
Robotics 1

Remote Exam – July 15, 2020

Exercise #1

Consider the 4-dof robot in Fig. 1, made by a 3R planar arm mounted on a rail. The world
coordinate frame (xw,yw, zw) is also shown. Assign the Denavit-Hartenberg (D-H) frames to the
robot and provide the associated table of parameters. Place the last D-H frame on the robot
gripper with its origin in P . Draw the frames on the robot, together with the joint variables
and the non-zero constant parameters. In the configuration shown, specify the signs assumed by
the four joint variables (angles are defined as always in the interval (−π,+π]). Finally, find the
homogeneous transformation between the world frame and the first D-H frame.
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Figure 1: A 4-dof planar robot with the world coordinate frame (xw,yw, zw).

Exercise #2

The 2-dof Cartesian robot in Fig. 2 should execute with its end-effector the following desired
eight-shaped periodic trajectory

pd(t) =

(
c+ a sin 2ωt

c+ b sinωt

)
, with a, b, c, ω > 0, for t ∈

[
0,

2π

ω

]
. (1)

The robot joint velocities and accelerations are bounded as

|q̇i| ≤ Vi > 0, |q̈i| ≤ Ai > 0, i = 1, 2,

while the velocity along the Cartesian path is bounded in norm as ‖ṗd(t)‖ ≤ Vc,max > 0. The
robot is commanded by joint accelerations.
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Figure 2: A 2P robot with the end-effector in the initial point of the desired trajectory at t = 0.
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Give the symbolic expressions of the needed robot joint commands, and determine the maximum
value ωmax of the angular frequency ω in (1) so that the robot motion satisfies all the constraints.
Provide then the numerical value of ωmax using the following data: a = 1 [m], b = 1.5 [m],
c = 3 [m], V1 = V2 = 2 [m/s], Vc,max = 1.8 [m/s], A1 = 2 [m/s2], A2 = 1.5 [m/s2].

Exercise #3

For a minimal representation of the orientation of a rigid body given by the YXY sequence of
Euler angles φ = (α, β, γ), define the instantaneous mapping between the time derivative φ̇ and
the angular velocity ω of the body. Determine also all the singularities of this mapping.

Exercise #4

With reference to Fig. 3, a 3R planar robot with equal link lengths ` = 2 [m] executes a linear
Cartesian path from point A = (3, 2.5) [m] (at t = 0) to point B = (0.75, 1.8) [m] with constant
speed v = 0.5 [m/s], while keeping its end-effector always orthogonal to the path. Provide the
value of the joint velocity q̇ ∈ R3 realizing the task at t = 1 [s]. Sketch graphically the situation.
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Figure 3: The 3R planar robot and its configuration at the initial point of the desired path.

Exercise #5

This is in the form of a Questionnaire. Please answer with formulas and/or clear and short texts.

A) List all possible Euler sequences of angles around moving axes that can be used to represent
the orientation of a rigid body, and associate to each the correct equivalent sequence of
Roll-Pitch-Yaw angles around fixed axes.

B) A DC motor has rotor inertia Jm = 1.2 ·10−5 [kg·m2] and maximum speed θ̇max = 2060 rpm.
It is connected to the driven link through a rigid transmission with reduction ratio nr = 100.
Is the link angular velocity q̇ = 3.5 [rad/s] a feasible one? In the absence of dissipative effects,
if the actual value of the reduction ratio is the one that minimizes the required motor torque
for a given link angular acceleration q̈, which is then the value of the link inertia Jl? With
this numerical value, if the desired link acceleration is q̈ = 4 [rad/s2], compute the torque τm
that the motor needs to produce on its axis.

[210 minutes (3.5 hours); open books]
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Solution
July 15, 2020

Exercise #1

A Denavit-Hartenberg frame assignment is shown in Fig. 4 and the associated parameters are
reported in Tab. 1, together with the signs of the constant non-zero parameters (ai) and the signs
of the variables qi, for i = 1, . . . , 4, when the robot is in the configuration shown in the figure. The
transformation between the world frame and the D-H frame 0 is

wT 0 =


0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

 .
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Figure 4: An assignment of D-H frames for the 4-dof robot.

i αi ai di θi

1 −π/2 a1 > 0 q1 > 0 0

2 0 a2 > 0 0 q2 < 0

3 0 a3 > 0 0 q3 < 0

4 0 a4 > 0 0 q4 > 0

Table 1: The D-H table of parameters for the frame assignment in Fig. 4.
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Exercise #2

The eight-shaped Cartesian path is plotted in Fig. 5 using the given parameters a = 1, b = 1.5,
and c = 3 [m]. This shape is indeed independent from the time/speed at which the path is being
traced by the robot end-effector.
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Figure 5: Eight-shaped path traced by the robot end-effector.

The desired Cartesian velocity and acceleration are computed by time derivation of eq. (1). Since
the 2P robot has the first joint moving along the y-component and the second joint along the
x-component, we have

ṗd(t) =

(
2aω cos 2ωt

bω cosωt

)
=

(
q̇2(t)

q̇1(t)

)
, (2)

and

p̈d(t) =

(
−4aω2 sin 2ωt

−bω2 sinωt

)
=

(
q̈2(t)

q̈1(t)

)
, (3)

which are also the expressions of the robot joint commands. Moreover, the norm of (2) is

‖ṗd(t)‖ =
√

4a2ω2 cos2 2ωt+ b2ω2 cos2 ωt. (4)

The bounds to be satisfied for all t ∈ [0, 2π/ω] are then

|q̇1| = |bω cosωt| ≤ V1 ⇒ ω ≤ V1
b
, |q̇2| = |2aω cos 2ωt| ≤ V2 ⇒ ω ≤ V2

2a
,

|q̈1| = |−bω2 sinωt| ≤ A1 ⇒ ω ≤
√
A1

b
, |q̈2| = |−4aω2 sin 2ωt| ≤ A2 ⇒ ω ≤

√
A2

4a
,

and

‖ṗd(t)‖ = ω
√

4a2 cos2 2ωt+ b2 cos2 ωt ≤ Vc,max ⇒ ω ≤ Vc,max√
4a2 + b2

.

Therefore, the maximum feasible value of ω is

ωmax = min

(
V1
b
,
V2
2a
,

√
A1

b
,

√
A2

4a
,

Vc,max√
4a2 + b2

)
. (5)

Substituting in (5) the numerical data, we obtain ωmax =
√
A2/(4a) = 0.6124, corresponding to

the saturation of the acceleration bound at joint 2. Figure 6 shows the resulting joint velocities and
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Figure 6: Joint velocities [left] and accelerations [right]. First joint in blue, second joint in red.
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Figure 7: Norm of the Cartesian velocity of the robot end-effector.

accelerations, while the norm of the Cartesian velocity is reported in Fig. 7. Note the (multiple)
periodicity of all plots.

Exercise #3

The orientation of a rigid body using the YXY sequence of Euler angles φ = (α, β, γ) is given by
the rotation matrix

RYXY (α, β, γ) = RY (α)RX(β)RY (γ)

=

 cosα 0 sinα

0 1 0

− sinα 0 cosα


 1 0 0

0 cosβ − sinβ

0 sinβ cosβ


 cos γ 0 sin γ

0 1 0

− sin γ 0 cos γ


=

 cosα cos γ − sinα cosβ sin γ sinα sinβ cosα sin γ + sinα cosβ cos γ

sinβ sin γ cosβ − sinβ cos γ

− sinα cos γ − cosα cosβ sin γ cosα sinβ cosα cosβ cos γ − sinα sin γ

 .

The angular velocity ω of the body can be obtained from the formula S(ω) = ṘYXY (φ, φ̇)RT
YXY (φ),

where S is a skew-symmetric matrix. Using the shorthand notation for trigonometric functions,
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taking the time derivative of RYXY and post-multiplying by the transpose of the rotation matrix
yields

ṘYXY (φ, φ̇) ·RT
YXY (φ)

=


−(sαcγ + cαcβsγ)α̇+ sαsβsγ β̇

−(cαsγ + sαcβcγ)γ̇
cαsβα̇+ sαcβ β̇

−(sαsγ − cαcβcγ)α̇− sαsβcγ β̇
+(cαcγ − sαcβsγ)γ̇

cβsγ β̇ + sβcγ γ̇ −sβ β̇ −cβcγ β̇ + sβsγ γ̇

−(cαcγ − sαcβsγ)α̇+ cαsβsγ β̇

+(sαsγ − cαcβcγ)γ̇
−sαsβα̇+ cαcβ β̇

−(sαcβcγ + cαsγ)α̇− cαsβcγ β̇
−(cαcβsγ + sαcγ)γ̇



·

 cαcγ − sαcβsγ sβsγ −sαcγ − cαcβsγ
sαsβ cβ cαsβ

cαsγ + sαcβcγ −sβcγ cαcβcγ − sαsγ



=

 0 sαβ̇ − cαsβ γ̇ α̇+ cβ γ̇

−sαβ̇ + cαsβ γ̇ 0 −cαβ̇ − sαsβ γ̇
−α̇− cβ γ̇ cαβ̇ + sαsβ γ̇ 0

 =

 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 = S(ω)

(6)

The above derivation is greatly simplified by using the symbolic calculation in Matlab. Having
defined the rotation matrix RYXY and all the other needed quantities as symbolic variables, the
S matrix and the angular velocity ω are obtained by the following three instructions:

Rdot=diff(R_YXY,alfa)*dalfa+diff(R_YXY,beta)*dbeta+diff(R_YXY,gamma)*dgamma

S_omega=simplify(Rdot*R_YXY’)}

omega=[S_omega(3,2);S_omega(1,3);S_omega(2,1)]

The linear mapping ω = T (φ)φ̇ is then extracted from the elements of the S matrix in (6) as

ω =

 ωx

ωy

ωz

 =

 cosα β̇ + sinα sinβ γ̇

α̇+ cosβ γ̇

− sinα β̇ + cosα sinβ γ̇

 =

 0 cosα sinα sinβ

1 0 cosβ

0 − sinα cosα sinβ


 α̇

β̇

γ̇

 = T (φ)φ̇.

The singularities of this mapping occur when detT (φ) = − sinβ = 0, i.e., for β = 0 and β = π.

In alternative to the above procedure, and perhaps more quickly, we can build the matrix T (φ) by
noting the individual contributions to the angular velocity ω of α̇ (a rotation around the initial,
fixed Y -axis), β̇ (a rotation around the X ′-axis, i.e., the X-axis after the rotation RY (α)), and γ̇
(a rotation around the Y ′′-axis, i.e., the Y -axis after the first two rotations RY (α)RX(β)). We
have

ω = ωα̇,Y + ωβ̇,X′ + ωγ̇,Y ′′ =

 0

1

0

 α̇+RY (α)

 1

0

0

 β̇ +RY (α)RX(β)

 0

1

0

 γ̇

=

 0

1

0

 α̇+

 cosα

0

− sinα

 β̇ +

 sinα sinβ

cosβ

cosα sinβ

 γ̇ = T (φ)φ̇.

Note also that, being each contribution to ω a vector itself, the order in the sum is irrelevant.
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Exercise #4

The solution requires to compute the position pd(t) ∈ R2 and orientation φd(t) ∈ R of the end-
effector at t = 1 [s] during the execution of the assigned task, together with the task velocity vector

ṙd(t) =
(
ṗTd(t) φ̇d(t)

)T
. An inverse kinematics problem is solved then analytically to obtain

at that time instant a unique value of q, which is used to evaluate the 3 × 3 task Jacobian J(q).
Finally, inversion of the differential kinematics map provides the commanded joint velocity q̇ ∈ R3.

Note first that the motion trajectory from A to B lasts T = ‖B −A‖/v = 2.3564/0.5 = 4.7127 [s],
so that t = 1 [s] corresponds to an instant when the end-effector is actually on the linear path.
The Cartesian trajectory and the desired position p̄d are thus

pd(t) = A+
vt

‖B −A‖
(B −A) =

(
3

2.5

)
− 0.5t

2.3564

(
2.25

0.7

)
, at t = 1 ⇒ p̄d = pd(1) =

(
2.5226

2.3515

)
.

The orientation remains instead constant at all times and, according to Fig. 3, is given by1

φd = ATAN2 {Ay −By,Ax −Bx}+
π

2
= ATAN2 {0.7, 2.25}+

π

2
= 1.8724 [rad] = 107.28◦.

Accordingly, the desired task velocity (at t = 1, as well as at any other instant) is constant and is
specified by

ṙd =

 v
B −A
‖B −A‖
φ̇d

 =

 −0.4774

−0.1485

0

 .

Using the standard D-H joint variables, the task kinematics of the 3R robot at hand is

r =

 px

py

φ

 =

 l (cos q1 + cos(q1 + q2) + cos(q1 + q2 + q3))

l (sin q1 + sin(q1 + q2) + sin(q1 + q2 + q3))

q1 + q2 + q3

 = f(q),

with its 3× 3 Jacobian

J(q) =
∂f(q)

∂q
=

 −l (s1 + s12 + s123) −l (s12 + s123) −ls123
l (c1 + c12 + c123) l (c12 + c123) lc123

1 1 1

 , (7)

where the shorthand notation for trigonometric functions has been used, e.g., s123 = sin(q1+q2+q3).

With reference to Fig. 8, the inverse kinematics problem can be decomposed in two parts. First,
we solve for the two joint variables q1 and q2 in order to place the tip of the second link (or, the
base of the third link) in the necessary position

p̄t2 = p̄d − `
(

cosφd

sinφd

)
=

(
3.1167

0.4418

)
[m].

Since the robot arm has not crossed a singularity while moving the end-effector from A to p̄d (this
can be easily verified), the configuration of the first two joints should remain the initial one, or
elbow up. Thus, we find a unique solution for the pair (q1, q2) given by

c2 =
p̄2t2,x + p̄2t2,y − 2`2

2`2
= 0.2386, s2 = −

√
1− c22 = −0.9711

⇒ q2 = ATAN2 {s2, c2} = −1.3298 [rad],

1In the two arguments of the ATAN2 function, we have eliminated the common denominator ‖B −A‖ > 0.
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Figure 8: Solution approach to the inverse kinematics for the 3R planar robot.

and2

s1 =
p̄t2,y (`+ `c2)− p̄t2,x`s2

2`2(1 + c2)
= 0.7213, c1 =

p̄t2,x (`+ `c2) + p̄t2,y`s2

2`2(1 + c2)
= 0.6926

⇒ q1 = ATAN2 {s1, c1} = 0.8057 [rad].

At this point, with (q1, q2) = (0.8057,−1.3298) [rad] = (46.16◦,−76.19◦), the third joint variable
q3 is recovered from the specification φd = 1.8724 [rad] on the end-effector orientation:

q3 = φd − (q1 + q2) = 2.3965 [rad] = 137.31◦.

The above solution of the inverse kinematics problem is coded in Matlab by the instructions:

p_t2=p_d-l*[cos(phi_d); sin(phi_d)]

px=p_t2(1);

py=p_t2(2);

c2=(px^2+py^2-2*l^2)/(2*l^2)

s2=-sqrt(1-c2^2) % elbow up solution (as the initial configuration)

q2=atan2(s2,c2)

s1=py*(l+l*c2)-px*l*s2 % denominator (> 0) discarded in s1 and c1

c1=px*(l+l*c2)+py*l*s2

q1=atan2(s1,c1)

q3=phi_d-(q1+q2)

Evaluating the Jacobian in (7) for the obtained q = (q1, q2, q3) and inverting the differential
mapping yields finally the joint velocity

q̇ = J−1(q)ṙd =

 −2.3515 −0.9088 −1.9097

2.5226 1.1374 −0.5941

1 1 1


−1 −0.4774

−0.1485

0


=

 −0.4458 0.2577 −0.6982

0.8024 0.1137 1.5998

−0.3566 −0.3714 0.0983


 −0.4774

−0.1485

0

 =

 0.1745

−0.4000

0.2254

 [rad/s].

2The common (positive) denominator 2`2(1 + c2) in the expressions of s1 and c1 can be discarded without
affecting the final result.
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Exercise #5

A) The possible sequences of Euler angles are 12. They are listed in Tab. 2, together with their one-
to-one correspondence with RPY-type angles (with the reverse order in the products of elementary
rotation matrices). The rotation matrix produced in one or in the corresponding sequence of angles
(around the moving or fixed axes) will be the same.

i Euler sequences Roll-Pitch-Yaw sequences

1 X(α)Y ′(β)X ′′(γ) X(γ)Y (β)X(α)

2 X(α)Y ′(β)Z′′(γ) Z(γ)Y (β)X(α)

3 X(α)Z′(β)X ′′(γ) X(γ)Z(β)X(α)

4 X(α)Z′(β)Y ′′(γ) Y (γ)Z(β)X(α)

5 Y (α)X ′(β)Y ′′(γ) Y (γ)X(β)Y (α)

6 Y (α)X ′(β)Z′′(γ) Z(γ)X(β)Y (α)

7 Y (α)Z′(β)X ′′(γ) X(γ)Z(β)Y (α)

8 Y (α)Z′(β)Y ′′(γ) Y (γ)Z(β)Y (α)

9 Z(α)X ′(β)Y ′′(γ) Y (γ)X(β)Z(α)

10 Z(α)X ′(β)Z′′(γ) Z(γ)X(β)Z(α)

11 Z(α)Y ′(β)X ′′(γ) X(γ)Y (β)Z(α)

12 Z(α)Y ′(β)Z′′(γ) Z(γ)Y (β)Z(α)

Table 2: Correspondence between Euler and RPY minimal representations of orientation.

B) The maximum angular velocity that the driven link can reach is equal to

q̇max =
θ̇max(rpm)

nr
· 2π

60
=

4120

6000
π = 2.1572 [rad/s].

Thus, the link velocity q̇ = 3.5 [rad/s] is unfeasible. The optimal reduction ratio that minimizes the
required motor torque for a given link angular acceleration q̈ satisfies the relation nr =

√
Jl/Jm.

If nr = 100 is such an optimal value for the given motor inertia Jm = 1.2 · 10−5 [kg·m2], then the
value of the link inertia is

Jl = n2r Jm = 1.2 · 10−1 [kg·m2].

Therefore, the motor torque needed to produce a link angular acceleration q̈ = 4 [rad/s2] is

τm =

(
Jmnr +

Jl
nr

)
q̈ = 2

√
JmJl q̈ = 9.6 · 10−3 [Nm],

where the second (equivalent) expression follows from the optimality of the reduction ratio.

∗ ∗ ∗ ∗ ∗
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