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July 11, 2018

Exercise 1

• Define the orientation of a rigid body in the 3D space through three rotations by the angles α,
β, and γ around three fixed axes in the sequence Y , X, and Z, and determine the associated
rotation matrix RYXZ (α, β, γ). Check if the determinant of this matrix has the correct value.

• Provide the analytical solution(s) to the inverse representation problem of an orientation speci-
fied by a rotation matrix R = {Rij}, using the above angles {α, β, γ}. Discuss singular cases.

• Find the mapping between the time derivative φ̇ =
(
α̇ β̇ γ̇

)T
of the above minimal represen-

tation and the angular velocity ω of the rigid body. Discuss the invertibility of this mapping.

• When the desired orientation Rd and the desired angular velocity ωd are

Rd =

 0 1 0

0 0 −1

−1 0 0

 , ωd =

 1

1

−1

 [rad/s],

determine all associated solutions φd = {αd, βd, γd} and φ̇d =
(
α̇d β̇d γ̇d

)T
, respectively to

the inverse and the inverse differential problem. Check the correctness of the obtained results.

Exercise 2
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Figure 1: A planar RP robot and the generic setup of a desired motion task.

Consider the planar RP robot in Fig. 1. Define a computational scheme that generates joint-space
commands at the acceleration level realizing a cyclic trajectory such that:

• the robot end effector starts at rest from point P1 at t = 0, and returns there at t = T with zero
velocity;

• the path traced by the end effector is a circle of suitable radius, passing through the point P2

and having there its tangent orthogonal to the segment P1P2;

• the timing law along the Cartesian path is a polynomial of the least possible degree.

Determine, first symbolically and then numerically:

• the Cartesian velocity v ∈ R2 and acceleration a ∈ R2 when passing through the point P2;

• the associated joint velocity q̇ ∈ R2 and joint acceleration q̈ ∈ R2 of the RP robot;

• the numerical values of the above four quantities when using the data

P1 =

(
1.5

1

)
[m], P2 =

(
0.5

1.5

)
[m], T = 3.2 [s].

How can the scheme be made robust w.r.t. disturbances and/or initial trajectory errors?

[180 minutes, open books but no computer or smartphone]
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Solution
July 11, 2018

Exercise 1

The elementary rotation matrices around the three coordinate axes are

RY (α) =

 cosα 0 sinα

0 1 0

− sinα 0 cosα

, RX(β) =

 1 0 0

0 cosβ − sinβ

0 sinβ cosβ

, RZ(γ) =

 cos γ − sin γ 0

sin γ cos γ 0

0 0 1

.
Being the sequence YXZ of rotations defined around fixed axes (i.e., of the Roll-Pitch-Yaw type),
the rotation matrix representing the final orientation of the rigid body is obtained by multiplying
the elementary matrices in the following order:

RYXZ (α, β, γ) =RZ(γ)RX(β)RY (α)

=

 cosα cos γ − sinα sinβ sin γ − cosβ sin γ sinα cos γ + cosα sinβ sin γ

cosα sin γ + sinα sinβ cos γ cosβ cos γ sinα sin γ − cosα sinβ cos γ

− sinα cosβ sinβ cosα cosβ

. (1)

It is tedious but straightforward to check that detRYXZ = +1.

Given a rotation matrix R = {Rij} that uniquely specifies the orientation of a rigid body, the
inverse representation problem is solved as follows. The angle β is given by the analytic formula

β = ATAN2

{
R32,±

√
R2

31 +R2
33

}
. (2)

Provided that R2
31 + R2

33 = cos2 β 6= 0, this formula provides two different solution values β1 and
β2, depending on the choice of the sign in the second argument. For each of these, the following
formulas provide an associated solution pair (αi, γi), for i = 1, 2:

α = ATAN2

{
− R31

cosβ
,
R33

cosβ

}
, γ = ATAN2

{
− R12

cosβ
,
R22

cosβ

}
. (3)

Therefore, in the generic case, two different solution triples are found, φ1 = {α1, β1, γ1} and
φ2 = {α2, β2, γ2}.
In the singular case, i.e., when R31 = R33 = 0 and thus cosβ = 0, the problem reduces to cosα cos γ − sinα sinβ sin γ 0 sinα cos γ + cosα sinβ sin γ

cosα sin γ + sinα sinβ cos γ 0 sinα sin γ − cosα sinβ cos γ

0 sinβ 0

 =

 R11 0 R13

R21 0 R23

0 ±1 0

 . (4)

When R32 = sinβ = 1, then β = π/2, and the set of equations in (4) allows only to specify the
sum of the two other angles as

α+ γ = ATAN2 {R13, R11} .

Similarly, when R32 = sinβ = −1, then β = −π/2, and the set of equations in (4) allows only to
specify the difference of the two other angles as

α− γ = ATAN2 {R13, R11} .
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The mapping between the time derivative φ̇ =
(
α̇ β̇ γ̇

)T
of the above minimal representation

and the angular velocity ω can be obtained in different ways. The easiest is probably to reinterpret
eq. (1) as a ZXY Euler sequence (with reverse order of angles {γ, β, α}) and to compute the three
contributions to ω due to the variation of each angle around its current rotation axis. We have

ω = ωγ̇(Z) + ωβ̇(X ′) + ωα̇(Y ′′)

=

 0

0

1

 γ̇ +RZ(γ)

 1

0

0

 β̇ +RZ(γ)RX(β)

 0

1

0

 α̇

=

 0

0

1

 γ̇ +

 cos γ

sin γ

0

 β̇ +

 − cosβ sin γ

cosβ cos γ

sinβ

 α̇

=

 − cosβ sin γ cos γ 0

cosβ cos γ sin γ 0

sinβ 0 1


 α̇

β̇

γ̇

 = T (β, γ)φ̇.

When detT = − cosβ = 0, we have a singularity of the transformation. Therefore, when β = ±π/2,
the dimension of the range of T drops to two, and there exists a one-dimensional subspace of angular

velocities ω that cannot be represented by any choice of φ̇. These are all ω =
(
ωx ωy ωz

)T ∈ R3

which are orthogonal to the second column of T , i.e., such that

ωx cos γ + ωy sin γ = 0.

With the data

Rd =

 0 1 0

0 0 −1

−1 0 0

 , ωd =

 1

1

−1

 [rad/s],

we see that this is not a singular situation (Rd,31 6= 0). Therefore, from eqs. (2–3), we find two
solutions to the inverse representation problem:

φd1 =
{
αd1, βd1, γd1

}
=
{ π

2
, 0,

π

2

}
, φd2 =

{
αd2, βd2, γd2

}
=
{
−π

2
, π,

π

2

}
.

Accordingly, we obtain two different transformation matrices

T d1(βd1, γd1) =

 −1 0 0

0 1 0

0 0 1

 , T d2(βd2, γd2) =

 1 0 0

0 1 0

0 0 1

 = I,

and therefore two different solutions to the inverse differential problem, namely

φ̇d1 =

 α̇d1

β̇d1

γ̇d1

 = T−1d1 (βd1, γd1)ωd =

 −1

1

−1

 [rad/s],

φ̇d2 =

 α̇d2

β̇d2

γ̇d2

 = T−1d2 (βd2, γd2)ωd =

 1

1

−1

 [rad/s].

Indeed, we can immediately check that T d1(βd1, γd1) φ̇d1 = T d2(βd2, γd2) φ̇d2 = ωd.
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Exercise 2

A generic circle with center at P0 = (x0, y0) and radius R is defined by the quadratic equation

(x− x0)2 + (y − y0)2 = R2. (5)

The unknown quantities in (5) can be determined by imposing the passage through the two points
P1 = (x1, y1) and P2 = (x2, y2), i.e.,

(x1 − x0)2 + (y1 − y0)2 = R2, (x2 − x0)2 + (y2 − y0)2 = R2,

whose solution for (x0, y0, R) generates two families of circles with increasing radius, placed sym-
metrically with respect to the line passing through P1 and P2. The additional condition of having
a desired value for the path tangent at some point along the path will specify completely one circle
in each family. The situation is particularly simple when requiring that the path tangent in P2

should be orthogonal to the segment P1P2. In fact, this implies directly that the center P0 lies
on this segment and, therefore, it coincides with its midpoint. A single circle is obtained in this
special case, with

P0 =
P1 + P2

2
=


x1 + x2

2
y1 + y2

2

 =

(
x0

y0

)
, R =

‖P2 − P1‖
2

=

√
(x2 − x1)2 + (y2 − y1)2

2
. (6)

A parametric representation of the circular path (5) is given by

p(s) =

(
x0

y0

)
+R

(
cos(s+ φ)

sin(s+ φ)

)
, s ∈ [0, 2π], (7)

where the circular path is traced counterclockwise for increasing s and the angle φ characterizes
the starting point chosen on the circle. Being P1 the starting point (i.e., for s = 0), we have

(
x0

y0

)
+R

(
cosφ

sinφ

)
=

(
x1

y1

)
⇒ R

(
cosφ

sinφ

)
=


x1 − x2

2
y1 − y2

2

 (8)

and thus
φ = ATAN2{y1 − y2, x1 − x2}. (9)

The timing law s(t) is given by a cubic polynomial, which has in fact the least possible degree that
guarantees satisfaction of the four boundary conditions

s(0) = 0, s(T ) = 2π, ṡ(0) = 0, ṡ(T ) = 0.

Therefore,

s(t) = 2π

(
3

(
t

T

)2

− 2

(
t

T

)3
)
. (10)

For t = T/2, it is s(T/2) = π and thus p(π) = P2, as it can be easily checked from (6–8).

Differentiating twice (7) and (10), respectively in space and time, we obtain

p′(s) =
dp(s)

ds
= R

(
− sin(s+ φ)

cos(s+ φ)

)
, p′′(s) =

d2p(s)

ds2
= −R

(
cos(s+ φ)

sin(s+ φ)

)
,
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and

ṡ(t) =
ds(t)

dt
=

12π

T

(
t

T
−
(
t

T

)2
)
, s̈(t) =

d2s(t)

dt2
=

12π

T 2

(
1− 2

t

T

)
.

Therefore,

ṗ(t) = p′(s)ṡ(t) =
12Rπ

T

(
t

T
−
(
t

T

)2
)(

− sin(s+ φ)

cos(s+ φ)

)
, (11)

and thus, using also (8),

v = ṗ
(
T
2

)
= p′(π)ṡ

(
T
2

)
=

3Rπ

T

(
sinφ

− cosφ

)
=

3π

2T

(
y1 − y2
x2 − x1

)
. (12)

Similarly,

p̈(t) = p′(s)s̈(t) + p′′(s)ṡ2(t) =
12Rπ

T 2

(
1− 2

t

T

)(
− sin(s+ φ)

cos(s+ φ)

)

−144Rπ2

T 2

(
t

T
−
(
t

T

)2
)2(

cos(s+ φ)

sin(s+ φ)

)
,

(13)

and thus, being s̈(T/2) = 0 and using (8),

a = p̈
(
T
2

)
= p′′(π)ṡ2

(
T
2

)
=

9Rπ2

T 2

(
cosφ

sinφ

)
=

9π2

2T 2

(
x1 − x2
y1 − y2

)
. (14)

Having fully specified the Cartesian trajectory, and obtained in particular the requested quantities
v and a consider now the execution of this trajectory by the RP robot. At t = 0, the robot end
effector should be placed in P1. Solving this inverse kinematics problem, we have

q(0) =

(
q1(0)

q2(0)

)
=

(
ATAN2{y1, x1}√

x21 + y21

)
, (15)

where for simplicity we considered only the robot configuration ‘facing’ point P1 (i.e., with q2 > 0).
The robot should start at rest, and so q̇(0) = 0. From this initial robot state, which is matched with
the Cartesian trajectory at the initial time t = 0, we generate the desired cyclic trajectory using
the acceleration command obtained by solving the second-order inverse differential kinematics, or

q̈(t) = J−1(q(t))
(
p̈(t)− J̇(q(t)) q̇(t)

)
, t ∈ [0, T ], (16)

where p̈(t) is given by eq. (13) and we assumed that kinematic singularities are not encountered.
The analytic Jacobian J and its time derivative J̇ needed within (16) are found by differentiating
the direct kinematics of the RP robot

p = f(q) =

(
q2 cos q1

q2 sin q1

)
,

yielding

ṗ = J(q)q̇, with J(q) =

(
−q2 sin q1 cos q1

q2 cos q1 sin q1

)
,
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and

p̈ = J(q)q̈ + J̇(q)q̇, with J̇(q) =

(
−q̇2 sin q1 − q̇1q2 cos q1 −q̇1 sin q1

q̇2 cos q1 − q̇1q2 sin q1 q̇1 cos q1

)
.

When passing through the point P2, the robot configuration is

q
(
T
2

)
=

(
q1
(
T
2

)
q2
(
T
2

) ) =

(
ATAN2{y2, x2}√

x22 + y22

)
. (17)

Thus, the joint velocity at t = T/2 (when the robot end effector is in P2) will be

q̇
(
T
2

)
= J−1(q

(
T
2

)
) ṗ
(
T
2

)
= J−1(q

(
T
2

)
)v

= − 3π

2T

1

q2
(
T
2

) ( sin q1
(
T
2

)
− cos q1

(
T
2

)
−q2

(
T
2

)
cos q1

(
T
2

)
−q2

(
T
2

)
sin q1

(
T
2

) )( y1 − y2
x2 − x1

)
,

(18)

where the values of q1(T/2) and q2(T/2) are given by eq. (17), and we used v as defined in (12).

Similarly, the requested joint acceleration at t = T/2 is

q̈
(
T
2

)
= J−1(q

(
T
2

)
)
(
p̈
(
T
2

)
− J̇(q

(
T
2

)
) q̇
(
T
2

))
= J−1(q

(
T
2

)
)
(
a− J̇(q

(
T
2

)
) q̇
(
T
2

))
= − 1

q2
(
T
2

) ( sin q1
(
T
2

)
− cos q1

(
T
2

)
−q2

(
T
2

)
cos q1

(
T
2

)
−q2

(
T
2

)
sin q1

(
T
2

))[ 9π2

2T 2

(
x1 − x2
y1 − y2

)

−

(
−q̇2

(
T
2

)
sin q1

(
T
2

)
− q̇1

(
T
2

)
q2
(
T
2

)
cos q1

(
T
2

)
−q̇1

(
T
2

)
sin q1

(
T
2

)
q̇2
(
T
2

)
cos q1

(
T
2

)
− q̇1

(
T
2

)
q2
(
T
2

)
sin q1

(
T
2

)
q̇1
(
T
2

)
cos q1

(
T
2

) ) q̇(T2 )
] (19)

where the values of q1(T/2) and q2(T/2) are given by eq. (17), q̇(T/2) comes from eq. (18), and
we used a as defined in (14).

Substituting the numerical values

P1 =

(
1.5

1

)
[m], P2 =

(
0.5

1.5

)
[m], T = 3.2 [s],

we obtain from (6) and (9)

P0 =

(
x0

y0

)
=

(
1

1.25

)
[m], R =

√
1.25

2
= 0.5590 [m], φ = −26.565◦ = −0.4636 [rad],

and thus from (7)

p(s) =

(
1

1.25

)
+ 0.5590

(
cos(s− 0.4636)

sin(s− 0.4636)

)
, s ∈ [0, 2π].

We evaluate then (12) and (14), obtaining

v =

(
−0.7363

−1.4726

)
[m/s], a =

(
4.3372

−2.1686

)
[m/s2].

6



The robot configurations at the initial time t = 0 and at the halftime t = T/2 = 1.6 s are computed
from eqs. (15) and (17),

q(0) =

(
0.5880

1.8028

)
[rad]

[m]
, q(1.6) =

(
1.2490

1.5811

)
[rad]

[m]
,

while (18) and (19) yield

q̇ (1.6) =

(
0.1473

−1.6299

)
[rad/s]

[m/s]
, q̈ (1.6) =

(
−2.7325

−0.6515

)
[rad/s2]

[m/s2]
.

The planned Cartesian task is sketched in Fig. 2, while the evolution of the joint positions and
velocities associated to the computational scheme (16) are shown in Figs. 3 and 4.

P1
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y P2

P0v
a

R

q2

q1

Figure 2: The planned Cartesian motion with the RP robot in the correct initial position at t = 0.
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Figure 3: Joint positions of the RP robot while executing the task in Fig. 2.
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Figure 4: Joint velocities of the RP robot while executing the task in Fig. 2.

Finally, if there is an initial mismatch of the robot state with respect to the desired Cartesian
trajectory pd(t) at t = 0, or if an external disturbance will bring the robot end effector out of its
nominal trajectory, a feedback modification of the scheme (16) is needed. In order to recover the
tracking errors, the following control law should be used

q̈ = J−1(q)
(
p̈d +KD(ṗd − J(q)q̇) +KP (pd − f(q))− J̇(q) q̇

)
, (20)

with (diagonal) gain matrices KP > 0 and KD > 0, and where the desired motion in position,
velocity, and acceleration is specified by (7), (11), and (13), respectively. The control law (20)
robustifies the robot behavior also with respect to numerical approximations due to a discrete-
time implementation of the scheme.

∗ ∗ ∗ ∗ ∗
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