Robotics I

April 11, 2017

Exercise 1

The kinematics of a 3 R spatial robot is specified by the Denavit-Hartenberg parameters in Tab. 1 .

i	α_{i}	d_{i}	a_{i}	θ_{i}
1	$\pi / 2$	L_{1}	0	q_{1}
2	0	0	L_{2}	q_{2}
3	0	0	L_{3}	q_{3}

Table 1: Table of DH parameters of a 3R spatial robot.

- Given a position $\boldsymbol{p} \in \mathbb{R}^{3}$ of the origin of the end-effector frame, provide the analytic expression of the solution to the inverse kinematics problem.
- For $L_{1}=1[\mathrm{~m}]$ and $L_{2}=L_{3}=1.5[\mathrm{~m}]$, determine all inverse kinematics solutions in numerical form associated to the end-effector position $\boldsymbol{p}=\left(\begin{array}{lll}-1 & 1 & 1.5\end{array}\right)^{T}[\mathrm{~m}]$.

Exercise 2

A robot joint should move in minimum time between an initial value q_{a} and a final value q_{b}, with an initial velocity \dot{q}_{a} and a final velocity \dot{q}_{b}, under the bounds $|\dot{q}| \leq V$ and $|\ddot{q}| \leq A$.

- Provide the analytic expression of the minimum feasible motion time T^{*} when $\Delta q=q_{b}-q_{a}>0$ and the initial and final velocities are arbitrary in sign and magnitude (but both satisfy the velocity bound, i.e., $\left|\dot{q}_{a}\right| \leq V$ and $\left.\left|\dot{q}_{b}\right| \leq V\right)$.
- Using the data $q_{a}=-90^{\circ}, q_{b}=30^{\circ}, \dot{q}_{a}=45^{\circ} / \mathrm{s}, \dot{q}_{b}=-45^{\circ} / \mathrm{s}, V=90^{\circ} / \mathrm{s}, A=200^{\circ} / \mathrm{s}^{2}$, determine the numerical value of the minimum feasible motion time T^{*} and draw the velocity and acceleration profiles of the joint motion.
[180 minutes, open books but no computer or smartphone]

Solution

April 11, 2017

Exercise 1

From the direct kinematics, using Tab. 1, we obtain for the position of the origin of the end-effector frame

$$
\begin{align*}
& \boldsymbol{p}_{H}=\binom{\boldsymbol{p}}{1}={ }^{0} \boldsymbol{A}_{1}\left(q_{1}\right)\left({ }^{1} \boldsymbol{A}_{2}\left(q_{2}\right)\left({ }^{2} \boldsymbol{A}_{3}\left(q_{3}\right)\binom{\mathbf{0}}{1}\right)\right) \\
& \Rightarrow \quad \boldsymbol{p}=\left(\begin{array}{c}
\left(L_{2} \cos q_{2}+L_{3} \cos \left(q_{2}+q_{3}\right)\right) \cos q_{1} \\
\left(L_{2} \cos q_{2}+L_{3} \cos \left(q_{2}+q_{3}\right)\right) \sin q_{1} \\
L_{1}+L_{2} \sin q_{2}+L_{3} \sin \left(q_{2}+q_{3}\right)
\end{array}\right) . \tag{1}
\end{align*}
$$

The analytic inversion of eq. 11 for $\boldsymbol{p}=\boldsymbol{p}_{d}=\left(\begin{array}{lll}p_{d x} & p_{d y} & p_{d z}\end{array}\right)^{T}$ proceeds as follows. After moving L_{1} to the left-hand side of the third equation, squaring and adding the three equations yields the numeric value c_{3} (for $\cos q_{3}$)

$$
\begin{equation*}
c_{3}=\frac{p_{d x}^{2}+p_{d y}^{2}+\left(p_{d z}-L_{1}\right)^{2}-L_{2}^{2}-L_{3}^{2}}{2 L_{2} L_{3}} . \tag{2}
\end{equation*}
$$

The desired end-effector position will belong to the robot workspace if and only if $c_{3} \in[-1,1]$. Note that this condition holds no matter if L_{2} and L_{3} are equal or different. Under such premises, we compute

$$
\begin{equation*}
s_{3}=\sqrt{1-c_{3}^{2}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{3}^{\{+\}}=\operatorname{ATAN} 2\left\{s_{3}, c_{3}\right\}, \quad q_{3}^{\{-\}}=\operatorname{ATAN} 2\left\{-s_{3}, c_{3}\right\} \tag{4}
\end{equation*}
$$

yielding by definition two opposite values $q_{3}^{\{-\}}=-q_{3}^{\{+\}}$. If $c_{3}= \pm 1$, the robot is in a kinematic singularity: the forearm is either stretched or folded, in both cases on the boundary of the workspace. In particular, when $c_{3}=1, q_{3}^{\{+\}}$and $q_{3}^{\{-\}}$are both equal to 0 ; when $c_{3}=-1$, the two solutions will be taken ${ }^{1}$ equal to π. Instead, when $c_{3} \notin[-1,1]$, the inverse kinematics algorithm should output a warning message ("desired position is out of workspace") and exit.
When $p_{d x}^{2}+p_{d y}^{2}>0$, from the first two equations in 1 we can further compute

$$
p_{d x}^{2}+p_{d y}^{2}=\left(L_{2} \cos q_{2}+L_{3} \cos \left(q_{2}+q_{3}\right)\right)^{2} \Rightarrow \cos q_{1}=\frac{p_{d x}}{ \pm \sqrt{p_{d x}^{2}+p_{d y}^{2}}}, \quad \sin q_{1}=\frac{p_{d y}}{ \pm \sqrt{p_{d x}^{2}+p_{d y}^{2}}}
$$

and thus

$$
\begin{equation*}
q_{1}^{\{+\}}=\operatorname{ATAN} 2\left\{p_{d y}, p_{d x}\right\}, \quad q_{1}^{\{-\}}=\text {ATAN2 }\left\{-p_{d y},-p_{d x}\right\} . \tag{5}
\end{equation*}
$$

These two values belong to $(-\pi, \pi]$ and will always differ by π. Instead, when $p_{d x}=p_{d y}=0$, the first joint angle q_{1} remains undefined and the robot will be in a kinematic singularity (with the end-effector placed along the axis of joint 1). The solution algorithm should output a warning message ("singular case: angle q_{1} is undefined"), possibly set a flag ($\operatorname{sing}_{1}=O N$), but continue.

[^0]At this stage, we can rewrite a suitable combination of the first two equations in (1) as well as the third equation in the following way:

$$
\cos q_{1} p_{d x}+\sin q_{1} p_{d y}=L_{2} \cos q_{2}+L_{3} \cos \left(q_{2}+q_{3}\right)=\left(L_{2}+L_{3} \cos q_{3}\right) \cos q_{2}-L_{3} \sin q_{3} \sin q_{2}
$$

and

$$
p_{d z}-L_{1}=L_{2} \sin q_{2}+L_{3} \sin \left(q_{2}+q_{3}\right)=L_{3} \sin q_{3} \cos q_{2}+\left(L_{2}+L_{3} \cos q_{3}\right) \sin q_{2} .
$$

Plugging the (multiple) values found so far for q_{1} and q_{3}, we obtain four similar 2×2 linear systems in the trigonometric unknowns $c_{2}=\cos q_{2}$ and $s_{2}=\sin q_{2}$:

$$
\left(\begin{array}{cc}
L_{2}+L_{3} c_{3} & -L_{3} s_{3}^{\{+,-\}} \tag{6}\\
L_{3} s_{3}^{\{+,-\}} & L_{2}+L_{3} c_{3}
\end{array}\right)\binom{c_{2}}{s_{2}}=\binom{\cos q_{1}^{\{+,-\}} p_{d x}+\sin q_{1}^{\{+,-\}} p_{d y}}{p_{d z}-L_{1}} \Longleftrightarrow \boldsymbol{A}^{\{+,-\}} \boldsymbol{x}=\boldsymbol{b}^{\{+,-\}}
$$

In (6), we should use (22) and the values from (4) and (5). This gives rise to four possible combinations for the matrix/vector pair $\left(\boldsymbol{A}^{\{+,-\}}, \boldsymbol{b}^{\{+,-\}}\right)$, which will eventually lead to four solutions for q_{2} that are in general distinct ${ }^{2}$. These will be labeled as

$$
q_{2}^{\{f, u\}} q_{2}^{\{f, d\}} q_{2}^{\{b, u\}} q_{2}^{\{b, d\}} \Rightarrow \boldsymbol{q}^{\{f, u\}} \quad \boldsymbol{q}^{\{f, d\}} \quad \boldsymbol{q}^{\{b, u\}} \quad \boldsymbol{q}^{\{b, d\}}
$$

depending on whether the robot is facing (f) of backing (b) the desired position quadrant - due to the choice of q_{1}, and on whether the elbow is up (u) or down (d)-due to the combined choice of q_{1} and q_{3}. If the (common) determinant of the coefficient matrix is different from zero, i.e., using eq. (2),

$$
\operatorname{det} \boldsymbol{A}^{\{+,-\}}=\left(L_{2}+L_{3} c_{3}\right)^{2}+L_{3}^{2}\left(s_{3}^{\{+,-\}}\right)^{2}=L_{2}^{2}+L_{3}^{2}+2 L_{2} L_{3} c_{3}=p_{d x}^{2}+p_{d y}^{2}+\left(p_{d z}-L_{1}\right)^{2}>0
$$

the solution for q_{2} of each of the above four cases is uniquely determined from

$$
\binom{c_{2}^{\{\{f, b\},\{u, d\}\}}}{s_{2}^{\{\{f, b\},\{u, d\}\}}}=\binom{\left(L_{2}+L_{3} c_{3}\right)\left(\cos q_{1}^{\{+,-\}} p_{d x}+\sin q_{1}^{\{+,-\}} p_{d y}\right)+L_{3} s_{3}^{\{+,-\}}\left(p_{d z}-L_{1}\right)}{\left(L_{2}+L_{3} c_{3}\right)\left(p_{d z}-L_{1}\right)-L_{3} s_{3}^{\{+,-\}}\left(\cos q_{1}^{\{+,-\}} p_{d x}+\sin q_{1}^{\{+,-\}} p_{d y}\right)}
$$

and henceforth

$$
\begin{equation*}
q_{2}^{\{\{f, b\},\{u, d\}\}}=\text { ATAN2 }\left\{s_{2}^{\{\{f, b\},\{u, d\}\}}, c_{2}^{\{\{f, b\},\{u, d\}\}}\right\} . \tag{7}
\end{equation*}
$$

Instead, when $p_{d x}=p_{d y}=0$ and $p_{d y}=L_{1}$, the robot will be in a double kinematic singularity, with the arm folded and the end-effector placed along the axis of joint 1. Note that this situation can only occur in case the robot has $L_{2}=L_{3}$ (otherwise the singular Cartesian point would be out of the robot workspace). The solution algorithm should output a warning message ("singular case: angle q_{2} is undefined"), possibly set a second flag ($\operatorname{sing} g_{2}=O N$), and then exit. In this case, only a single value $q_{3}=\pi$ for the third joint angle will be defined.
Moving next to the requested numerical case with $L_{1}=1, L_{2}=1.5$, and $L_{3}=1.5[\mathrm{~m}]$, and for the desired position

$$
\boldsymbol{p}_{d}=\left(\begin{array}{c}
-1 \\
1 \\
1.5
\end{array}\right)[\mathrm{m}],
$$

[^1]we can see that \boldsymbol{p}_{d} belongs to the robot workspace and that this is not a singular case since
$$
c_{3}=-0.5 \in[-1,1], \quad p_{d x}^{2}+p_{d y}^{2}=2>0
$$

We note that the desired position is in the second quadrant $(x<0, y>0)$. Thus, the four inverse kinematics solutions obtained from (4), (5) and (7) are:

$$
\begin{align*}
& \boldsymbol{q}^{\{f, u\}}=\left(\begin{array}{r}
2.3562 \\
1.3870 \\
-2.0944
\end{array}\right)=\left(\begin{array}{r}
3 \pi / 4 \\
1.3870 \\
-2 \pi / 3
\end{array}\right)[\mathrm{rad}]=\left(\begin{array}{r}
135.00^{\circ} \\
79.47^{\circ} \\
-120.00^{\circ}
\end{array}\right) \\
& \boldsymbol{q}^{\{f, d\}}=\left(\begin{array}{r}
2.3562 \\
-0.7074 \\
2.0944
\end{array}\right)=\left(\begin{array}{r}
3 \pi / 4 \\
2.3562 \\
2 \pi / 3
\end{array}\right)[\mathrm{rad}]=\left(\begin{array}{r}
135.00^{\circ} \\
-40.53^{\circ} \\
120.00^{\circ}
\end{array}\right) \\
& \boldsymbol{q}^{\{b, u\}}=\left(\begin{array}{r}
-0.7854 \\
1.7546 \\
2.0944
\end{array}\right)=\left(\begin{array}{r}
-\pi / 4 \\
1.7546 \\
2 \pi / 3
\end{array}\right)[\mathrm{rad}]=\left(\begin{array}{r}
-45.00^{\circ} \\
100.53^{\circ} \\
120.00^{\circ}
\end{array}\right) \tag{8}\\
& \boldsymbol{q}^{\{b, d\}}=\left(\begin{array}{r}
-0.7854 \\
-2.4342 \\
-2.0944
\end{array}\right)=\left(\begin{array}{r}
-\pi / 4 \\
-2.4342 \\
-2 \pi / 3
\end{array}\right)[\mathrm{rad}]=\left(\begin{array}{r}
-45.00^{\circ} \\
-139.47^{\circ} \\
-120.00^{\circ}
\end{array}\right) .
\end{align*}
$$

As a double-check of correctness, it is always highly recommended to evaluate the direct kinematics with the obtained solutions (8). In return, one should get every time the desired position \boldsymbol{p}_{d}.

Exercise 2

This exercise is a generalization of the minimum-time trajectory planning problem for a single joint under velocity and acceleration bounds, with zero initial and final velocity (rest-to-rest) as boundary conditions.
It is useful to recap first the solution to the rest-to-rest problem. The minimum-time motion is given by a trapezoidal velocity profile (or a bang-coast-bang profile in acceleration), with minimum motion time T^{*} and symmetric initial and final acceleration/deceleration phases of duration T_{s} given by

$$
\begin{equation*}
T^{*}=\frac{|\Delta q|}{V}+\frac{V}{A}>2 T_{s}, \quad T_{s}=\frac{V}{A}>0 \tag{9}
\end{equation*}
$$

This solution is only valid when the distance $|\Delta q|$ to travel (in absolute value) and the limit velocity and acceleration values $V>0$ and $A>0$ satisfy the inequality

$$
\begin{equation*}
|\Delta q| \geq \frac{V^{2}}{A} \tag{10}
\end{equation*}
$$

namely, when the distance is "sufficiently long" with respect to the ratio of the squared velocity limit to the acceleration limit. When the equality holds in (10), the maximum velocity V is reached only at the single instant $T^{*} / 2=T_{s}$, when half of the motion has been completed. Instead, when (10) is violated, the minimum-time motion is given by a bang-bang acceleration profile (i.e., with a triangular velocity profile) having only the acceleration/deceleration phases, each of duration

$$
\begin{equation*}
T_{s}=\sqrt{\frac{|\Delta q|}{A}} \quad \Rightarrow \quad T^{*}=2 T_{s} \tag{11}
\end{equation*}
$$

The crusing phase with maximum velocity V is not reached in this case. For all the above cases, when $\Delta q<0$ the optimal velocity and acceleration profiles are simply changed of sign (flipped over the time axis).

Figure 1: Qualitative asymmetric velocity profiles of the trapezoidal type for the four combinations of signs of the initial and final velocity \dot{q}_{a} and \dot{q}_{b}. It is assumed that $\Delta q>0$, and that this distance is sufficiently long so as to have a non-vanishing cruising interval at maximum velocity $\dot{q}=V$.

Consider now the problem of moving in minimum time the joint by a distance $\Delta q=q_{b}-q_{a}>0$, but with generic non-zero boundary conditions $\dot{q}(0)=\dot{q}_{a}$ and $\dot{q}(T)=\dot{q}_{b}$ on the initial and final velocity. The requirement that $\left|\dot{q}_{a}\right| \leq V$ and $\left|\dot{q}_{b}\right| \leq V$ is obviously mandatory in order to have a feasible solution. With reference to the qualitative trapezoidal velocity profiles sketched in Fig. 1, we see that non-zero initial and final velocities may help in reducing the motion time or work against it. In particular, when both \dot{q}_{a} and \dot{q}_{b} are positive (case (a)) it is clear that less time will be needed to ramp up from $\dot{q}_{a}>0$ to V, rather than from 0 to V. The same is true for slowing down from V to $\dot{q}_{b}>0$, rather than down to 0 . On the contrary, when both \dot{q}_{a} and \dot{q}_{b} are negative (case (d)), an extra time will be spent for reversing motion from $\dot{q}_{a}<0$ to 0 (in this time interval, the joint will continue to move in the opposite direction to the desired one, until it stops), when finally a positive velocity can be achieved, and, similarly, another extra time will be spent toward the end of the trajectory for bringing the velocity from 0 to $\dot{q}_{b}<0$ (also in this second interval, the joint will move in the opposite direction to the desired one). Cases (b) and (c) in Fig. 11 are intermediate situations between (a) and (d), and can be analyzed in a similar way.

As a result:

- in general, the acceleration/deceleration phases will have different durations $T_{a} \geq 0$ and $T_{d} \geq 0$ (rather than the single $T_{s} \geq 0$ of the rest-to-rest case);
- the original required distance to travel $\Delta q>0$ will become in practice longer, since we need to counterbalance the negative displacements introduced during those intervals where the velocity is negative;
- since we need to minimize the total motion time, intervals with negative velocity should be traversed in the least possible time, thus with maximum (positive or negative) acceleration $\ddot{q}= \pm A$.

With the above general considerations in mind, we perform now quantitative calculations. In the (positive) acceleration and (negative) deceleration phases, we have

$$
\begin{equation*}
T_{a}=\frac{V-\dot{q}_{a}}{A}, \quad T_{d}=\frac{V-\dot{q}_{b}}{A} . \tag{12}
\end{equation*}
$$

We note that both these time intervals will be shorter than $T_{s}=V / A$ for a positive boundary velocity and longer than T_{s} for a negative one. The area (with sign) underlying the velocity profile should provide, over the total motion time $T>0$, the required distance $\Delta q>0$. We compute this area as the sum of three contributions, using the trapezoidal rule for the two intervals where the velocity is changing linearly over time:

$$
\begin{equation*}
T_{a} \cdot \frac{\dot{q}_{a}+V}{2}+\left(T-T_{a}-T_{d}\right) \cdot V+T_{d} \cdot \frac{V+\dot{q}_{b}}{2}=\Delta q \tag{13}
\end{equation*}
$$

Substituting (12) in 13) and rearranging terms gives

$$
\begin{equation*}
\frac{\left(V+\dot{q}_{a}\right)\left(V-\dot{q}_{a}\right)}{2 A}+\left(T-\frac{2 V}{A}+\frac{\dot{q}_{a}+\dot{q}_{b}}{A}\right) \cdot V+\frac{\left(V+\dot{q}_{b}\right)\left(V-\dot{q}_{b}\right)}{2 A}=\Delta q \tag{14}
\end{equation*}
$$

Solving for the motion time T, we obtain finally the optimal value

$$
\begin{equation*}
T^{*}=\frac{\Delta q}{V}+\frac{\left(V-\dot{q}_{a}\right)^{2}+\left(V-\dot{q}_{b}\right)^{2}}{2 A V} \tag{15}
\end{equation*}
$$

This is the generalization (for $\Delta q>0$) of the minimum motion time formula (9) of the rest-to-rest case (which we recover by setting $\dot{q}_{a}=\dot{q}_{b}=0$). This solution is only valid when the distance to travel $\Delta q>0$, the velocity and acceleration limit values $V>0$ and $A>0$, and the boundary velocities \dot{q}_{a} and \dot{q}_{b} satisfy the inequality

$$
\begin{equation*}
\Delta q \geq \frac{2 V^{2}-\left(\dot{q}_{a}^{2}+\dot{q}_{b}^{2}\right)}{2 A}(\geq 0) \tag{16}
\end{equation*}
$$

which is again the generalization of condition 10 . This inequality is obtained by imposing that the sum of the first and third term in the left-hand side of (14), i.e, the space traveled during the acceleration and deceleration phases, does not exceed Δq (a cruising phase at maximum speed $V>0$ would no longer be necessary).
It is interesting to note that, for a given triple $\Delta q, V$, and A, the inequality (16) would be easier to enforce as soon as $\dot{q}_{a} \neq 0$ and/or $\dot{q}_{b} \neq 0$, independently from their signs. The physical reason, however, is slightly different for a positive or negative boundary velocity, say of \dot{q}_{a}. When $\dot{q}_{a}>0$, less time is needed in order to reach the maximum velocity $V>0$; thus, it is more likely that
the same problem data will imply a cruising velocity phase. Instead, when $\dot{q}_{a}<0$, a negative displacement will occur in the initial phase, which needs to be recovered; thus, it is more likely that a cruising phase at maximum velocity V will be needed later.
Finally, we point out that:

- when inequality (16) is violated, or for special values of \dot{q}_{a} or \dot{q}_{b} (e.g., $\dot{q}_{a}=V$), a number of sub-cases arise; their complete analysis is out of the present scope and is left as an exercise for the reader;
- for $\Delta q<0$, it is easy to show that the formulas corresponding to (12), 15), and (16) are

$$
\begin{gathered}
T_{a}=\frac{V+\dot{q}_{a}}{A}, \quad T_{d}=\frac{V+\dot{q}_{b}}{A}, \quad T^{*}=\frac{|\Delta q|}{V}+\frac{\left(V+\dot{q}_{a}\right)^{2}+\left(V+\dot{q}_{b}\right)^{2}}{2 A V} \\
|\Delta q| \geq \frac{2 V^{2}-\left(\dot{q}_{a}^{2}+\dot{q}_{b}^{2}\right)}{2 A}
\end{gathered}
$$

Indeed, the velocity profiles in Fig. 1 will use the value $-V$ as cruising velocity.

Figure 2: Time-optimal velocity and acceleration profiles for the numerical problem in Exercise 2. Moving to the given numerical problem, from $\Delta q=q_{b}-q_{a}=30^{\circ}-\left(-90^{\circ}\right)=120^{\circ}>0, \dot{q}_{a}=45^{\circ} / \mathrm{s}$, $\dot{q}_{b}=-45^{\circ} / \mathrm{s}, V=90^{\circ} / \mathrm{s}$, and $A=200^{\circ} / \mathrm{s}^{2}$, we evaluate first the inequality 16 and verify that

$$
120>\frac{2 \cdot 90^{2}-\left(45^{2}+(-45)^{2}\right)}{2 \cdot 200}=30.375
$$

so that the general formula (15) applies. This yields

$$
T^{*}=1.8958[\mathrm{~s}],
$$

while from 12 we obtain

$$
T_{a}=0.225[\mathrm{~s}], \quad T_{d}=0.675[\mathrm{~s}],
$$

with an interval of duration $T_{\text {cruise }}=T^{*}-T_{a}-T_{d}=0.9958[\mathrm{~s}]$ in which the joint is cruising at $V=90^{\circ} / \mathrm{s}$. The associated time-optimal velocity and acceleration profiles are reported in Fig. 2 .

[^0]: ${ }^{1}$ Remember that we use as conventional range $q \in(-\pi, \pi]$, for all angles q. Thus, if the output of a generic computation is $-\pi$, we always replace it with $+\pi$.

[^1]: ${ }^{2}$ A special case arises when the joint angle q_{1} remains undefined (a singularity with flag $\sin g_{1}=O N$). The first component of the known vector \boldsymbol{b} in 6 will vanish $\left(p_{d x}=p_{d y}=0\right)$ and only two solutions would be left for q_{2}. The case in which these two well-defined solutions collapse into a single value is left to the reader's analysis.

