Robotics I Remote Exam — October 27, 2020

Exercise 1

Consider the spatial 4-dof robot with RRPR sequence of joints shown in Fig. 1. In the following, use **only** the generalized coordinates $q = (q_1, q_2, q_3, q_4)$ defined therein. Note that these are **not** the joint variables of a Denavit-Hartenberg convention!

Figure 1: A RRPR robot and its kinematic skeleton, with definition of the joint coordinates q.

Exercise 1a

• Determine the direct kinematics, namely the position ${}^{0}\boldsymbol{p}_{E}(\boldsymbol{q})$ of the origin and the orientation ${}^{0}\boldsymbol{R}_{E}(\boldsymbol{q})$ of the end-effector frame RF_{E} as functions of the joint variables \boldsymbol{q} .

Exercise 1b

• Let a = 1 and b = 0.5. Assuming that the prismatic joint takes only non-negative values $q_3 \ge 0$, solve the inverse kinematics problem when the (feasible) end-effector pose is given by

$${}^{0}\boldsymbol{A}_{E} = \begin{pmatrix} 0.5 & 0.5 & \frac{\sqrt{2}}{2} & 0.5\\ 0.5 & 0.5 & -\frac{\sqrt{2}}{2} & 0.5\\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & 1\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Exercise 1c

• Compute the (6×4) geometric Jacobian J(q)

$$\left(egin{array}{c} m{v}_E \ m{\omega}_E \end{array}
ight) = \left(egin{array}{c} m{J}_L(m{q}) \ m{J}_A(m{q}) \end{array}
ight) \dot{m{q}} = m{J}(m{q}) \dot{m{q}}.$$

Exercise 1d

• Find all singular configurations of the linear part $J_L(q)$ of the geometric Jacobian.

Exercise 1e

• Give the symbolic expression (as a function of the configuration q) of a non-trivial joint velocity $\dot{q}_0 \neq 0$ such that $v_E = J_L(q)\dot{q}_0 = 0$ for all possible q.

Exercise 2

Consider the motion profile in Fig. 2 for a generic robot joint, parametrized by the amplitude J > 0 and the duration T > 0. This time profile represents the motion jerk, namely the third time derivative of the joint position q(t), for $t \in [0, T]$.

Figure 2: The jerk profile $\ddot{q}(t)$ of the joint motion.

Exercise 2a

• For a (rest-to-rest) motion with zero boundary conditions on velocity and acceleration, determine the value of the net displacement $\Delta = q(T) - q(0)$ as a function of J and T.

Exercise 2b

• Assume now that the initial velocity is $\dot{q}(0) = V > 0$, while $\ddot{q}(0) = 0$ is being kept. What will be then the displacement Δ ? Will the final velocity and acceleration be zero at t = T?

Exercise 2c

• Assume instead that the initial acceleration is $\ddot{q}(0) = A > 0$, while $\dot{q}(0) = 0$. What will be the displacement Δ in this case? Will the final acceleration be zero at t = T?

Exercise 2d

• Let the initial acceleration be $\ddot{q}(0) = A > 0$. What value V should have the initial velocity $\dot{q}(0)$ so that the final velocity $\dot{q}(T)$ is zero? Will the final acceleration be zero at t = T?

[180 minutes, open books]