
Robotics I

June 6, 2017

Exercise 1

Consider the planar PRPR manipulator in Fig. 1. The joint variables defined therein are those used
by the manufacturer and do not correspond necessarily to a Denavit-Hartenberg (DH) convention.
The blue arrow indicates in this case the positive increments of the joint variable.
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Figure 1: A planar PRPR manipulator with the joint variables qm = (qm1, qm2, qm3, qm4) defined
by the manufacturer.

• Determine the direct kinematics fm(qm) for the planar position p ∈ R2 of the end-effector
w.r.t. the given (x,y) reference frame, using the joint variables qm provided by the manu-
facturer.

• Assign a set of frames according to the DH convention, draw them on the manipulator, and
compile the associated table of DH parameters. Choose the origin of frame 0 coincident with
that of the manufacturer.

• Determine again the direct kinematics f(q) for the planar position p ∈ R2 of the end-effector
w.r.t. the DH frame 0, using now the joint variables q of your DH notation.

• Draw the manipulator in the two zero configurations: the one associated with qm = 0 and
the one with q = 0.

• Establish the transformation φ(·) needed to map one set of variables into the other, say
qm → q, so that for any given qm the transformed q = φ(qm) describes the same physical
configuration of the manipulator (in particular, fm(qm) = f(φ(qm)).

• Suppose that a joint velocity command q̇ has been determined using routines and control
software that operates with the DH variables q. What velocity command q̇m should be trans-
ferred to the low-level controller of the robot manufacturer in order to obtain the expected
motion behavior?
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Exercise 2

With reference to Fig. 2, a laser sensor placed at the base of a 3R robot is monitoring an angular
sector of the workspace, scanning it on a horizontal plane at a given height, with minimum and
maximum radial sensing distance ρmin and ρmax, respectively. When a human presence is detected
by the laser sensor and localized by vector rhuman, the robot end-effector should be controlled for

safety, so as to: either i) retract with a velocity v
[i]
e along the horizontal and centripetal direction of

the workspace, with a scalar speed which is inversely proportional to the distance ‖rhuman‖; or ii)

be repulsed with a velocity v
[ii]
e along an horizontal direction and away from the detected human,

with a scalar speed which is inversely proportional to the relative distance between the human and
the robot end-effector. The two alternative reactions occur only when ‖rhuman‖ ∈ [ρmin, ρmax].
Beyond ρmax the robot continues its original task, as specified by a joint velocity q̇task. Finally,
when the human is closer than ρmin to the robot base, the robot should simply stop.

Provide the symbolic expression of the commanded joint velocity q̇ that realizes these human-robot
coexistence control rules in all the considered cases.
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Figure 2: Human-robot coexistence, with a laser scanner measuring the position of a human w.r.t.
the base of a spatial 3R robot.

Exercise 3

A generic revolute joint of a robot should move through the sequence of four knots specified by
the angular values

q1 = 70◦, q2 = −45◦, q3 = 10◦, q4 = 100◦.

Define an interpolating path in the form of a cubic spline q = q(s) ∈ C2, for s ∈ [0, 1], such that
at s1 = 0, s2 = 0.25, s3 = 0.5, and s4 = 1, we have

q(0) = q1, q(0.25) = q2, q(0.5) = q3, q(1) = q4.

The path tangent q′(s) at the initial and final knots is given by (q2 − q1)/(s2 − s1) and (q4 −
q3)/(s4 − s3), respectively.

• Provide the parametric expression and the associated numerical values of the coefficients for
the three cubic polynomials in the spline solution.

• Assuming that the path is executed at a constant speed ṡ = 0.4/s:

– what is the total traveling time T from q1 to q4?

– which is the value of the joint velocity at the initial and final time, q̇(0) and q̇(T )?

– what is the maximum absolute value of the acceleration q̈(t) reached during the time
interval [0, T ], and which is the time instant t = ta at which this maximum occurs?

[240 minutes, open books but no computer or smartphone]
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Solution

June 6, 2017

Exercise 1

A frame assignment for the PRPR manipulator which is consistent with the Denavit-Hartenberg
(DH) convention is shown in Fig. 3, and the associated parameters are given in Tab. 1.
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Figure 3: The DH frames assigned to the planar PRPR manipulator, with associated joint variables.

i αi di ai θi
1 −π/2 q1 0 0

2 π/2 0 0 q2

3 −π/2 q3 0 0

4 0 0 L q4

Table 1: Table of DH parameters of the planar PRPR manipulator.

Using the joint variables qm = (qm1, qm2, qm3, qm4) of the manufacturer, by geometric inspection
of Fig. 1 the direct kinematics of the PRPR manipulator is

p =

(
px

py

)
=

(
qm1 + (B + qm3) sin qm2 + L cos qm4

(B + qm3) cos qm2 + L sin qm4

)
= fm(qm). (1)

Similarly, using the D-H variables q = (q1, q2, q3, q4), by geometric inspection of Fig. 3 (or, comput-

ing the sequence of matrix/vector products 0A1(q1)
(
1A2(q2)

(
2A3(q3)

(
3A4(q4)

(
0 0 0 1

)T)))
from Tab. 1, and then extracting the z0 and x0 components) we have

p =

(
0pz
0px

)
=

(
q1 + q3 cos q2 − L sin(q2 + q4)

q3 sin q2 + L cos(q2 + q4)

)
= f(q). (2)

The zero configurations of the robot arm when qm = 0 and when q = 0 are obviously different
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Figure 4: Zero configurations of the robot arm: when qm = 0 (left) and when q = 0 (right).

and are shown in Fig. 4. By comparing eqs. (1) and (2), we find the direct transformation

q =


q1

q2

q3

q4

 =


qm1

π/2− qm2

B + qm3

qm2 + qm4 − π

 = φ(qm). (3)

From the inverse transformation, we obtain also the linear mapping from the DH velocities q̇ to
the robot joint velocities q̇m used by the manufacturer:

qm = φ−1(q) =


q1

π/2− q2
q3 −B

q2 + q4 + π/2

 ⇒ q̇m =


1 0 0 0

0 −1 0 0

0 0 1 0

0 1 0 1

 q̇ = Jq̇. (4)

Exercise 2

Define the projections along the z axis (on an arbitrary plane, say z = 0) for the two vectors

pe =

 pe,x

pe,y

pe,z

 ⇒ p̄e = Πz(pe) =

 pe,x

pe,y

0


and

rhuman =

 rhuman,x

rhuman,y

h

 ⇒ r̄human = Πz(rhuman) =

 rhuman,x

rhuman,y

0

 ,

where h is the (arbitrary) height of the laser scanning plane. The joint velocity command for the
requested robot motion is then given by the following cases:

q̇ =



0 , if ‖r̄human‖ < ρmin

J−1(q)ve , with ve =


v
[i]
e = − p̄e

‖p̄e‖
· 1

‖r̄human‖

v
[ii]
e =

p̄e − r̄human

‖p̄e − r̄human‖2

, if ‖r̄human‖ ∈ [ρmin, ρmax]

q̇task , if ‖r̄human‖ > ρmax.

(5)
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Exercise 3

Using path parametrization, the three cubic tracts of the interpolating spline are conveniently
defined as

qA(σA) = q1 + a1σA + a2σ
2
A + a3σ

3
A, σA =

s− s1
s2 − s1

∈ [0, 1], s ∈ [s1, s2] (6)

qB(σB) = q2 + b1σB + b2σ
2
B + b3σ

3
B , σB =

s− s2
s3 − s2

∈ [0, 1], s ∈ [s2, s3] (7)

qC(σC) = q3 + c1σC + c2σ
2
C + c3σ

3
C , σC =

s− s3
s4 − s3

∈ [0, 1], s ∈ [s3, s4], (8)

with the nine coefficients a1, . . . , c3 determined by satisfying the nine boundary conditions

qA(1) = q2,

qB(1) = q3,

qC(1) = q4,

q′A(0) =
q2 − q1
s2 − s1

,

q′C(1) =
q4 − q3
s4 − s3

,

q′A(1) = q′B(0) [ = v2 ] ,

q′B(1) = q′C(0) [ = v3 ] ,

q′′A(1) = q′′B(0),

q′′B(1) = q′′C(0).
(9)

However, the divide et impera approach is more convenient if we assume, for the time being, that
we know the value of the first derivatives v2 and v3 at the two intermediate knots (at s = s2
and s = s3, respectively). The coefficients of each of the three cubic polynomials would then be
completely defined by the four local boundary conditions at the two extremes of their interval of
definition. Performing computations for the cubic A yields the coefficients

a1 = q2 − q1, a2 = (q2 − q1)− v2(s2 − s1), a3 = v2(s2 − s1)− (q2 − q1), (10)

and thus

q′′A(1) =
2a2 + 6a3
(s2 − s1)2

=
4v2

s2 − s1
− 4(q2 − q1)

(s2 − s1)2
. (11)

Similarly, for the cubic B

b1 = v2(s3−s2), b2 = 3(q3−q2)−(2v2+v3)(s3−s2), b3 = −2(q3−q2)+(v2+v3)(s3−s2), (12)

and thus

q′′B(0) =
2b2

(s3 − s2)2
=

6(q3 − q2)

(s3 − s2)2
− 4v2 + 2v3

s3 − s2
(13)

and

q′′B(1) =
2b2 + 6b3
(s3 − s2)2

=
2v2 + 4v3
s3 − s2

− 6(q3 − q2)

(s3 − s2)2
. (14)

Finally, for the cubic C

c1 = v3(s4 − s3), c2 = 2(q4 − q3)− 2v3(s4 − s3), c3 = v3(s4 − s3)− (q4 − q3), (15)

and thus

q′′C(0) =
2c2

(s4 − s3)2
=

4(q4 − q3)

(s4 − s3)2
− 4v3
s4 − s3

. (16)

Imposing the continuity of the second derivative at the internal knots

q′′A(1) = q′′B(0) q′′B(1) = q′′C(0),
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and using eqs. (11), (13–14) and (16), leads to the linear system of equations

A

(
v2
v3

)
= b

with

A =

(
4(s3 − s1) 2(s2 − s1)

2(s4 − s3) 4(s4 − s2)

)
, b =

 6(q3 − q2)
s2 − s1
s3 − s2

+ 4(q2 − q1)
s3 − s2
s2 − s1

4(q4 − q3)
s3 − s2
s4 − s3

+ 6(q3 − q2)
s4 − s3
s3 − s2

.


Replacing the numerical data, the system is solved as(

v2
v3

)
= A−1b =

(
−147.2727
329.0909

)
,

and the coefficients (10), (12), and (15) of the three cubic polynomials take then the numerical
values

a0 = q1 = 70, a1 = −115, a2 = −78.1818, a3 = 78.1818,

b0 = q2 = −45, b1 = −36.8182, b2 = 156.3636, b3 = −64.5455,

c0 = q3 = 10, c1 = 164.5455, c2 = −149.0909, c3 = 74.5455.

The plots of the interpolating geometric spline q(s), for s ∈ [0, 1], and of its first and second
derivatives q′(s) and q′′(s) are shown in Fig. 5.

If the motion on the geometric path q(s) is at constant speed ṡ = k = 0.4 s−1 (s̈ = 0), then the
total time for tracing the interval between s = 0 and s = 1 is simply T = 1/k = 1/0.4 = 2.5 s.
Moreover, velocity and acceleration of the joint moving at constant speed are q̇ = q′ ṡ = q′ k and
q̈ = q′ s̈+ q′′ ṡ2 = q′′ k2, respectively. Therefore, the initial and final velocity will be

q̇(0) = q′A(0) ṡ(0) =
q2 − q1
s2 − s1

k = −184◦/s, q̇(T ) = q′C(1) ṡ(T ) =
q4 − q3
s4 − s3

k = 72◦/s.

On the other hand, since the second derivative of a geometric cubic spline is made by linear
segments between the knots, its maximum necessarily occurs in one of the knots. Being the joint
acceleration simply a scaled version of the second spatial derivative, the maximum (absolute) value
of the acceleration is found as

max
t∈[0,T ]

|q̈(t)| = k2 max
s∈[0,1]

|q′′(s)| = k2 max {|q′′A(0)|, |q′′B(0)|, |q′′C(0)|, |q′′C(1)|}

= 0.16 max {| − 2501.8|, |5003.6|, | − 1192.7|, |596.3|}

= max {| − 400.2909|, |800.5818|, | − 190.8364|, |95.4182|} = 800.5818◦/s2,

occurring at the second knot. The plots of the interpolating trajectory q(t), for t ∈ [0, T ], and of
its velocity q̇(t) and acceleration q̈(t) are shown in Fig. 6.
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Figure 5: Geometric spline q(s), with first and second derivative.
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Figure 6: Spline trajectory q(t), with velocity and acceleration.
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