Robotics I

Remote Exam - October 27, 2020

Exercise 1

Consider the spatial 4-dof robot with RRPR sequence of joints shown in Fig. 1 . In the following, use only the generalized coordinates $\boldsymbol{q}=\left(q_{1}, q_{2}, q_{3}, q_{4}\right)$ defined therein. Note that these are not the joint variables of a Denavit-Hartenberg convention!

Figure 1: A RRPR robot and its kinematic skeleton, with definition of the joint coordinates \boldsymbol{q}.

Exercise 1a

- Determine the direct kinematics, namely the position ${ }^{0} \boldsymbol{p}_{E}(\boldsymbol{q})$ of the origin and the orientation ${ }^{0} \boldsymbol{R}_{E}(\boldsymbol{q})$ of the end-effector frame $R F_{E}$ as functions of the joint variables \boldsymbol{q}.

Exercise 1b

- Let $a=1$ and $b=0.5$. Assuming that the prismatic joint takes only non-negative values $q_{3} \geq 0$, solve the inverse kinematics problem when the (feasible) end-effector pose is given by

$$
{ }^{0} \boldsymbol{A}_{E}=\left(\begin{array}{cccc}
0.5 & 0.5 & \frac{\sqrt{2}}{2} & 0.5 \\
0.5 & 0.5 & -\frac{\sqrt{2}}{2} & 0.5 \\
-\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Exercise 1c

- Compute the (6×4) geometric Jacobian $\boldsymbol{J}(\boldsymbol{q})$

$$
\binom{\boldsymbol{v}_{E}}{\boldsymbol{\omega}_{E}}=\binom{\boldsymbol{J}_{L}(\boldsymbol{q})}{\boldsymbol{J}_{A}(\boldsymbol{q})} \dot{\boldsymbol{q}}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}} .
$$

Exercise 1d

- Find all singular configurations of the linear part $\boldsymbol{J}_{L}(\boldsymbol{q})$ of the geometric Jacobian.

Exercise 1e

- Give the symbolic expression (as a function of the configuration \boldsymbol{q}) of a non-trivial joint velocity $\dot{\boldsymbol{q}}_{0} \not \equiv \mathbf{0}$ such that $\boldsymbol{v}_{E}=\boldsymbol{J}_{L}(\boldsymbol{q}) \dot{\boldsymbol{q}}_{0}=\mathbf{0}$ for all possible \boldsymbol{q}.

Exercise 2

Consider the motion profile in Fig. 2 for a generic robot joint, parametrized by the amplitude $J>0$ and the duration $T>0$. This time profile represents the motion jerk, namely the third time derivative of the joint position $q(t)$, for $t \in[0, T]$.

Figure 2: The jerk profile $\dddot{q}(t)$ of the joint motion.

Exercise 2a

- For a (rest-to-rest) motion with zero boundary conditions on velocity and acceleration, determine the value of the net displacement $\Delta=q(T)-q(0)$ as a function of J and T.

Exercise 2b

- Assume now that the initial velocity is $\dot{q}(0)=V>0$, while $\ddot{q}(0)=0$ is being kept. What will be then the displacement Δ ? Will the final velocity and acceleration be zero at $t=T$?

Exercise 2c

- Assume instead that the initial acceleration is $\ddot{q}(0)=A>0$, while $\dot{q}(0)=0$. What will be the displacement Δ in this case? Will the final acceleration be zero at $t=T$?

Exercise 2d

- Let the initial acceleration be $\ddot{q}(0)=A>0$. What value V should have the initial velocity $\dot{q}(0)$ so that the final velocity $\dot{q}(T)$ is zero? Will the final acceleration be zero at $t=T$?
[180 minutes, open books]

