Robotics 1

Remote Exam - September 11, 2020

Exercise \#1

Given a smooth time-varying rotation matrix $\boldsymbol{R}(t) \in S O(3)$, provide a formula to determine the associated angular acceleration vector $\dot{\boldsymbol{\omega}}(t) \in \mathbb{R}^{3}$ as a function of $\boldsymbol{R}(t)$ and of the angular velocity $\boldsymbol{\omega}(t) \in \mathbb{R}^{3}$. Apply then this formula to compute $\boldsymbol{\omega}(t)$ and $\dot{\boldsymbol{\omega}}(t)$, given the following rotation matrix:

$$
\boldsymbol{R}(t)=\left(\begin{array}{ccc}
\cos t & 0 & \sin t \\
\sin ^{2} t & \cos t & -\sin t \cos t \\
-\sin t \cos t & \sin t & \cos ^{2} t
\end{array}\right)
$$

Exercise \#2

Consider the 6R Universal Robots UR5 manipulator in Fig. 1, where a feasible set of DenavitHartenberg (DH) frames has been assigned. Complete the table of DH parameters and enter also the associated numerical values (expressed in [rad] or [mm]), including those of the joint variables $\boldsymbol{q}=\boldsymbol{\theta}$ in the configuration shown. In the figure, all data are already given in mm .

Figure 1: An assignment of DH frames for the UR5 manipulator.

Exercise \#3

With reference to Fig. 2, two planar manipulators, a 2 R robot (labeled as A) and a 3 R robot (labeled as B), both with links of unitary length, should perform a task in cooperation, handing over an object between their end-effector grippers. The base frames of the two robots are positioned with respect to a common world frame by ${ }^{w} \boldsymbol{p}_{A}=\left(\begin{array}{ll}-2.5 & 1\end{array}\right)^{T}$ and ${ }^{w} \boldsymbol{p}_{B}=\left(\begin{array}{ll}1 & 2\end{array}\right)^{T}$. The base of robot B is rotated counterclockwise by an angle $\alpha_{B}=\pi / 6[\mathrm{rad}]$ with respect to \boldsymbol{x}_{w}. Robot A holds the object while being in the configuration $\boldsymbol{q}_{A}=(\pi / 3-\pi / 2)^{T}$ [rad]. Determine a configuration \boldsymbol{q}_{B} for robot B such that it can grasp the object held by robot A with the correct orientation.

Figure 2: A 2R and a 3R planar manipulators cooperating in a task.

Exercise \#4

Consider the 3×3 Jacobian of a 3 R spatial robot, with generic link lengths $l_{2}>0$ and $l_{3}>0$:

$$
\boldsymbol{J}(\boldsymbol{q})=\left(\begin{array}{ccc}
-s_{1}\left(l_{2} c_{2}+l_{3} c_{3}\right) & -l_{2} c_{1} s_{2} & -l_{3} c_{1} s_{3} \\
c_{1}\left(l_{2} c_{2}+l_{3} c_{3}\right) & -l_{2} s_{1} s_{2} & -l_{3} s_{1} s_{3} \\
0 & l_{2} c_{2} & l_{3} c_{3}
\end{array}\right), \quad \boldsymbol{v}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}} .
$$

Find all (singular) configurations $\boldsymbol{q}^{\diamond}$ where the rank of the Jacobian $\boldsymbol{J}(\boldsymbol{q})$ is equal to 2 and all configurations \boldsymbol{q}^{*} where the rank is equal to 1 . In a singularity with rank 1 , determine a basis for each of the subspaces $\mathcal{R}\left\{\boldsymbol{J}\left(\boldsymbol{q}^{*}\right)\right\}, \mathcal{N}\left\{\boldsymbol{J}\left(\boldsymbol{q}^{*}\right)\right\}, \mathcal{R}\left\{\boldsymbol{J}^{T}\left(\boldsymbol{q}^{*}\right)\right\}$, and $\mathcal{N}\left\{\boldsymbol{J}^{T}\left(\boldsymbol{q}^{*}\right)\right\}$.

Exercise \#5

A mass $M=2[\mathrm{~kg}]$ moves linearly under a bounded force u, with $|u| \leq U_{\max }=8[\mathrm{~N}]$, according to differential equation $M \ddot{x}=u$. The mass starts at $t=0$ from $x_{i}=x(0)=0$ with a negative velocity $\dot{x}_{i}=\dot{x}(0)=-2[\mathrm{~m} / \mathrm{s}]$, and has to reach the final position $x_{f}=x(T)=3[\mathrm{~m}]$ at rest (i.e., with $\dot{x}_{f}=\dot{x}(T)=0$) in minimum time T. Determine the minimum time T and the associated optimal command $u^{*}(t)$. Sketch the time evolution of $x(t), \dot{x}(t)$, and $\ddot{x}(t)$.
[240 minutes (4 hours); open books]

Solution

September 11, 2020

Exercise \#1

We have that

$$
\dot{\boldsymbol{R}}=\boldsymbol{S}(\boldsymbol{\omega}) \boldsymbol{R}, \quad \text { and thus } \quad \boldsymbol{S}(\boldsymbol{\omega})=\dot{\boldsymbol{R}} \boldsymbol{R}^{T} \Rightarrow \boldsymbol{\omega}=\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{S}_{3,2}(\boldsymbol{\omega}) \\
\boldsymbol{S}_{1,3}(\boldsymbol{\omega}) \\
\boldsymbol{S}_{2,1}(\boldsymbol{\omega})
\end{array}\right)
$$

Differentiating further with respect to time,

$$
\ddot{\boldsymbol{R}}=\boldsymbol{S}(\dot{\boldsymbol{\omega}}) \boldsymbol{R}+\boldsymbol{S}(\boldsymbol{\omega}) \dot{R}=\boldsymbol{S}(\dot{\boldsymbol{\omega}}) \boldsymbol{R}+\boldsymbol{S}^{2}(\boldsymbol{\omega}) \boldsymbol{R} .
$$

Since

$$
\begin{aligned}
\boldsymbol{S}^{2}(\boldsymbol{\boldsymbol { \omega }}) & =\left(\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-\left(\omega_{y}^{2}+\omega_{z}^{2}\right) & \omega_{x} \omega_{y} & \omega_{x} \omega_{z} \\
\omega_{x} \omega_{y} & -\left(\omega_{x}^{2}+\omega_{z}^{2}\right) & \omega_{y} \omega_{z} \\
\omega_{x} \omega_{z} & \omega_{y} \omega_{z} & -\left(\omega_{x}^{2}+\omega_{y}^{2}\right)
\end{array}\right)=\boldsymbol{\omega} \boldsymbol{\omega}^{T}-\boldsymbol{I}\|\boldsymbol{\omega}\|^{2},
\end{aligned}
$$

we obtain finally

$$
\begin{array}{ll}
\ddot{\boldsymbol{R}}=\left(\boldsymbol{S}(\dot{\boldsymbol{\omega}})+\boldsymbol{\omega} \boldsymbol{\omega}^{T}-\boldsymbol{I}\|\boldsymbol{\omega}\|^{2}\right) \boldsymbol{R}, \quad \text { and thus } \quad \boldsymbol{S}(\dot{\boldsymbol{\omega}})=\ddot{\boldsymbol{R}} \boldsymbol{R}^{T}+\boldsymbol{I}\|\boldsymbol{\omega}\|^{2}-\boldsymbol{\omega} \boldsymbol{\omega}^{T} \\
& \Rightarrow \dot{\boldsymbol{\omega}}=\left(\begin{array}{c}
\dot{\omega}_{x} \\
\dot{\omega}_{y} \\
\dot{\omega}_{z}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{S}_{3,2}(\dot{\boldsymbol{\omega}}) \\
\boldsymbol{S}_{1,3}(\dot{\boldsymbol{\omega}}) \\
\boldsymbol{S}_{2,1}(\dot{\boldsymbol{\omega}})
\end{array}\right) .
\end{array}
$$

For the given time-varying rotation matrix, we obtain
$\boldsymbol{R}(t)=\left(\begin{array}{ccc}\cos t & 0 & \sin t \\ \sin ^{2} t & \cos t & -\sin t \cos t \\ -\sin t \cos t & \sin t & \cos ^{2} t\end{array}\right) \Rightarrow \dot{\boldsymbol{R}}(t)=\left(\begin{array}{ccc}-\sin t & 0 & \cos t \\ 2 \sin t \cos t & -\sin t & \sin ^{2} t-\cos ^{2} t \\ \sin ^{2} t-\cos ^{2} t & \cos t & -2 \sin t \cos t\end{array}\right)$,
and thus, after simplifications,

$$
\boldsymbol{S}(\boldsymbol{\omega}(t))=\dot{\boldsymbol{R}}(t) \boldsymbol{R}^{T}(t)=\left(\begin{array}{ccc}
0 & -\sin t & \cos t \\
\sin t & 0 & -1 \\
-\cos t & 1 & 0
\end{array}\right) \Rightarrow \boldsymbol{\omega}(t)=\left(\begin{array}{c}
1 \\
\cos t \\
\sin t
\end{array}\right) .
$$

Moreover, one can evaluate

$$
\ddot{\boldsymbol{R}}(t)=\left(\begin{array}{ccc}
-\cos t & 0 & -\sin t \\
2\left(\cos ^{2} t-\sin ^{2} t\right) & -\cos t & 4 \sin t \cos t \\
4 \sin t \cos t & -\sin t & 2\left(\sin ^{2} t-\cos ^{2} t\right)
\end{array}\right)
$$

and then compute
$\boldsymbol{S}(\dot{\boldsymbol{\omega}}(t))=\ddot{\boldsymbol{R}}(t) \boldsymbol{R}^{T}(t)+\boldsymbol{I}\|\boldsymbol{\omega}(t)\|^{2}-\boldsymbol{\omega}(t) \boldsymbol{\omega}^{T}(t)=\left(\begin{array}{ccc}0 & -\cos t & -\sin t \\ \cos t & 0 & 0 \\ \sin t & 0 & 0\end{array}\right) \Rightarrow \dot{\boldsymbol{\omega}}(t)=\left(\begin{array}{c}0 \\ -\sin t \\ \cos t\end{array}\right)$.
However, as one could have expected, we can also obtain $\dot{\boldsymbol{\omega}}(t)=d \boldsymbol{\omega}(t) / d t$ by direct differentiation (or from $\boldsymbol{S}(\dot{\boldsymbol{\omega}}(t))=d \boldsymbol{S}(\boldsymbol{\omega}(t)) / d t)$.
Instead, the analytic formula is strictly required in case $\boldsymbol{R}, \boldsymbol{\omega}$, and $\ddot{\boldsymbol{R}}$ are known only numerically at a given instant of time. For example, if we had

$$
\boldsymbol{R}=\boldsymbol{I}, \quad \boldsymbol{\omega}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad \ddot{\boldsymbol{R}}=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
2 & -1 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

we would then compute

$$
\boldsymbol{S}(\dot{\boldsymbol{\omega}})=\ddot{\boldsymbol{R}} \boldsymbol{R}^{T}+\boldsymbol{I}\|\boldsymbol{\omega}\|^{2}-\boldsymbol{\omega} \boldsymbol{\omega}^{T}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \Rightarrow \quad \dot{\boldsymbol{\omega}}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

which is nothing else than the considered case for $t=0$.

Exercise \#2

The Denavit-Hartenberg parameters (in mm or rad) of the UR5 manipulator associated to the frames specified in Fig. 1 are given in Tab. 1. Note that both parameters a_{2} and a_{3} are negative. In fact, to reach O_{2} from O_{1} we move in the opposite direction of \boldsymbol{x}_{2}, thus $a_{2}<0$. Similarly, to reach O_{3} from O_{2} we move in the opposite direction of \boldsymbol{x}_{3}, thus $a_{3}<0$.

i	α_{i}	a_{i}	d_{i}	θ_{i}
1	$\pi / 2$	0	89.2	$q_{1}=0$
2	0	-425	0	$q_{2}=-\pi / 2$
3	0	-392	0	$q_{3}=0$
4	$-\pi / 2$	0	109.3	$q_{4}=\pi / 2$
5	$\pi / 2$	0	94.75	$q_{5}=0$
6	0	0	82.5	$q_{6}=0$

Table 1: DH parameters of the UR5 manipulator, with values of \boldsymbol{q} in the configuration of Fig. 1.

Exercise \#3

To accomplish the cooperative task we need to find the desired position and orientation of the end-effector of robot B, as expressed in its own base reference frame. For this, we will use the mathematics of 4×4 homogeneous transformations, starting from the definition of the position
and orientation of the end-effector of robot A , as computed from the direct kinematics of the task in the world frame. Although the entire problem is planar, with positions in \mathbb{R}^{2} and scalar orientations expressed by an angle around the normal to the plane ($\boldsymbol{x}_{w}, \boldsymbol{y}_{w}$), we will embed objects in 3D. Once the target pose of the end-effector of robot B is available, the configuration \boldsymbol{q}_{B} of robot B is found by solving a standard inverse kinematics problem.
With the given data of the problem, the base reference frames of robot A and B are located respectively by

$$
{ }^{w} \boldsymbol{T}_{A}=\left(\begin{array}{cc}
{ }^{w} \boldsymbol{R}_{A} & { }^{w} \boldsymbol{p}_{A} \\
\mathbf{0}^{T} & 1
\end{array}\right)=\left(\begin{array}{cc}
\boldsymbol{I}_{3 \times 3} & -2.5 \\
& 0 \\
\mathbf{0}^{T} & 1
\end{array}\right)
$$

and

$$
{ }^{w} \boldsymbol{T}_{B}=\left(\begin{array}{cc}
{ }^{w} \boldsymbol{R}_{B} & { }^{w} \boldsymbol{p}_{B} \\
\mathbf{0}^{T} & 1
\end{array}\right)=\left(\begin{array}{cccc}
\cos \alpha_{B} & -\sin \alpha_{B} & 0 & 1 \\
\sin \alpha_{B} & \cos \alpha_{B} & 0 & 2 \\
0 & 0 & 1 & 0 \\
& \mathbf{0}^{T} & & 1
\end{array}\right)=\left(\begin{array}{cccc}
0.8660 & -0.5 & 0 & 1 \\
0.5 & 0.8660 & 0 & 2 \\
0 & 0 & 1 & 0 \\
& \mathbf{0}^{T} & & 1
\end{array}\right) .
$$

The direct kinematics of the planar 2 R robot A (from its base to the end-effector frame EA), taking into account the unitary length of the links, is computed as

$$
\begin{aligned}
{ }^{A} \boldsymbol{T}_{E A} & =\left(\begin{array}{cccc}
{ }^{A} \boldsymbol{R}_{E A} & { }^{A} \boldsymbol{p}_{E A} \\
\mathbf{0}^{T} & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\cos \left(q_{A 1}+q_{A 2}\right) & -\sin \left(q_{A 1}+q_{A 2}\right) & 0 & \cos q_{A 1}+\cos \left(q_{A 1}+q_{A 2}\right) \\
\sin \left(q_{A 1}+q_{A 2}\right) & \cos \left(q_{A 1}+q_{A 2}\right) & 0 & \sin q_{A 1}+\sin \left(q_{A 1}+q_{A 2}\right) \\
0 & 0 & 1 & 0 \\
& \\
& =\left(\begin{array}{cccc}
0.8660 & 0.5 & 0 & 1.3660 \\
-0.5 & 0.8660 & 0 & 0.3660 \\
0 & 0 & 1 & 0 \\
\mathbf{0}^{T} \\
\mathbf{0}^{T} & & 1
\end{array}\right)
\end{array}\right) .
\end{aligned}
$$

Finally, the correct grasping condition by robot B requires that the two end-effector frames have the same origin $\left(O_{E B}=O_{E A}\right)$ and opposite orientations (i.e., with a relative rotation of π around the common \boldsymbol{z}_{w} axis). Therefore, the associated homogeneous transformation is

$$
{ }^{E A} \boldsymbol{T}_{E B}=\left(\begin{array}{cc}
{ }^{E A} \boldsymbol{R}_{E B} & { }^{E A} \boldsymbol{p}_{E B} \\
\mathbf{0}^{T} & 1
\end{array}\right)=\left(\begin{array}{rrrc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
& \mathbf{0}^{T} & & 1
\end{array}\right)
$$

We can write now the kinematic equation of the task using the above homogeneous transformation matrices, equating the end-effector pose ${ }^{w} \boldsymbol{T}_{E B}$ of robot B in the world frame, as evaluated from the side of robot A and from the side of robot B :

$$
{ }^{w} \boldsymbol{T}_{A}{ }^{A} \boldsymbol{T}_{E A}{ }^{E A} \boldsymbol{T}_{E B}={ }^{w} \boldsymbol{T}_{B}{ }^{B} \boldsymbol{T}_{E B} .
$$

Thus, the desired pose of the end-effector of robot B expressed in the reference frame B is:

$$
\begin{aligned}
{ }^{B} \boldsymbol{T}_{E B, d} & =\left(\begin{array}{cc}
{ }^{B} \boldsymbol{R}_{E B, d} & { }^{B} \boldsymbol{p}_{E B, d} \\
\mathbf{0}^{T} & 1
\end{array}\right)=\left({ }^{w} \boldsymbol{T}_{B}\right)^{-1}{ }^{w} \boldsymbol{T}_{A}{ }^{A} \boldsymbol{T}_{E A}{ }^{E A} \boldsymbol{T}_{E B} \\
& =\left(\begin{array}{cccc}
-0.5 & -0.8660 & 0 & -2.1651 \\
0.8660 & -0.5 & 0 & 0.5179 \\
0 & 0 & 1 & 0 \\
& \mathbf{0}^{T} & 1
\end{array}\right)=\left(\begin{array}{cccc}
\cos \phi_{B, d} & -\sin \phi_{B, d} & 0 & { }^{B} \boldsymbol{p}_{E B, d_{x}} \\
-\sin \phi_{B, d} & \cos \phi_{B, d} & 0 & \boldsymbol{p}_{E B, d_{y}} \\
0 & 0 & 1 & 0 \\
& \mathbf{0}^{T} & 1
\end{array}\right)
\end{aligned}
$$

The inverse kinematics problem for the planar 3 R robot B requires the solution of

$$
\begin{aligned}
& { }^{B} \boldsymbol{T}_{E B, d}={ }^{B} \boldsymbol{T}_{E B}\left(\boldsymbol{q}_{B}\right) \\
& =\left(\begin{array}{cccc}
\cos \left(q_{B 1}+q_{B 2}+q_{B 3}\right) & -\sin \left(q_{B 1}+q_{B 2}+q_{B 3}\right) & 0 & \cos q_{B 1}+\cos \left(q_{B 1}+q_{B 2}\right)+\cos \left(q_{B 1}+q_{B 2}+q_{B 3}\right) \\
\sin \left(q_{B 1}+q_{B 2}+q_{B 3}\right) & \cos \left(q_{B 1}+q_{B 2}+q_{B 3}\right) & 0 & \sin q_{B 1}+\sin \left(q_{B 1}+q_{B 2}\right)+\sin \left(q_{B 1}+q_{B 2}+q_{B 3}\right) \\
0 & & 0 & 1
\end{array}\right) \\
& \\
& \\
& \\
& \\
& \mathbf{0}^{T}
\end{aligned}
$$

in terms of the unknown joint variables $\boldsymbol{q}_{B}=\left(q_{B 1}, q_{B 2}, q_{B 3}\right)$. The desired angle $\phi_{B, d}$ characterizing the orientation in the plane of the end-effector frame of robot B can be extracted from the elements of the rotation matrix ${ }^{B} \boldsymbol{R}_{E B, d}$ as

$$
\begin{aligned}
\phi_{B, d} & =\text { ATAN2 }\left\{\sin \phi_{B, d}, \cos \phi_{B, d}\right\}=\operatorname{ATAN} 2\left\{{ }^{B} \boldsymbol{R}_{E B, d_{21}},{ }^{B} \boldsymbol{R}_{E B, d_{11}}\right\} \\
& =\text { ATAN2 }\{0.8660,-0.5\}=2.0944[\mathrm{rad}]=120^{\circ},
\end{aligned}
$$

the above is equivalent to solving the three nonlinear equations

$$
\left(\begin{array}{c}
\cos q_{B 1}+\cos \left(q_{B 1}+q_{B 2}\right)+\cos \left(q_{B 1}+q_{B 2}+q_{B 3}\right) \\
\sin q_{B 1}+\sin \left(q_{B 1}+q_{B 2}\right)+\sin \left(q_{B 1}+q_{B 2}+q_{B 3}\right) \\
q_{B 1}+q_{B 2}+q_{B 3}
\end{array}\right)=\left(\begin{array}{c}
{ }^{B} \boldsymbol{p}_{E B, d_{x}} \\
{ }^{B} \boldsymbol{p}_{E B, d_{y}} \\
\phi_{B, d}
\end{array}\right)=\left(\begin{array}{c}
-2.1651 \\
0.5179 \\
2.0944
\end{array}\right) .
$$

As usual, this inverse kinematics problem for the planar 3R robot can be decomposed in two parts. First, we solve for the two joint variables $q_{B 1}$ and $q_{B 2}$ in order to place the tip position $\boldsymbol{p}_{t 2}$ of the second link (or, the base of the third link) in the necessary position. Taking again into account the unitary length of the robot links, we have

$$
\boldsymbol{p}_{t 2}=\binom{{ }^{B} \boldsymbol{p}_{E B, d_{x}}}{{ }^{B} \boldsymbol{p}_{E B, d_{x}}}-\binom{\cos \phi_{B, d}}{\sin \phi_{B, d}}=\binom{-2.1651}{0.5179}-\binom{-0.5}{0.8660}=\binom{-1.6651}{-0.3481}[\mathrm{~m}] .
$$

Thus, a solution for the pair $\left(q_{B 1}, q_{B 2}\right)$ is given by

$$
\begin{aligned}
& c_{2}=\frac{\boldsymbol{p}_{t 2, x}^{2}+\boldsymbol{p}_{t 2, y}^{2}-2}{2}=0.4468, \quad s_{2}=\sqrt{1-c_{2}^{2}}=0.8946 \\
& \Rightarrow q_{B 2}=\operatorname{ATAN} 2\left\{s_{2}, c_{2}\right\}=1.1076[\mathrm{rad}]=63.46^{\circ},
\end{aligned}
$$

and ${ }^{1}$

$$
\begin{aligned}
& s_{1}=\frac{\boldsymbol{p}_{t 2, y}\left(1+c_{2}\right)-\boldsymbol{p}_{t 2, x} s_{2}}{2\left(1+c_{2}\right)}=0.3408, \quad c_{1}=\frac{\boldsymbol{p}_{t 2, x}\left(1+c_{2}\right)+\boldsymbol{p}_{t 2, y} s_{2}}{2\left(1+c_{2}\right)}=-0.9401 \\
& \left.\Rightarrow q_{B 1}=\text { ATAN } 2 s_{1}, c_{1}\right\}=2.7939[\mathrm{rad}]=160.08^{\circ} .
\end{aligned}
$$

[^0]The (arbitrary) choice of the + sign for the square root in s_{2} results here in an elbow up solution for the first two links of the 3 R robot. Next, with $\left(q_{B 1}, q_{B 2}\right)=(2.7939,1.1076)$ [rad], the third joint variable $q_{B 3}$ is recovered from the specification $\phi_{B, d}=2.0944[\mathrm{rad}]$ on the end-effector orientation:

$$
q_{B 3}=\phi_{B, d}-\left(q_{B 1}+q_{B 2}\right)=-1.8071[\mathrm{rad}]=-103.54^{\circ} .
$$

The above solution of the inverse kinematics problem is coded in Matlab by the instructions (for unitary lenghts):

```
p_t2=p_Bd-[cos(phi_Bd); sin(phi_Bd)]
px=p_t2(1);
py=p_t2(2);
c2=(px^2+py^2-2)/2
s2=sqrt(1-c2^2) % sign + on sqrt results in elbow up solution (arbitrary choice)
q_B2=atan2(s2,c2)
s1=py*(1+c2)-px*s2 % denominator (> 0) discarded in s1 and c1
c1=px*(1+c2)+py*s2
q_B1=atan2(s1,c1)
q_B3=phi_Bd-(q_B1+q_B2)
```


Exercise \#4

This exercise can be solved with ease either by hand or using the symbolic instructions of Matlab (with caution on simplifications) ${ }^{2}$. To determine the singularities of $\boldsymbol{J}(\boldsymbol{q})$, it is useful to get rid of the dependence of the Jacobian on q_{1}, by expressing the velocity \boldsymbol{v} in the rotated frame 1 as 3

$$
{ }^{1} \boldsymbol{v}=\left({ }^{0} \boldsymbol{R}_{1}\right)^{T} \boldsymbol{v}=\left({ }^{0} \boldsymbol{R}_{1}\right)^{T} \boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}}={ }^{1} \boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}} .
$$

Thus, we obtain

$$
{ }^{1} \boldsymbol{J}(\boldsymbol{q})=\left({ }^{0} \boldsymbol{R}_{1}\right)^{T} \boldsymbol{J}(\boldsymbol{q})=\left(\begin{array}{ccc}
c_{1} & s_{1} & 0 \\
-s_{1} & c_{1} & 0 \\
0 & 0 & 1
\end{array}\right) \boldsymbol{J}(\boldsymbol{q})=\left(\begin{array}{ccc}
0 & -l_{2} s_{2} & -l_{3} s_{3} \\
l_{2} c_{2}+l_{3} c_{3} & 0 & 0 \\
0 & l_{2} c_{2} & l_{3} c_{3}
\end{array}\right) .
$$

The determinant is

$$
\operatorname{det} \boldsymbol{J}(\boldsymbol{q})=\operatorname{det}^{1} \boldsymbol{J}(\boldsymbol{q})=l_{2} l_{3} s_{2-3}\left(l_{2} c_{2}+l_{3} c_{3}\right) .
$$

Therefore, the singularities occur when
$\sin \left(q_{2}-q_{3}\right)=0 \Longleftrightarrow q_{3}=\left\{q_{2}, q_{2} \pm \pi\right\} \quad$ (third link stretched or folded w.r.t. the second link) ${ }^{4}$, or when

$$
l_{2} c_{2}+l_{3} c_{3}=0 \quad \text { (end-effector located along the axis of the first joint) }
$$

[^1]or when both situations occur. In the first two cases, the rank of \boldsymbol{J} drops by one unit. We have ${ }^{5}$
\[

\boldsymbol{J}\left(\boldsymbol{q}^{\diamond}\right)=\left.\boldsymbol{J}(\boldsymbol{q})\right|_{\sin \left(q_{2}-q_{3}\right)=0}=\left($$
\begin{array}{ccc}
-\left(l_{2} \pm l_{3}\right) s_{1} c_{2} & -l_{2} c_{1} s_{2} & \mp l_{3} c_{1} s_{2} \\
\left(l_{2} \pm l_{3}\right) c_{1} c_{2} & -l_{2} s_{1} s_{2} & \mp l_{3} s_{1} s_{2} \\
0 & l_{2} c_{2} & \pm l_{3} c_{2}
\end{array}
$$\right), \quad \operatorname{rank} \boldsymbol{J}\left(\boldsymbol{q}^{\diamond}\right)=2
\]

where $c_{2} \neq 0$, otherwise also $l_{2} c_{2}+l_{3} c_{3}=0$ would follow. Similarly, we have

$$
\boldsymbol{J}\left(\boldsymbol{q}^{\diamond}\right)=\left.\boldsymbol{J}(\boldsymbol{q})\right|_{l_{2} c_{2}+l_{3} c_{3}=0}=\left(\begin{array}{ccc}
0 & -l_{2} c_{1} s_{2} & -l_{3} c_{1} s_{3} \\
0 & -l_{2} s_{1} s_{2} & -l_{3} s_{1} s_{3} \\
0 & l_{2} c_{2} & l_{3} c_{3}
\end{array}\right), \quad \operatorname{rank} \boldsymbol{J}\left(\boldsymbol{q}^{\diamond}\right)=2
$$

On the other hand, when both situations occur simultaneously

$$
\boldsymbol{J}\left(\boldsymbol{q}^{*}\right)=\left.\boldsymbol{J}(\boldsymbol{q})\right|_{\sin \left(q_{2}-q_{3}\right)=0, l_{2} c_{2}+l_{3} c_{3}=0}=\left(\begin{array}{ccc}
0 & -l_{2} c_{1} s_{2} & \mp l_{3} c_{1} s_{2} \\
0 & -l_{2} s_{1} s_{2} & \mp l_{3} s_{1} s_{2} \\
0 & l_{2} c_{2} & \pm l_{3} c_{2}
\end{array}\right), \quad \operatorname{rank} \boldsymbol{J}\left(\boldsymbol{q}^{*}\right)=1
$$

Choosing for instance the rank 1 singular configuration \boldsymbol{q}^{*} with $q_{2}=q_{3}=\pi / 2$ (and with an arbitrary $\left.q_{1}\right)^{6}$, we have

$$
\boldsymbol{J}\left(\boldsymbol{q}^{*}\right)=\left.\boldsymbol{J}(\boldsymbol{q})\right|_{q_{2}=q_{3}=\pi / 2}=\left(\begin{array}{ccc}
0 & -l_{2} c_{1} & -l_{3} c_{1} \\
0 & -l_{2} s_{1} & -l_{3} s_{1} \\
0 & 0 & 0
\end{array}\right)
$$

We obtain the following subspaces:

$$
\begin{gathered}
\mathcal{R}\left\{\boldsymbol{J}\left(\boldsymbol{q}^{*}\right)\right\}=\operatorname{span}\left\{\left(\begin{array}{c}
c_{1} \\
s_{1} \\
0
\end{array}\right)\right\}, \quad \mathcal{N}\left\{\boldsymbol{J}\left(\boldsymbol{q}^{*}\right)\right\}=\operatorname{span}\left\{\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
* \\
-l_{3} \\
l_{2}
\end{array}\right)\right\}, \\
\mathcal{R}\left\{\boldsymbol{J}^{T}\left(\boldsymbol{q}^{*}\right)\right\}=\operatorname{span}\left\{\left(\begin{array}{c}
0 \\
l_{2} \\
l_{3}
\end{array}\right)\right\}, \quad \mathcal{N}\left\{\boldsymbol{J}^{T}\left(\boldsymbol{q}^{*}\right)\right\}=\operatorname{span}\left\{\left(\begin{array}{c}
-s_{1} \\
c_{1} \\
*
\end{array}\right),\left(\begin{array}{c}
0 \\
0 \\
1
\end{array}\right)\right\} .
\end{gathered}
$$

Exercise \#5

The structure of the optimal command $u^{*}(t)$ for this state-to-rest minimum time motion problem is found rather intuitively, observing that the net desired displacement is $x_{f}-x_{i}=x_{f}-x(0)=x_{f}>0$ and that the mass has an initial velocity in the opposite direction, $\dot{x}_{i}=\dot{x}(0)<0$. Thus, we have to apply first the maximum positive feasible force $U_{\max }>0$ in order to stop as soon as possible the motion in the negative direction. This will happen in a finite time T_{d}. Then, from the reached position $x_{d}=x\left(T_{d}\right)<0$, with $\dot{x}\left(T_{d}\right)=0$, we have a standard rest-to-rest minimum time motion problem for a displacement $x_{f}-x_{d}>x_{f}>0$. Since there is no velocity limitation in the problem formulation, this second problem is solved by a symmetric bang-bang force (and acceleration) profile in a time $T_{b b}$. In particular, we will continue to apply the maximum positive force $U_{\max }$ for half of the residual motion, switching then to $-U_{\max }<0$ so as to decelerate and stop at the final instant $t=T=T_{d}+T_{b b}$.

[^2]

Figure 3: Minimum time state-to-rest motion: mass position, velocity, and acceleration.
Let $A_{\max }=U_{\max } / M=8 / 2=4\left[\mathrm{~m} / \mathrm{s}^{2}\right]$ be the maximum feasible acceleration. Applying this from $t=0$ gives the resulting velocity profile

$$
\dot{x}(t)=\dot{x}(0)+A_{\max } t=-2+4 t \stackrel{\downarrow}{=} 0 \quad \Rightarrow \quad t=T_{d}=-\frac{\dot{x}(0)}{A_{\max }}=0.5[\mathrm{~s}] .
$$

In the interval $t \in\left[0, T_{d}\right]$, the position of the mass evolves as

$$
x(t)=x(0)+\dot{x}(0) t+A_{\max } \frac{t^{2}}{2}=0-2 t+4 \frac{t^{2}}{2}=2 t(t-1) \quad \Rightarrow \quad x_{d}=x\left(T_{d}\right)=-0.5[\mathrm{~m}] .
$$

Therefore, the rest-to-rest motion should displace the mass by $L=x_{f}-x_{d}=3-(-0.5)=3.5[\mathrm{~m}]$. With a symmetric bang-bang acceleration profile, the minimum motion time for this second part of the task is

$$
T_{b b}=2 \sqrt{\frac{L}{A_{\max }}}=1.8708[\mathrm{~s}]
$$

and the switching of the command will occur at the middle point $x_{d}+(L / 2)=1.25[\mathrm{~m}]$ of this motion, after $T_{b b} / 2=0.9354[\mathrm{~s}]$; in absolute terms, at the instant $t=T_{s w}=T_{d}+T_{b b} / 2=1.4354[\mathrm{~s}]$. The peak velocity reached at this instant is $V_{\max }=A_{\max } T_{b b} / 2=3.7417[\mathrm{~m} / \mathrm{s}]$. Finally, the minimum motion time is

$$
T=T_{d}+T_{b b}=2.3708[\mathrm{~s}]
$$

The optimal force command will be

$$
u^{*}(t)= \begin{cases}U_{\max }=8[\mathrm{~N}], & 0 \leq t<T_{s w}=1.4354[\mathrm{~s}] \\ -U_{\max }=-8[\mathrm{~N}], & T_{s w} \leq t<T=2.3708[\mathrm{~s}]\end{cases}
$$

The profiles of $x(t), \dot{x}(t)$, and $\ddot{x}(t)$ in the interval $t \in[0, T]$ are shown in Fig. 3. One can clearly appreciate the asymmetry of the bang-bang acceleration profile.

[^0]: ${ }^{1}$ The common denominator $2\left(1+c_{2}\right)>0$ in the expressions of s_{1} and c_{1} can be discarded without affecting the final result in the evaluation of ATAN2.

[^1]: ${ }^{2}$ The robot considered in this exercise is similar to the one in Ex. \#3 of June 5, 2020. However, absolute angles w.r.t. the horizontal are used here for joints 2 and 3 , and the lengths of links 2 and 3 are generic rather than unitary.
 ${ }^{3}$ Because of the arbitrary definition of frame 0 , we know that the variable q_{1} will never enter in the definition of singularities of a serial robot manipulator -in this case in the expression of $\operatorname{det} \boldsymbol{J}(\boldsymbol{q})$.
 ${ }^{4}$ This comment and the next one follow from the fact that the given Jacobian is associated to a 3R spatial robot of the elbow type, with q_{2} and q_{3} defined as absolute link angles w.r.t. the horizontal plane.

[^2]: ${ }^{5}$ The upper signs in the expression of $\boldsymbol{J}\left(\boldsymbol{q}^{\diamond}\right)$ apply when $q_{3}=q_{2}$, the lower when $q_{3}=q_{2}+\pi$. The same situation happens later also in the expression of $\boldsymbol{J}\left(\boldsymbol{q}^{*}\right)$.
 ${ }^{6}$ The spatial 3 R robot will then be fully stretched along the axis of joint 1 . Similar computations can be done for $q_{2}=q_{3}=-\pi / 2$, for $q_{2}=\pi / 2$ and $q_{3}=-\pi / 2$, or for $q_{2}=-\pi / 2$ and $q_{3}=\pi / 2$.

