.50

3.00

−0.75

 [m/s], aM = p̈(Ta1) = −p̈(Ta2) =

 −1.8475

3.6950

−0.9238

 [m/s2],
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Figure 6: Planned angle θ(t) = θABs(t), angular velocity ω(t) = θAB ṡ(t)r, and angular acceleration
ω̇(t) = θAB s̈(t)r (for vectors: x-components in blue, y in yellow, z in red).

see also Fig. 5 for the time behaviors of the single components. Similarly, for the angular velocity
and acceleration vectors,

ωM = ω(Tmid) =

 −1.3200

1.3200

−0.5468

 [rad/s], ω̇M = ω̇(Ta1) = −ω̇(Ta2) =

 −1.6258

1.6258

0.6734

 [rad/s2],

see also Fig. 6.

Finally, the absolute orientation at the midpoint of the planned motion (namely, at t = Tmid,
where θmid = θ(Tmid) = θAB/2) is expressed using the rotation matrix of the axis-angle method
as

Rmid = RA

(
rrT +

(
I − rrT

)
cos (θAB/2)+S(r) sin (θAB/2)

)
=

 −0.0653 0.6065 0.7924

0.6065 −0.6065 0.5142

0.7924 0.5142 −0.3282

,
where S(r) is the skew-symmetric matrix built with r.

∗ ∗ ∗ ∗ ∗
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