Robotics I

September 21, 2017

Exercise 1

Consider the rigid body in Fig. 1, a thin rod of length L. The rod will be rotated by an angle α around the \boldsymbol{z} axis, then by an angle β around the resulting \boldsymbol{x} axis, and finally by an angle γ around the resulting \boldsymbol{y} axis.

Figure 1: Initial placement of a rigid thin rod of length L in an absolute reference frame.

- Provide the final orientation of the rod, as expressed by a rotation matrix, and the symbolic expression of its angular velocity $\boldsymbol{\omega} \in \mathbb{R}^{3}$ in terms of the angles (α, β, γ) and their time derivatives $(\dot{\alpha}, \dot{\beta}, \dot{\gamma})$.
- Assuming the numerical values $L=0.4[\mathrm{~m}]$ for the rod, $\alpha=30^{\circ}, \beta=-30^{\circ}$, and $\gamma=60^{\circ}$ for the angles, and $\dot{\alpha}=\dot{\beta}=\dot{\gamma}=45^{\circ} / \mathrm{s}$ for their time derivatives, determine:
- the components of the final unit vector \boldsymbol{y} attached to the rod after the three rotations;
- the absolute coordinates of the position \boldsymbol{p} of the end-point of the rod after the three rotations;
- the angular velocity $\boldsymbol{\omega}$ of the rod, expressed both in the initial (absolute) reference frame and in the final rotated frame;
- the absolute velocity $\dot{\boldsymbol{p}}$ of the end-point of the rod.

Exercise 2

Using standard DH angles, a planar 2 R robot with links of lengths $\ell_{1}=\ell_{2}=0.5[\mathrm{~m}]$ is in the initial static configuration $\boldsymbol{q}_{0}=\left(45^{\circ},-90^{\circ}\right)$. Plan a rest-to-rest cubic polynomial trajectory in the joint space so as to reach the final end-effector position $\boldsymbol{p}_{\text {goal }}=(0.5,0.866)[\mathrm{m}]$ in minimum time under the following joint velocity limits: $\left|\dot{q}_{1}\right| \leq 30^{\circ} / \mathrm{s},\left|\dot{q}_{2}\right| \leq 90^{\circ} / \mathrm{s}$.

- Provide the minimum time T^{*} and the numerical values of the coefficients of the optimal cubic polynomials.
- If the robot performs the above minimum-time task with a coordinated motion in the joint space, what is the maximum velocity reached by each joint during motion?

Exercise 3

Consider the transmission/reduction assembly of a robot joint driving a single robot link, as sketched in Fig. 2. The actuator is an electrical motor with maximum rotation speed $\dot{\theta}_{m}$ of its output shaft equal to 2000 RPM. The transmission assembly consists of an Harmonic Drive (HD), with its wave generator mounted on the motor shaft $\left(A \leftrightarrow A^{\prime}\right)$ and whose circular spline has $n_{C S}=64$ teeth, followed by a two-wheel toothed gear, with a smaller wheel of radius $r_{1}=0.9[\mathrm{~cm}]$ mounted on the HD output axis $\left(B \leftrightarrow B^{\prime}\right)$ and a larger wheel of radius $r_{2}=1.7[\mathrm{~cm}]$. The link rotates with the larger wheel at an angular speed $\dot{\theta}_{\ell}$ and has a length $L=0.68$ [m].

Figure 2: Transmission/reduction assembly of a robot joint.

- What is the reduction ratio $N=\left|\dot{\theta}_{m} / \dot{\theta}_{\ell}\right|$ of the complete transmission?
- Does the link rotate in the same or in the opposite direction of the motor shaft?
- What is the maximum velocity achievable by the end-point of the link?
[180 minutes, open books but no computer or smartphone]

Solution

September 21, 2017

Exercise 1

The sequence of rotations about the first (fixed) axis Z and the following (moving) axes X^{\prime} and $Y^{\prime \prime}$ provides a $Z X Y$ Euler representation of orientation. Therefore, the final orientation of the rod is given by

$$
\begin{aligned}
\boldsymbol{R}_{Z X Y}(\alpha, \beta, \gamma) & =\boldsymbol{R}_{Z}(\alpha) \boldsymbol{R}_{X^{\prime}}(\beta) \boldsymbol{R}_{Y^{\prime \prime}}(\gamma) \\
& =\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \beta & -\sin \beta \\
0 & \sin \beta & \cos \beta
\end{array}\right)\left(\begin{array}{ccc}
\cos \gamma & 0 & \sin \gamma \\
0 & 1 & 0 \\
-\sin \gamma & 0 & \cos \gamma
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\cos \alpha \cos \gamma-\sin \alpha \sin \beta \sin \gamma & -\sin \alpha \cos \beta & \cos \alpha \sin \gamma+\sin \alpha \sin \beta \cos \gamma \\
\sin \alpha \cos \gamma+\cos \alpha \sin \beta \sin \gamma & \cos \alpha \cos \beta & \sin \alpha \sin \gamma-\cos \alpha \sin \beta \cos \gamma \\
-\cos \beta \sin \gamma & \sin \beta & \cos \beta \sin \gamma
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\boldsymbol{x}^{\prime \prime \prime}(\alpha, \beta, \gamma) & \boldsymbol{y}^{\prime \prime \prime}(\alpha, \beta) & \boldsymbol{z}^{\prime \prime \prime}(\alpha, \beta, \gamma)
\end{array}\right)
\end{aligned}
$$

In particular, the position of the end-point of the rod after the three rotations is $\boldsymbol{p}=L \boldsymbol{z}^{\prime \prime \prime}$.
Using the numerical data, the final rotation matrix is

$$
\boldsymbol{R}_{Z X Y}\left(\frac{\pi}{6},-\frac{\pi}{6}, \frac{\pi}{3}\right)=\left(\begin{array}{ccc}
\frac{3 \sqrt{3}}{8} & -\frac{\sqrt{3}}{4} & \frac{5}{8} \\
-\frac{1}{8} & \frac{3}{4} & \frac{3 \sqrt{3}}{8} \\
-\frac{3}{4} & -\frac{1}{2} & \frac{\sqrt{3}}{4}
\end{array}\right)=\left(\begin{array}{rrr}
0.6495 & -0.4330 & 0.6250 \\
-0.1250 & 0.7500 & 0.6495 \\
-0.7500 & -0.5000 & 0.4330
\end{array}\right),
$$

while the unit vector $\boldsymbol{y}^{\prime \prime \prime}=\boldsymbol{y}^{\prime \prime}$ and the position vector \boldsymbol{p} of the end-point of the rod after the rotations are, respectively,

$$
\boldsymbol{y}^{\prime \prime}\left(\frac{\pi}{6},-\frac{\pi}{6}\right)=\left(\begin{array}{r}
-0.4330 \\
0.7500 \\
-0.5000
\end{array}\right), \quad \boldsymbol{p}=0.4 \boldsymbol{z}^{\prime \prime \prime}\left(\frac{\pi}{6},-\frac{\pi}{6}, \frac{\pi}{3}\right)=\left(\begin{array}{c}
\frac{1}{4} \\
\frac{3 \sqrt{3}}{20} \\
\frac{\sqrt{3}}{10}
\end{array}\right)=\left(\begin{array}{l}
0.2500 \\
0.2598 \\
0.1732
\end{array}\right)[\mathrm{m}] .
$$

The angular velocity $\boldsymbol{\omega}$ of the rod associated to the time derivatives $(\dot{\alpha}, \dot{\beta}, \dot{\gamma})$ in the configuration specified by the angles (α, β, γ) can be computed either from the relation

$$
\boldsymbol{S}(\boldsymbol{\omega})=\dot{\boldsymbol{R}}_{Z X Y}(\alpha, \beta, \gamma, \dot{\alpha}, \dot{\beta}, \dot{\gamma}) \boldsymbol{R}_{Z X Y}^{T}(\alpha, \beta, \gamma)=\left(\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right) \Rightarrow \boldsymbol{\omega}
$$

or, more explicitly, as

$$
\boldsymbol{\omega}=\boldsymbol{z} \dot{\alpha}+\boldsymbol{x}^{\prime} \dot{\beta}+\boldsymbol{y}^{\prime \prime} \dot{\gamma}=\left(\begin{array}{c}
0 \\
0 \\
1
\end{array}\right) \dot{\alpha}+\boldsymbol{R}_{Z}(\alpha)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \dot{\beta}+\boldsymbol{R}_{Z}(\alpha) \boldsymbol{R}_{X^{\prime}}(\beta)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \dot{\gamma}=\left(\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right) .
$$

Performing computations, we obtain

$$
\boldsymbol{\omega}=\left(\begin{array}{ccc}
0 & \cos \alpha & -\sin \alpha \cos \beta \\
0 & \sin \alpha & \cos \alpha \cos \beta \\
1 & 0 & \sin \beta
\end{array}\right)\left(\begin{array}{c}
\dot{\alpha} \\
\dot{\beta} \\
\dot{\gamma}
\end{array}\right)=\left(\begin{array}{c}
\cos \alpha \dot{\beta}-\sin \alpha \cos \beta \dot{\gamma} \\
\sin \alpha \dot{\beta}+\cos \alpha \cos \beta \dot{\gamma} \\
\dot{\alpha}+\sin \beta \dot{\gamma}
\end{array}\right) .
$$

This expression is referenced to the initial frame. In the rotated frame, one has

$$
{ }^{R} \boldsymbol{\omega}=\boldsymbol{R}_{Z X Y}^{T} \boldsymbol{\omega}=\left(\begin{array}{c}
-\cos \beta \sin \gamma \dot{\alpha}+\cos \gamma \dot{\beta} \\
\sin \beta \dot{\alpha}+\dot{\gamma} \\
\cos \beta \cos \gamma \dot{\alpha}+\sin \gamma \dot{\beta}
\end{array}\right)
$$

Finally, the linear velocity $\dot{\boldsymbol{p}}$ of the end-point of the rod is given by

$$
\left.\begin{array}{rl}
\dot{\boldsymbol{p}}=\boldsymbol{\omega} \times \boldsymbol{p}=\boldsymbol{S}(\boldsymbol{\omega}) \boldsymbol{p}=L & {[} \\
& \left(\begin{array}{c}
\cos \alpha \sin \beta \cos \gamma-\sin \alpha \sin \gamma \\
\sin \alpha \sin \beta \cos \gamma+\cos \alpha \sin \gamma \\
0
\end{array}\right) \dot{\alpha} \\
& +\left(\begin{array}{c}
\sin \alpha \cos \beta \cos \gamma \\
-\cos \alpha \cos \beta \cos \gamma \\
-\sin \beta \cos \gamma
\end{array}\right) \dot{\beta}+\left(\begin{array}{c}
-\sin \alpha \sin \beta \sin \gamma+\cos \alpha \cos \gamma \\
\cos \alpha \sin \beta \sin \gamma+\sin \alpha \cos \gamma \\
-\cos \beta \sin \gamma
\end{array}\right) \dot{\gamma}
\end{array}\right] .
$$

Using the numerical data, we obtain

$$
\boldsymbol{\omega}=\frac{\pi}{4}\left(\begin{array}{c}
\frac{\sqrt{3}}{4} \\
\frac{5}{4} \\
\frac{1}{2}
\end{array}\right)=\left(\begin{array}{c}
0.3401 \\
0.9817 \\
0.3927
\end{array}\right)[\mathrm{rad} / \mathrm{s}], \quad{ }^{R} \boldsymbol{\omega}=\frac{\pi}{4}\left(\begin{array}{c}
-\frac{1}{4} \\
\frac{1}{2} \\
\frac{3 \sqrt{3}}{4}
\end{array}\right)=\left(\begin{array}{c}
-0.1963 \\
0.3927 \\
1.0203
\end{array}\right)[\mathrm{rad} / \mathrm{s}]
$$

and

$$
\dot{\boldsymbol{p}}=\left(\begin{array}{r}
0.0680 \\
0.0393 \\
-0.1571
\end{array}\right)[\mathrm{m} / \mathrm{s}] .
$$

Exercise 2

We first solve the inverse kinematics for the final position $\boldsymbol{p}_{\text {goal }}=\left(p_{x, \text { goal }}, p_{y, \text { goal }}\right)=(0.5, \sqrt{3} / 2)$. Noting that $\left\|\boldsymbol{p}_{\text {goal }}\right\|=1=\ell_{1}+\ell_{2}$, this point is on the external boundary of the robot workspace. Thus, there is a single configuration with stretched arm as solution, given by

$$
\boldsymbol{q}_{\text {goal }}=\binom{q_{1, \text { goal }}}{q_{2, \text { goal }}}=\binom{\text { ATAN2 }\left\{p_{y, \text { goal }}, p_{x, \text { goal }}\right\}}{0}=\binom{\pi / 3}{0}[\mathrm{rad}]=\binom{60^{\circ}}{0^{\circ}} .
$$

As a result the joint displacement is

$$
\Delta \boldsymbol{q}=\boldsymbol{q}_{\text {goal }}-\boldsymbol{q}_{0}=\binom{15^{\circ}}{90^{\circ}}=\binom{\Delta q_{1}}{\Delta q_{2}}
$$

and the associated rest-to-rest cubic trajectories for the two joints, each in time $T_{i}>0, i=1,2$, will take the form

$$
\begin{equation*}
q_{i}(t)=q_{0, i}+\Delta q_{i}\left(3\left(\frac{t}{T_{i}}\right)^{2}-2\left(\frac{t}{T_{i}}\right)^{3}\right) \tag{1}
\end{equation*}
$$

with velocities and accelerations

$$
\dot{q}_{i}(t)=\frac{6 \Delta q_{i}}{T_{i}}\left(\left(\frac{t}{T_{i}}\right)-\left(\frac{t}{T_{i}}\right)^{2}\right), \quad \ddot{q}_{i}(t)=\frac{6 \Delta q_{i}}{T_{i}^{2}}\left(1-2\left(\frac{t}{T_{i}}\right)\right), \quad \text { for } i=1,2 .
$$

For each joint, the maximum velocity (in absolute value) will occur at the trajectory midpoint, where the acceleration is zero, i.e.,

$$
\ddot{q}_{i}\left(t_{i}^{*}\right)=0 \quad \Rightarrow \quad t_{i}^{*}=\frac{T_{i}}{2} \quad \Rightarrow \quad\left|\dot{q}_{i}\left(T_{i} / 2\right)\right|=\frac{3\left|\Delta q_{i}\right|}{2 T_{i}} .
$$

Since both displacements Δq_{i} are positive, we will discard from now on the absolute value. Imposing that the joint velocities both reach their admissible limits, respectively, $V_{1}=30^{\circ} / \mathrm{s}$ and $V_{2}=90^{\circ} / \mathrm{s}$, we have

$$
\left|\dot{q}_{i}\left(T_{i} / 2\right)\right|=V_{i} \quad \Rightarrow \quad T_{i}^{*}=\frac{1.5 \Delta q_{i}}{V_{i}}= \begin{cases}0.75, & \text { for } i=1 \\ 1.5, & \text { for } i=2\end{cases}
$$

Therefore, the minimum motion time will be

$$
T^{*}=\max \left\{T_{1}^{*}, T_{2}^{*}\right\}=T_{2}^{*}=1.5 \mathrm{~s}
$$

The associated numerical coefficients of the optimal cubic polynomials in (1) are

$$
\begin{array}{ll}
q_{1}(t)=45+80 t^{2}-71.1111 t^{3}, & t \in[0,0.75], \\
q_{2}(t)=-90+120 t^{2}-53.3333 t^{3}, & t \in[0,1.5] .
\end{array}
$$

In order to perform a coordinated motion in the joint space, the fastest joint, namely the first one, should uniformly slow down its motion so that the its final time equals T^{*}. Since $T^{*}=2 T_{1}^{*}$, the needed scaling is by a factor $k_{1}=2$ and, accordingly, the new maximum velocity of joint 1 , reached again at the midpoint of the coordinated trajectory, will be reduced to $V_{1} / k_{1}=15^{\circ} / \mathrm{s}$. Indeed, no changes occur in the velocity profile of the second joint.

Exercise 3

The considered harmonic drive has $n_{C S}=64$ teeth on the (internal side of the) circular spline and thus $n_{F S}=n_{C S}-2=62$ teeth on the external side of the flexspline. Its reduction ratio is thus

$$
N_{H D}=\frac{n_{F S}}{n_{C S}-n_{F S}}=\frac{n_{F S}}{2}=\frac{62}{2}=31 .
$$

Since the toothed gear has reduction ratio

$$
N_{T G}=\frac{r_{2}}{r_{1}}=\frac{1.7}{0.9}=1.8889
$$

the reduction ratio of the transmission is

$$
N=\left|\frac{\dot{\theta}_{m}}{\dot{\theta}_{\ell}}\right|=N_{H D} \cdot N_{T G}=58.5556 .
$$

There is a double inversion of rotations in the overall transmission. Thus, the link will rotate in the same direction (clockwise or counterclockwise) of the motor shaft, i.e., $\operatorname{sign}\left\{\dot{\theta}_{m}\right\}=\operatorname{sign}\left\{\dot{\theta}_{\ell}\right\}$. Finally, the maximum velocity v achievable by the end-point of the link is

$$
v=L \max \left\{\dot{\theta}_{\ell}\right\}=L \frac{\max \left\{\dot{\theta}_{m}\right\}}{N}=0.68[\mathrm{~m}] \frac{2000[\mathrm{RPM}] \cdot(2 \pi / 60)[\mathrm{rad} / \mathrm{s}]}{58.5556}=2.4322[\mathrm{~m} / \mathrm{s}]
$$

