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January 11, 2019

Exercise 1

Consider the spatial 4-dof robot with RRPR sequence of joints shown in Fig. 1.

E
E

Figure 1: A 4-dof spatial RRPR robot and its kinematic skeleton.

• Assign the link frames according to the Denavit-Hartenberg (DH) convention and complete the associated
symbolic table of parameters, choosing only values αi ≥ 0 (i = 1, . . . , 4) for the twist angles, and
specifying the signs of all other non-zero constant parameters. The base frame (frame 0) should be
placed on the ground and the origin of the (last) frame 4 at the end-effector point E. Draw the frames
and fill in the table directly on the extra sheet provided separately.

• Write explicitly the four resulting DH homogeneous transformation matrices 0A1(q1) to 3A4(q4) and
compute in an efficient way the direct kinematics p4 = p4(q) ∈ R3 for the position of the origin O4 of
the last DH frame.

• Draw the robot in the configuration q0 =
(

0 π/2 L 0
)T

for a generic L > 0. Compute the position
p4,0 = p4(q0) as a parametric function of L and of the other constant DH parameters in symbolic form.

Exercise 2

Consider again the robot in Exercise 1.

• Derive the expression of the 6×4 geometric Jacobian J(q) of this robot relating the joint velocity q̇ ∈ R4

to the linear velocity v ∈ R3 and angular velocity ω ∈ R3 of the end-effector frame. What is the generic
rank of the lower 3× 4 block JA(q) of this matrix?

• Evaluate J0 = J(q0), again as a parametric function. At the same previously specified configuration
q = q0, provide answers/solutions to the following problems.

– Find, if possible, a joint velocity q̇a 6= 0 that produces no linear velocity (v = 0) at the end-effector.
Would then also ω = 0 follow?

– Determine if the generalized Cartesian velocity V =
(
vT ωT

)T
=
(

1 0 1 0 0 −2
)T

is feasi-

ble. If so, provide a joint velocity q̇b ∈ R4 that instantaneously realizes it.

– Find, if possible, a non-zero generalized Cartesian force F c =
(
fT mT

)T ∈ R6 applied at the

end-effector that can be statically balanced by zero joint forces/torques (τ = 0, with τ ∈ R4). If
such a F c 6= 0 does not exist, explain why.
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Exercise 3

For a planar RP robot with direct kinematics of the end-effector position given by

p =

(
q2 cos q1

q2 sin q1

)
, (1)

consider the planning of a rest-to-rest motion between an initial and a final Cartesian point, respectively,

pA =
(

4 3
)T

[m] at t = 0 and pB =
(
−3.5355 3.5355

)T
[m] at t = T . Optimization of the motion

time T is being sought, in two different operative conditions as follows.

a. Define a joint trajectory q ∗a (t) that minimizes the motion time for this task under the bounds on the
joint accelerations,

|q̈1| ≤ A1 = 200 ◦/s2, |q̈2| ≤ A2 = 5 m/s2. (2)

Find the value of the minimum motion time T ∗a and draw the time profiles of the position, velocity and
acceleration of the two robot joints.

b. Consider next the additional Cartesian bound on the norm of the end-effector acceleration,

‖p̈‖ ≤ Ac = 10 m/s2. (3)

Verify whether the previous solution q ∗a (t) satisfies the bound (3) or not. If not, propose a modified
joint trajectory q ∗b (t) such that both bounds (2) and (3) will be satisfied, while trying to minimize
the new motion time. Discuss the rationale of your choice and the supporting equations, provide the
resulting motion T ∗b , and sketch the new time profiles of your solution.

[210 minutes, open books]
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Solution
January 11, 2019

Exercise 1

A DH frame assignment that satisfies the condition on the twist angles, αi ≥ 0, i = 1, . . . , 4, is shown in
Fig. 2, with the associated parameters given in Tab. 1. The signs of the non-zero symbolic constants are
also reported in the table.
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Figure 2: A possible DH frame assignment for the 4-dof spatial RRPR robot.

i αi ai di θi

1 π/2 0 d1 > 0 q1

2 π/2 0 0 q2

3 π/2 0 q3 π

4 0 a4 > 0 0 q4

Table 1: Parameters associated to the DH frames in Fig. 2.

Based on Tab. 1, the four DH homogeneous transformation matrices are:

0A1(q1) =

(
0R1(q1) 0p1

0T 1

)
=


cos q1 0 sin q1 0

sin q1 0 − cos q1 0

0 1 0 d1

0 0 0 1

 ,

1A2(q2) =

(
1R2(q2) 1p2

0T 1

)
=


cos q2 0 sin q2 0

sin q2 0 − cos q2 0

0 1 0 0

0 0 0 1

 ,
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2A3(q3) =

(
2R3

2p3(q3)

0T 1

)
=


−1 0 0 0

0 0 1 0

0 1 0 q3

0 0 0 1

 ,

3A4(q4) =

(
3R4(q4) 3p4(q4)

0T 1

)
=


cos q4 − sin q4 0 a4 cos q4

sin q4 cos q4 0 a4 sin q4

0 0 1 0

0 0 0 1

 ,

An efficient symbolic computation for obtaining the end-effector position p4 = p4(q) makes use of recursive
matrix-vector products in homogeneous coordinates as

(
p4(q)

1

)
= 0A1(q1)

1A2(q2)

2A3(q3)

3A4(q4)


0

0

0

1




 =


cos q1 (q3 sin q2 − a4 cos(q2 + q4))

sin q1 (q3 sin q2 − a4 cos(q2 + q4))

d1 − q3 cos q2 − a4 sin(q2 + q4)

1

. (4)

Figure 3 shows the robot in the configuration q0 =
(

0 π/2 L 0
)T

. The end-effector position is evalu-
ated from (4) as

p4(q0) =

 L

0

d1 − a4

 .

E
z0

x0

y1 = x2

x1
y3

x3
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x4

a4

q3 = L

d1

Figure 3: The RRPR robot skeleton in the configuration q0 = ( 0 π/2 L 0 )
T

.

Exercise 2

The simplest way to derive the symbolic expression of the 6 × 4 geometric Jacobian J(q) of the spatial
PPRP robot in

V =

(
v

ω

)
=

(
JL(q)

JA(q)

)
q̇ = J(q)q̇

is to compute the 3× 4 upper block JL(q) by partial differentiation of the position vector p4(q), and the
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3× 4 lower block JA(q) by using the standard formula. From eq. (4), we obtain

JL(q) =
∂p4(q)

∂q
=− sin q1(q3 sin q2 − a4 cos(q2 + q4)) cos q1(q3 cos q2 + a4 sin(q2 + q4)) cos q1 sin q2 a4 cos q1 sin(q2 + q4)

cos q1(q3 sin q2 − a4 cos(q2 + q4)) sin q1(q3 cos q2 + a4 sin(q2 + q4)) sin q1 sin q2 a4 sin q1 sin(q2 + q4)

0 q3 sin q2 − a4 cos(q2 + q4) − cos q2 −a4 cos(q2 + q4)

 .

(5)

Further, being izi =
(

0 0 1
)T

for all i, we have

JA(q)=

(
z0 z1 0 z3

)
=

(
0z0

0R1(q1)1z1 0 0R1(q1)1R2(q2)2R3
3z3

)
=

 0 sin q1 0 sin q1

0 − cos q1 0 − cos q1

1 0 0 0

 .

(6)
It follows from (6) that the generic rank of matrix JA(q) is equal to 2. Moreover, at the previously specified

configuration q0 =
(

0 π/2 L 0
)T

, we evaluate the geometric Jacobian from (5) and (6) as

J0 = J(q0) =



0 a4 1 a4

L 0 0 0

0 L 0 0

0 0 0 0

0 −1 0 −1

1 0 0 0


=

(
JL0

JA0

)
. (7)

It is easy to see that

ρ0 = rank{J0} = 4, ρL0 = rank {JL0} = 3, ρA0 = rank {JA0} = 2 (as expected in general). (8)

Using (7) and (8), we provide the following answers/solutions when the robot is at the configuration q0.

• Joint velocities q̇a ∈ R4 that produce zero linear velocity at the end-effector, i.e., v = JL0 q̇a = 0,
belong to the null space of JL0. Since the robot has n = 4 joints and ρL0 = 3, the null space of JL0 has
dimension n− ρL0 = 1. Thus, there are ∞1 joint velocities q̇a, all having the form

q̇a = α


0

0

−a4
1

 , α S 0,

that produce zero linear velocity at the end-effector.

• Since

JA0 q̇a = α

 0

−1

0

 = ωa,

any non-vanishing (α 6= 0) joint velocity q̇a in the null space of JL0 will be associated with a non-zero
angular velocity, i.e., ωa 6= 0.

• A generalized Cartesian velocity V =
(
vT ωT

)T ∈ R6 will be feasible if and only if it belongs to
the range space (or image) of J0. Since ρ0 = 4, the range space of this matrix is given by the linear
combinations of all its four columns. A simple test to verify whether or not the Cartesian velocity
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V =
(

1 0 1 0 0 −2
)T

belongs to the image of J0 is to border the matrix J0 with the column
vector V and check the rank of the resulting matrix. Since

rank{J0}=rank





0 a4 1 a4

L 0 0 0

0 L 0 0

0 0 0 0

0 −1 0 −1

1 0 0 0




=4 < 5=rank





0 a4 1 a4 1

L 0 0 0 0

0 L 0 0 1

0 0 0 0 0

0 −1 0 −1 0

1 0 0 0 −2




=rank {(J0 V )} ,

the given vector V will not belong to the image of J0. Thus, there is no joint velocity q̇b ∈ R4 that will
instantaneously realize V (i.e., J0q̇b 6= V , ∀q̇b).

• A generalized Cartesian force F c =
(
fT mT

)T ∈ R6 applied at the end-effector is statically balanced

by zero joint forces/torques τ ∈ R4, i.e., τ = JT
0 F c = 0 if and only if it belongs to the null space of JT

0 .
Since the Cartesian task has dimension m = 6 and rank

{
JT

0

}
= ρ0 = 4, the null space of JT

0 will have
dimension m− ρ0 = 2. A basis for this null space is given by

N{JT
0 } = range





0 0

0 −1/L

0 0

1 0

0 0

0 1




= range

{(
F c1 F c2

)}
.

Therefore, one will obtain τ = JT
0 (α1F c1 + α2F c2) = 0 for any value of the scalars α1 and α2.

Exercise 3

The rest-to-rest trajectory planning problem for the planar RP robot can be tackled in the joint space.
Through the inverse kinematics of this robot1

q1 = ATAN2 {py, px} , q2 =
√
p2x + p2y,

we obtain for the initial and final Cartesian points, respectively

pA =

(
4

3

)
[m] ⇒ qA =

(
0.6435

5

)
[rad, m]

(
=

(
36.87

5

)
[ ◦, m]

)
,

to be assumed at the initial time t = 0 with zero initial velocity q̇A = 0, and

pB =

(
−3.5355

3.5355

)
[m] ⇒ qB =

(
2.3562

5

)
[rad, m]

(
=

(
135

5

)
[ ◦, m]

)
,

to be assumed at the final time t = T with zero initial velocity q̇B = 0. Note that the same value
qA,2 = qB,2 = 5 [m] has been obtained for the prismatic joint.

Case a. When seeking the minimization of the motion time T under the joint acceleration limits (2)
only, we can proceed separately for each joint. Since the second (prismatic) joint doesn’t need to move

1One could have used also the second solution to the inverse kinematics

q1 = ATAN2 {−py ,−px} , q2 = −
√

p2x + p2y .

The following developments would have been the same, modulo a change of sign for the joint motions. In any event,
the objective of minimizing motion time suggests that the same solution class of the inverse kinematics should be
used for both Cartesian points pA and pB .
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(q∗a,2(t) ≡ 0), it does not impose any lower bound on the motion time. The problem is solved by looking
just at the first joint motion. In the absence of a joint velocity limit, the time-optimal motion of the first
joint will be a bang-bang profile in acceleration and, accordingly, a triangular profile in velocity. Since a
positive displacement is requested for q1, we have

q̈ ∗a,1(t) =


A1, t ∈

[
0,
T

2

)
−A1, t ∈

[
T

2
, T

] ,

and thus

q̇ ∗a,1(t) =


A1t, t ∈

[
0,
T

2

)
A1

T

2
−A1

(
t− T

2

)
, t ∈

[
T

2
, T

]
and2

q ∗a,1(t) =


qA,1 +

1

2
A1t

2, t ∈
[
0,
T

2

)
qA,1 +

A1T
2

8
+A1

T

2

(
t− T

2

)
− 1

2
A1

(
t− T

2

)2

, t ∈
[
T

2
, T

] .

By symmetry, half of the total displacement ∆q1 = |qB,1 − qA,1| will be completed at the midtime of
motion. Therefore, from the equality

q ∗a,1

(
T

2

)
= qA,1 +

A1T
2

8
= qA,1 +

qB,1 − qA,1

2
,

we obtain

T ∗a =

√
4 |qB,1 − qA,1|

A1
= 1.401 [s], (9)

where A1 = 200 [ ◦/s2] and qB,1− qA,1 = 98.13 ◦ have been used. Moreover, the peak velocity of joint 1 will
be

V1 = q̇ ∗a,1

(
T ∗a
2

)
= A1

T ∗a
2

=
√
A1 |qB,1 − qA,1| = 140.1 [ ◦/s] = 2.4451 [rad/s]. (10)

The plots of the joint positions, velocities and accelerations are shown in Fig. 4. The resulting Cartesian
path traced by the end-effector along the time-optimal joint trajectory q ∗a is indeed an arc of a circle of
radius r = qA,2 = 5 [m], as shown in Fig. 5.

Indeed the solution found for this case is not at all unique. Joint 2 may in fact move in an arbitrary way,
as long as it goes back to the same initial position with zero final velocity within the instant of time T ∗a ,
and without violating its acceleration bound A2 during the interval [0, T ∗a ].

Case b. In order to verify whether the previous solution q ∗a (t) satisfies the additional Cartesian bound (3),
we need to compute the end-effector acceleration p̈ differentiating twice the expression (1) of the direct
kinematics. We obtain

ṗ =

(
q̇2 cos q1 − q̇1q2 sin q1

q̇2 sin q1 + q̇1q2 cos q1

)
=

(
−q2 sin q1 cos q1

q2 cos q1 sin q1

)(
q̇1

q̇2

)
= J(q)q̇,

2Formulas are written so as to highlight how they were obtained via integration. The expressions for the velocity
and position in in the second half of the motion can be rewritten also as

q̇ ∗a,1(t) = A1T −A1t, q ∗a,1(t) = qA,1 −
A1T 2

4
+A1T t−

A1

2
t2, t ∈

[
T

2
, T

]
.
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Figure 4: Position, velocity and acceleration profiles of the solution trajectory q ∗
a for Case a. Joint

1 = red, joint 2 = blue.
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Figure 5: Cartesian path traced by the end-effector along the joint trajectory q ∗
a of Fig. 4.

and

p̈ =

(
−q2 sin q1 cos q1

q2 cos q1 sin q1

)(
q̈1

q̈2

)
+

(
−
(
q̇21 q2 cos q1 + 2 q̇1q̇2 sin q1

)
−q̇21 q2 sin q1 + 2 q̇1q̇2 cos q1

)
= J(q)q̈ + n(q, q̇), (11)

with n(q, q̇) = J̇(q)q̇ having a quadratic dependence on the components of q̇.

Since the norm of a vector is invariant with respect to a rotation, ‖p̈‖ = ‖Rp̈‖, to ease computations it is
convenient to express the acceleration (11) in a frame rotated with q1 on the plane (x, y), namely

1p̈ =

(
cos q1 sin q1

− sin q1 cos q1

)
p̈ = RT(q1)J(q)q̈ +RT(q1)n(q, q̇)

=

(
0 1

q2 0

)(
q̈1

q̈2

)
+

(
−q̇21 q2
2 q̇1q̇2

)
=

(
q̈2 − q̇21 q2

q2 q̈1 + 2 q̇1q̇2

)
.

(12)

As a result, we have from (12) the closed-form expression∥∥ p̈∥∥ =
∥∥1p̈∥∥ =

√
(q̈2 − q̇21 q2)2 + (q2 q̈1 + 2 q̇1q̇2)2. (13)

When (13) is evaluated along the joint trajectory q ∗a (t), since q2 = qA,2 (constant) and q̇2 = q̈2 = 0, we
have

‖ p̈ ‖|q=q ∗
a

=
√
q 2
A,2 (q̇ 4

1 + q̈ 2
1 ). (14)

Taking the maximum of q̇1 and q̈1 (which occur both at the midtime of motion), using (10), and converting
A1 = 200 · π/180 = 3.4906 [rad/s2] yields

max ‖p̈‖|q=q ∗
a

=
√
q 2
A,2 (V 4

1 +A 2
1 ) =

√
(5)2 [(2.4451)4 + (3.4906)2] = 34.58 > 10 = Ac. (15)

Thus, ‖p̈‖ reaches a peak which is about 3.5 times higher than the bound Ac in (3). The evolution of the
norm of the Cartesian acceleration (14) is shown in Fig. 6 (this plot is obtained using Matlab).

Therefore, in the presence of this additional bound, the previous trajectory should be made considerably
slower. This can be achieved in many ways, leading to different solutions for the new trajectory qb(t),
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Figure 6: Norm of the end-effector acceleration p̈ along the joint trajectory q ∗
a of Fig. 4.

each with a possibly different motion time Tb. Indeed, among all feasible qb(t), the optimal solution q ∗b (t)
will have the least completion time T ∗b ≤ Tb. However, finding the minimum time in this situation is not
straightforward. Below we give some clues on how to proceed, al least for generating trajectories that
satisfy all constraints.

1. Uniform scaling. The simplest way to recover feasibility is to scale uniformly the motion time by
a factor k > 1, i.e., Tb,1 = kT ∗a , reducing thus both the joint velocity (by a factor k) and the joint
acceleration (by a factor k2). Using again eqs. (14–15), we find the minimum value k by imposing the
equality

max ‖ p̈ ‖|q=q ∗
b,1

=

√√√√q 2
A,2

[(
V1

k

)4

+

(
A1

k2

)2
]

=
1

k2

√
q 2
A,2 (V 4

1 +A 2
1 ) =

1

k2
max ‖ p̈ ‖|q=q ∗

a
= Ac,

(16)
and thus

k =

√
max ‖ p̈ ‖|q=q ∗

a

Ac
= 1.8596 ⇒ Tb,1 = kT ∗a = 2.605 [s]. (17)

The trajectory profile will be the same as before, with the second joint always at rest and the first
(revolute) joint having a bang-bang acceleration with Amax = A1/k

2 = 57.84 [ ◦/s2] and a triangular
velocity with peak Vmax = V1/k = 75.34 [ ◦/s]. The plots are similar to those in Fig. 4.

2. Including a cruise phase. A different strategy, still following the same Cartesian path as in Fig. 5,
would be to apply a smaller acceleration to joint 1 (with At,max < A1) until reaching some cruise speed
Vt,max < V1 at t = Tt, travel at that speed for a suitable time, and then decelerate for an interval Tt

until the final stop at Tb,2, while complying at all times with the bound on the norm of p̈. The resulting
trajectory q ∗b,2 would be bang-coast-bang in acceleration, i.e., with a symmetric trapezoidal profile in
velocity —the reason for the subscript ‘t’ in the above quantities. As usual in such cases, from

Tt =
Vt,max

At,max
and ∆q1 = (Tb,2 − Tt)Vt,max ⇒ Tb,2 =

∆q1
Vt,max

+
Vt,max

At,max
=

∆q1At,max + V 2
t,max

Vt,maxAt,max
.

(18)
On the other hand, the reaching of the Cartesian acceleration limit implies from (14)

max ‖ p̈ ‖|q=q ∗
b,2

=
√
q 2
A,2

(
V 4
t,max +A 2

t,max

)
= Ac. (19)
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This is imposed at t = Tt, namely at the end of the acceleration phase, where also the velocity has
reached its maximum. Solving for Vt,max from (19)

Vt,max =
4

√(
Ac

qA,2

)2

−A2
t,max, (where At,max <

Ac

qA,2
is being assumed)

and substituting this within Tb,2 in (18) gives

Tb,2 =
∆q1

4

√(
Ac

qA,2

)2

−A2
t,max

+

4

√(
Ac

qA,2

)2

−A2
t,max

At,max
= f(At,max), for 0 < At,max <

Ac

qA,2
. (20)

From the functional dependence in (20), it is clear that the minimum of Tb,2 will not occur neither for
very small values of At,max nor close to its upper limit, as the function f goes to infinity in both cases.
Figure 7 plots the value of Tb,2 as a function of At,max in its interval of definition. It can be seen that
a minimum is (approximately) found for

At,max = 1.59 [rad/s2] = 91.1 [ ◦/s2] ⇒ Tb,2 = 2.2475 [s].

Thus, the motion time Tb,2 found when using a trapezoidal profile is smaller that the value Tb,1 found
by uniform scaling by about 14%. This reflects the better adaptability of this new trajectory.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Amax [rad/s 2]

2

4

6

8

10

12

14

16

T b2
 [s

]

feasible motion time as a function of Amax < Ac/qA,2 = 2

Figure 7: Dependence of the motion time Tb,2 on At,max for a feasible trapezoidal velocity profile
in Case b.

3. Moving also joint 2. Another alternative is to explore the use of an extra motion of the (prismatic)
joint 2, which should allow a faster displacement of joint 1 when the Cartesian acceleration bound is
limiting the completion time. Note first that, when using (14) in a motion with constant q2 = q2,0, the
value of ‖ p̈ ‖ will decrease linearly with q2,0. Thus, one could try the following three-phase trajectory.

I. With the first joint kept fixed, retract the second joint to a value q2,0 < qA,2, using a bang-bang
(negative-positive) acceleration profile with maximum acceleration equal to the minimum between
Ac and A2. Let TI be the time needed for this rest-to-rest motion of joint 2.

11



II. Perform the displacement ∆q1 with the first joint, just like in Case a. but now with q2 = q2,0. By
a judicious choice of q2,0, this motion can be executed using a bang-bang acceleration profile with
maximum acceleration equal to A1. In fact, the value of q2,0 could be such that the norm of the
Cartesian acceleration always satisfies its bound, and reaches the maximum value Ac at least in one
instant. Let TII be the needed motion time for this phase.

III. Reverse the motion of phase I so as to move joint 2 from q2,0 back to qB,2 = qA,2, using a bang-bang
(now, positive-negative) acceleration profile. Indeed, the time needed for this phase is TIII = TI .

The minimum retraction of joint 2 that will guarantee the saturation of the bound (3) mentioned in phase
II is evaluated by equating

max ‖p̈‖ =
√
q 2
20 (V 4

1 +A 2
1 ) = Ac ⇒ q20 =

Ac√
V 4
1 +A 2

1

= 1.4445 [m]. (21)

This implies a net displacement ∆q2 = |q20−qA,2| = 3.5555 [m] for joint 2. Thus, being A2 = 5 < 10 = Ac,
the motion times of the three phases are computed as

TI =

√
4|q20 − qA,2|

A2
= 1.6865, TII =

√
4|qB,1 − qA,1|

A1
= 1.401 (= T ∗a ),

and

TIII =

√
4|qB,2 − q20|

A2
= TI = 1.6865.

Thus, the total motion time is
Tb,3 = 2TI + TII = 4.774 [s].

As a result, in this case there is no benefit with such approach with respect to the two previous methods.
While some time reduction could still be achieved by moving both joints in this way simultaneously (rather
than in alternating sequence), the analysis would become far too complex —and perhaps the outcome would
still not be worth of it.

∗ ∗ ∗ ∗ ∗
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