## **Robotics I**

### March 27, 2018

#### Exercise 1

Consider the 5-dof spatial robot in Fig. 1, having the third and fifth joints of the prismatic type while the others are revolute.

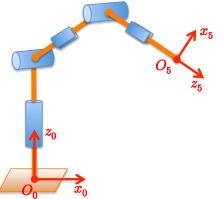


Figure 1: A 5-dof robot, with a RRPRP joint sequence, moving in 3D space.

- Assign the link frames according to the Denavit-Hartenberg (DH) convention and complete the associated table of parameters so that all constant parameters are *non-negative*. Draw the frames and fill in the table directly on the extra sheet #1 provided separately. The two DH frames 0 and 5 are already assigned and should not be modified. [Please, make clean drawings and return the completed sheet with your name written on it.]
- Sketch the robot in the configuration  $q_a = \begin{pmatrix} 0 & \frac{\pi}{2} & 1 & \frac{\pi}{2} & 1 \end{pmatrix}^T$  [rad, rad, m, rad, m].
- For which value  $q_b \in \mathbb{R}^5$  does the robot assume a stretched upward configuration?
- Determine the symbolic expression of the  $6 \times 5$  geometric Jacobian J(q) for this robot.
- In the configuration  $q_a$ , find as many independent *wrench* vectors  $w \in \mathbb{R}^6$  (of forces and moments) as possible, with

$$oldsymbol{w} = egin{pmatrix} oldsymbol{f} \ oldsymbol{m} \ oldsymbol{m} \end{pmatrix} 
eq oldsymbol{0}, \qquad oldsymbol{f} \in \mathbb{R}^3, \qquad oldsymbol{m} \in \mathbb{R}^3,$$

such that when any of these wrenches is applied to the end-effector, the robot remains in static equilibrium without the need of balancing generalized forces at the joints ( $\tau = 0$ , with some components being forces and some torques).

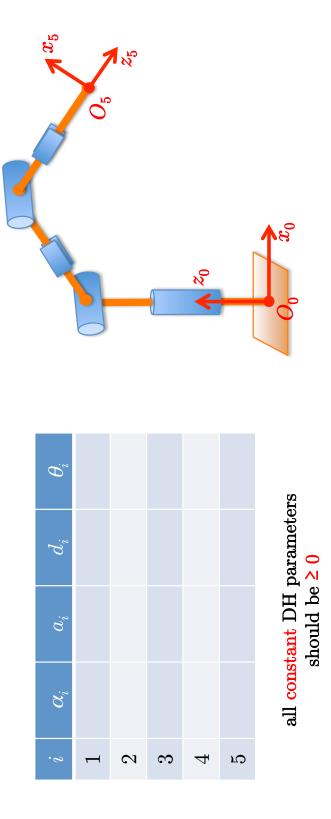
#### Exercise 2

A number of statements are reported on the extra sheet #2, regarding singularity issues in the direct kinematics of serial manipulators. Check if each statement is **True** or **False**, providing also a *very short* motivation/explanation for your answer. [Return the completed sheet with your name on it.]

## [180 minutes, open books but no computer or smartphone]







Robotics I – Sheet for Exercise 1, March 27, 2018

# Robotics I - Sheet for Exercise 2 March 27, 2018

| Na  | me:                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| ma  | nsider only serial manipulators having $\boldsymbol{q} \in \mathbb{R}^6$ , with direct kinematics expressed by homogenous transfor-<br>tion matrices ${}^{0}\boldsymbol{T}_{6}(\boldsymbol{q})$ , and their $6 \times 6$ geometric Jacobians $\boldsymbol{J}(\boldsymbol{q})$ . Check if each of the following statements<br>but singularities is <b>True</b> or <b>False</b> , and provide a <i>very short</i> motivating/explanation sentence. |  |  |  |  |
| 1.  | a singular configuration, there may be an infinite number of inverse kinematics solutions.  rue  False                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 2.  | In a singularity, the manipulator can access instantaneously any nearby joint configuration. True False                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 3.  | Close to a singularity of <i>J</i> , some Cartesian directions of motion are not accessible.          True       False                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 4.  | In a singularity, the end-effector angular velocities $\boldsymbol{\omega}$ are linearly dependent on the linear velocities $\boldsymbol{v}$ .<br><b>True False</b>                                                                                                                                                                                                                                                                              |  |  |  |  |
| 5.  | In a singular configuration, $\mathcal{R}{J^T} \oplus \mathcal{N}{J} \neq \mathbb{R}^6$ .<br><b>True False</b>                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 6.  | The linear part $J_L(q)$ and the angular part $J_A(q)$ of the Jacobian cannot lose rank simultaneously.<br><b>True False</b>                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 7.  | The lower is the rank of $J$ , the larger is the loss of mobility of the end-effector.<br><b>True False</b>                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 8.  | All singularities of a manipulator can be found by inspecting the null space $\mathcal{N}\{J(q)\}$ .<br><b>True False</b>                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 9.  | There cannot be singularities of $J(q)$ outside the joint range of the manipulator.<br><b>True False</b>                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 10. | Cyclic motions in the Cartesian space always correspond to cyclic motions in the joint space.  True False                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |

## Solution

March 27, 2018

### Exercise 1

A possible DH frame assignment and the associated table of parameters are reported in Fig. 2 and Tab. 1, respectively. All constant parameters are non-negative, as requested.

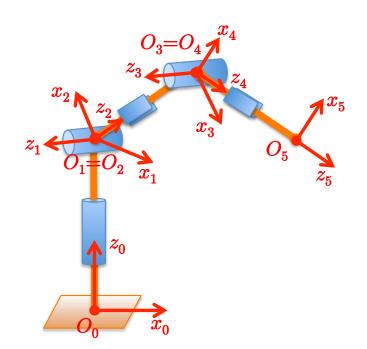


Figure 2: A DH frame assignment for the spatial RRPRP robot.

| i | $\alpha_i$ | $a_i$ | $d_i$     | $	heta_i$ |
|---|------------|-------|-----------|-----------|
| 1 | $\pi/2$    | 0     | $d_1 > 0$ | $q_1$     |
| 2 | $\pi/2$    | 0     | 0         | $q_2$     |
| 3 | $\pi/2$    | 0     | $q_3$     | π         |
| 4 | $\pi/2$    | 0     | 0         | $q_4$     |
| 5 | 0          | 0     | $q_5$     | 0         |

Table 1: Parameters associated to the DH frames in Fig. 2.

For later use, based on Tab. 1, the five DH homogeneous transformation matrices are:

$${}^{0}\boldsymbol{A}_{1}(q_{1}) = \begin{pmatrix} \cos q_{1} & 0 & \sin q_{1} & 0 \\ \sin q_{1} & 0 & -\cos q_{1} & 0 \\ 0 & 1 & 0 & d_{1} \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} {}^{0}\boldsymbol{R}_{1}(q_{1}) & {}^{0}\boldsymbol{p}_{1} \\ \boldsymbol{0}^{T} & 1 \end{pmatrix},$$

$${}^{1}\boldsymbol{A}_{2}(q_{2}) = \begin{pmatrix} \cos q_{2} & 0 & \sin q_{2} & 0 \\ \sin q_{2} & 0 & -\cos q_{2} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} {}^{1}\boldsymbol{R}_{2}(q_{2}) & {}^{1}\boldsymbol{p}_{2} \\ \boldsymbol{0}^{T} & 1 \end{pmatrix}, \quad (1)$$

$${}^{2}\boldsymbol{A}_{3}(q_{3}) = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & q_{3} \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} {}^{2}\boldsymbol{R}_{3} & {}^{2}\boldsymbol{p}_{3}(q_{3}) \\ \boldsymbol{0}^{T} & 1 \end{pmatrix},$$

$${}^{3}\boldsymbol{A}_{4}(q_{4}) = \begin{pmatrix} \cos q_{4} & 0 & \sin q_{4} & 0 \\ \sin q_{4} & 0 & -\cos q_{4} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} {}^{3}\boldsymbol{R}_{4}(q_{4}) & {}^{3}\boldsymbol{p}_{4} \\ \boldsymbol{0}^{T} & 1 \end{pmatrix}, \quad (2)$$

$${}^{4}\boldsymbol{A}_{5}(q_{5}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & q_{5} \\ 0 & 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} {}^{4}\boldsymbol{R}_{5} & {}^{4}\boldsymbol{p}_{5}(q_{5}) \\ \boldsymbol{0}^{T} & 1 \end{pmatrix}.$$

A sketch of the robot in the configuration  $q_a = (0, \pi/2, 1, \pi/2, 1)$  is given on the left of Fig. 3, while on the right a stretched upward configuration is shown, corresponding to  $q_b = (0, \pi, 1, \pi, 1)$ . In order to compute the linear part  $J_L(q)$  of the geometric Jacobian J(q) for this robot, it is convenient to compute first the end-effector position p and then to proceed by symbolic differentiation. For efficiency, we compute this vector (in homogeneous coordinates) using the recursive formula:

$$\begin{aligned} \boldsymbol{p}_{h}(\boldsymbol{q}) &= \begin{pmatrix} \boldsymbol{p}(\boldsymbol{q}) \\ 1 \end{pmatrix} =^{0} \boldsymbol{A}_{1}(q_{1}) \begin{pmatrix} {}^{1}\boldsymbol{A}_{1}(q_{2}) \begin{pmatrix} {}^{2}\boldsymbol{A}_{3}(q_{3}) \begin{pmatrix} {}^{3}\boldsymbol{A}_{4}(q_{4}) \begin{pmatrix} {}^{4}\boldsymbol{A}_{5}(q_{5}) \begin{pmatrix} \boldsymbol{0} \\ 1 \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \\ &= \begin{pmatrix} \cos q_{1} \left( q_{3} \sin q_{2} - q_{5} \sin(q_{2} + q_{4}) \right) \\ \sin q_{1} \left( q_{3} \sin q_{2} - q_{5} \sin(q_{2} + q_{4}) \right) \\ d_{1} - q_{3} \cos q_{2} + q_{5} \cos(q_{2} + q_{4}) \\ 1 \end{pmatrix} \end{aligned}$$

Therefore, resorting to the usual compact notation, we obtain

$$\boldsymbol{J}_{L}(\boldsymbol{q}) = \frac{\partial \boldsymbol{p}(\boldsymbol{q})}{\partial \boldsymbol{q}} = \begin{pmatrix} s_{1}\left(q_{5}s_{24} - q_{3}s_{2}\right) & c_{1}\left(q_{3}c_{2} - q_{5}c_{24}\right) & c_{1}s_{2} & -q_{5}c_{1}c_{24} & -c_{1}s_{24} \\ -c_{1}\left(q_{5}s_{24} - q_{3}s_{2}\right) & s_{1}\left(q_{3}c_{2} - q_{5}c_{24}\right) & s_{1}s_{2} & -q_{5}s_{1}c_{24} & -s_{1}s_{24} \\ 0 & q_{3}s_{2} - q_{5}s_{24} & -c_{2} & -q_{5}s_{24} & c_{24} \end{pmatrix}.$$

For the angular part  $J_A(q)$  of the geometric Jacobian, taking into account that the third and fifth

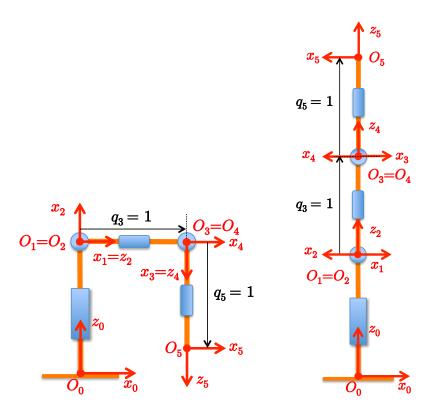


Figure 3: A side view of the RRPRP robot in the configuration  $\boldsymbol{q}_a = (0, \pi/2, 1, \pi/2, 1)$  and in a stretched upward configuration with  $\boldsymbol{q}_b = (0, \pi, 1, \pi, 1)$ .

joints are prismatic, we have

$$\begin{aligned} \boldsymbol{J}_A(\boldsymbol{q}) &= \begin{pmatrix} {}^0\boldsymbol{z}_0 & {}^0\boldsymbol{z}_1 & \boldsymbol{0} & {}^0\boldsymbol{z}_3 & \boldsymbol{0} \end{pmatrix} \\ &= \begin{pmatrix} \boldsymbol{z}_0 & {}^0\boldsymbol{R}_1(q_1){}^1\boldsymbol{z}_1 & \boldsymbol{0} & {}^0\boldsymbol{R}_1(q_1){}^1\boldsymbol{R}_2(q_2){}^2\boldsymbol{R}_3(q_3){}^3\boldsymbol{z}_3 & \boldsymbol{0} \end{pmatrix} = \begin{pmatrix} 0 & s_1 & 0 & s_1 & 0 \\ 0 & -c_1 & 0 & -c_1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}, \end{aligned}$$

being  ${}^{i}\boldsymbol{z}_{i} = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}^{T} = \boldsymbol{z}_{0}$  for any *i*. The complete Jacobian is then

$$oldsymbol{J}(oldsymbol{q}) = egin{pmatrix} oldsymbol{J}_L(oldsymbol{q})\ oldsymbol{J}_A(oldsymbol{q}) \end{pmatrix}.$$

In the assigned configuration  $q_a = \begin{pmatrix} 0 & \frac{\pi}{2} & 1 & \frac{\pi}{2} & 1 \end{pmatrix}^T$  the transpose of this Jacobian matrix takes the value

$$\boldsymbol{J}^{T}(\boldsymbol{q}_{a}) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \end{pmatrix} \qquad \Rightarrow \qquad \operatorname{rank} \boldsymbol{J}^{T}(\boldsymbol{q}_{a}) = 4$$

It is easy to see that the null space of  $J^{T}(q_{a})$  is spanned, e.g., by the two wrenches

$$m{w}_1 = egin{pmatrix} 0 \ 0 \ 0 \ 1 \ 0 \ 0 \end{pmatrix}, \quad m{w}_2 = egin{pmatrix} 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ -1 \end{pmatrix}$$

The wrench  $w_1$  corresponds to a pure moment with  $m_x \neq 0$ , while  $w_2$  is associated to a force  $f_y \neq 0$ , combined with a moment  $m_z \neq 0$ . The generalized forces in the joint space needed for balancing any wrench generated by  $w_1$  and  $w_2$  are indeed

$$\boldsymbol{\tau} = \boldsymbol{J}^{T}(\boldsymbol{q}_{a}) \left( \alpha_{1} \boldsymbol{w}_{1} + \alpha_{2} \boldsymbol{w}_{2} \right) = \boldsymbol{0}, \qquad \forall \alpha_{1}, \alpha_{2}$$

#### Exercise 2

- In a singular configuration, there may be an infinite number of inverse kinematics solutions.
   True. The number of solutions changes from the generic case, decreasing or going to infinity.
- In a singularity, the manipulator can access instantaneously any nearby joint configuration.
   True. There is no mobility loss in the joint space commanding motion without inversion of J.
- Close to a singularity of J, some Cartesian directions of motion are not accessible.
   False. This is true in a singular configuration, not close to it (though motion effort may increase).
- 4. In a singularity, the end-effector angular velocities  $\omega$  are linearly dependent on the linear velocities v. **False.** Not necessarily. It depends on the geometric relation between subspaces  $\mathcal{R}\{J_L\}$  and  $\mathcal{R}\{J_A\}$ .
- 5. In a singular configuration,  $\mathcal{R}{J^T} \oplus \mathcal{N}{J} \neq \mathbb{R}^6$ . False. The direct sum of these two subspaces covers always the entire joint space.
- 6. The linear part  $J_L(q)$  and the angular part  $J_A(q)$  of the Jacobian cannot lose rank simultaneously. False. Both ranks of  $J_L$  and  $J_A$  can be < 3 (when both are full rank, it may still be rank J < 6).
- The lower is the rank of J, the larger is the loss of mobility of the end-effector.
   True. For instance, two 6-dim independent Cartesian directions are inaccessible when rank J = 4.
- 8. All singularities of a manipulator can be found by inspecting the null space  $\mathcal{N}\{J(q)\}$ . **True.** J is singular iff its null space is  $\neq 0$  —the condition can be used in the search of singularities.
- 9. There cannot be singularities of J(q) outside the joint range of the manipulator. False. Singularities are found without considering the joint range. Those outside are then discarded.
- Cyclic motions in the Cartesian space always correspond to cyclic motions in the joint space.
   False. Crossing a singular configuration on a feasible Cartesian cycle can destroy joint-space cyclicity.

\* \* \* \* \*