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January 11, 2017

Exercise 1

Consider the 4-dof planar RPRP robot in Fig. 1 and assume that every joint has an unlimited range.

• Assign the link frames according to the Denavit-Hartenberg convention. Place the origin of the
last frame coincident with point P . Make the free choices that are available so as to eliminate
(i.e., “zeroing out”) as many unnecessary constant parameters as possible. Draw the chosen frames
directly on the robot in Fig. 1.

• Provide the Denavit-Hartenberg table of parameters associated to the frames that have been as-

signed. Draw the robot in the configuration q =
(
q1 q2 q3 q4

)T
=
(

0 1 0 1
)T

.

• A task requires to place the end-effector frame at a desired position pd =
(
pdx pdy

)T
, with a given

orientation αd of axis x4 w.r.t. axis x0 of the base. For the RPRP robot, define the analytic Jacobian
associated to this three-dimensional task and determine all its singular configurations.

x0 

P 

y0 

Figure 1: A 4-dof planar RPRP robot.

Exercise 2

A planar 2R robot, with link lengths `1 = 1 and `2 = 0.5 [m], has its end-effector placed in the Cartesian

position p0 =
(

0.7 0.7
)T

[m] and is at rest at time t = 0. Using separation in space and time, plan a

Cartesian trajectory for the robot end-effector in order to pick an object in the position pd =
(

0 1
)T

[m]
at a given time T > 0 (to be treated symbolically in this problem). The object is on a conveyor belt,

moving with a constant velocity vd = V ·
(
−1 0

)T
, where V = 1 [m/s] is the speed. The robot end

effector should match this velocity at the final position. Moreover, the motion task should be executed
with joint velocities q̇(t) that are continuous for all t ∈ [0, T ].

• Provide the parametric expression p(s) of the chosen Cartesian path, and of its first and second
derivative with respect to the path parameter s.

• Provide the expression of a timing law s(t) that satisfies the required conditions.

• Assuming a motion time T = 1.6 [s], compute the joint velocity q̇mid = q̇(T/2) at t = T/2, when
the robot is executing the planned Cartesian trajectory. How many solutions are there?

1



Exercise 3

The kinematics of a spatial 3R robot is defined by the Denavit-Hartenberg parameters in Tab. 1, where
the three constant parameters d1, a2, and a3 are all strictly positive.

i αi ai di θi

1 π/2 0 d1 q1

2 0 a2 0 q2

3 0 a3 0 q3

Table 1: DH parameters of a spatial 3R robot.

The 6×3 geometric Jacobian matrix J(q) of this robot (expressed in frame 0) has the following expression,
which is only partly specified:

J(q) =

(
JL(q)

JA(q)

)
=


− sin q1 (a2 cos q2 + a3 cos(q2 + q3)) − cos q1 (a2 sin q2 + a3 sin(q2 + q3)) J13(q)

cos q1 (a2 cos q2 + a3 cos(q2 + q3)) − sin q1 (a2 sin q2 + a3 sin(q2 + q3)) J23(q)

0 a2 cos q2 + a3 cos(q2 + q3) J33(q)

JA(q)

 .

(1)

• Provide the missing expressions of all remaining terms in eq. (1).

• Show that this geometric Jacobian has always full (column) rank.

• With the robot in the zero configuration, q = 0, determine the joint torque τ ∈ R3 that balances
statically a force F , applied to the robot tip, and a moment M , applied to the third link, given by

F =
(

0 1 −1
)T

[N], M =
(

1 1 1
)T

[Nm].

Give the expression of τ , and then its numerical value using the robot kinematic data d1 = a2 =
a3 = 1 [m].

• Is it possible to apply simultaneously a force F 6= 0 and a moment M 6= 0 so that the robot
remains in static equilibrium, without the need of an extra joint torque (τ = 0) for balancing the
force/moment pair? Motivate your answer in general, and illustrate it with a supporting example
when the robot is in the configuration q = 0.

[240 minutes, open books but no computer or smartphone]
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Solution
January 11, 2017

Exercise 1

Figure 2 shows a possible assignment of the Denavit-Hartenberg frames, as well as the definition of the
joint variables. The associated Tab. 2 highlights that this assignment has zeroed all constant parameters

that could be freely chosen. Figure 3 shows the robot in the configuration q =
(

0 1 0 1
)T

, as requested.

x0 

P 

y0 

x1 

z1 

x2 

x3 

x4 

z4 

z3 
x0 

P 

x1 

x2  

x3 

x4 

q3 

q1 q2 

q4 

Figure 2: Assigned DH frames for the planar RPRP robot (left) and configuration variables (right).

i αi ai di θi

1 π/2 0 0 q1

2 −π/2 0 q2 0

3 π/2 0 0 q3

4 0 0 q4 0

Table 2: DH parameters of the planar RPRP robot.

x0 

P 

x1 x2 = x3 x4 

q2 = 1 q4 = 1 

q1 = 0 q3 = 0 

Figure 3: The planar RPRP robot in the configuration q = (0 1 0 1)
T

.
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From Tab. 2, we evaluate the four homogeneous transformation matrices

0A1(q1) =


cos q1 0 sin q1 0
sin q1 0 − cos q1 0

0 1 0 0
0 0 0 1

 , 1A2(q2) =


1 0 0 0
0 0 1 0
0 −1 0 q2
0 0 0 1

 ,

2A3(q3) =


cos q3 0 sin q3 0
sin q3 0 − cos q3 0

0 1 0 0
0 0 0 1

 , 3A4(q4) =


1 0 0 0
0 1 0 0
0 0 1 q4
0 0 0 1

 .

Performing computations we obtain1

0T 4(q) =


cos(q1 + q3) 0 sin(q1 + q3) q2 sin q1 + q4 sin(q1 + q3)
sin(q1 + q3) 0 − cos(q1 + q3) −(q2 cos q1 + q4 cos(q1 + q3))

0 1 0 0
0 0 0 1

 .

Therefore, the task vector of interest is

r =

 px
py
α

 =

 q2 sin q1 + q4 sin(q1 + q3)
−(q2 cos q1 + q4 cos(q1 + q3))

q1 + q3

 = fr(q). (2)

The analytic Jacobian for this task is the 3× 4 matrix obtained by differentiating (2):

J(q) =
∂fr(q)

∂q
=

 q2 cos q1 + q4 cos(q1 + q3) sin q1 q4 cos(q1 + q3) sin(q1 + q3)
q2 sin q1 + q4 sin(q1 + q3) − cos q1 q4 sin(q1 + q3) − cos(q1 + q3)

1 0 1 0

 . (3)

The singular configurations of this matrix are those where the rank drops down (to 2 or 1) from its
maximum possible value (3). Equivalently, they are defined by the values of q such that all four 3 × 3
minors extracted from J(q) by deleting one column are equal to zero. Let J−i(q) be the square matrix
obtained from (3) by deleting the ith column, for i = 1, . . . , 4. We have

detJ−1(q) = − sin q3, detJ−2(q) = q2 cos q3, detJ−3(q) = sin q3, detJ−4(q) = −q2.

Therefore, the Jacobian J(q) is singular if and only if q2 = sin q3 = 0. For instance, when q2 = q3 = 0, we
obtain

J̄(q) := J(q1, 0, 0, q4) =

 q4 cos q1 sin q1 q4 cos q1 sin q1
q4 sin q1 − cos q1 q4 sin q1 − cos q1

1 0 1 0

 ⇒ rank
(
J̄(q)

)
= 2.

Exercise 2

We have to interpolate the two Cartesian positions p0 and pd with a sufficiently smooth path, having also
a prescribed tangent direction vdu = vd/ ‖vd‖ (of unitary norm) at the end position pd. It is required (and
also useful) to work in the Cartesian space and to keep separation between space (geometry) and time.

Note first that, because of the required continuity of the joint velocity and since (pd − p0) ∦ vd, the
Cartesian path cannot be chosen as a straight segment (linear in the path parameter s), Since the robot
end effector has to reach the correct direction of the conveyor belt motion at the end of the transfer, we
would have then a discontinuity in the path tangent at pd. This translates into a discontinuity for the
Cartesian velocity at the final instant T , since the end effector is not allowed to stop in pd (rather, it

1The expressions in 0T 4(q) could have been obtained also from a simple inspection of Fig. 2).
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should have the speed V > 0 of the conveyor belt). Accordingly, a jump in the Cartesian velocity will
result in a discontinuity of the joint velocity.

Therefore, when planning the path, we have to approach pd from the right direction, and this can be done
is several ways (without leaving the robot workspace). For instance, one could concatenate two linear
segments, from p0 to pint and then from pint to pd, by introducing an intermediate position pint such
that (pd − pint) ‖ vd and by forcing the motion to stop there (to preserve a continuous velocity in time).
Another possibility is to design an arc of a circle (of suitable center and radius) that interpolates p0 with
pd, having also the right tangent (in the direction of vd) at the end position pd.

We present here another viable solution that considers a quadratic function of s for the path p(s). Working
on the Cartesian (x, y)-plane in vector terms (with a, b, c ∈ R2), we choose

p(s) = a+ bs+ cs2, s ∈ [0, 1] (4)

and impose the boundary conditions

p(0) = a = p0, p(1) = a+ b+ c = pd, p′(1) = (b+ 2cs)s=1 = b+ 2c = vdu. (5)

In this way, the 6 scalar conditions in eq. (5) —3 on the x-coordinates and 3 on the y-coordinates— will
be satisfied using the equal number of 6 scalar components in the 3 bi-dimensional vectors a, b, and c.
Solving from (5), we obtain the unique values

a = p0, b = 2 (pd − p0)− vdu, c = vdu − (pd − p0) , (6)

to be replaced in (4). The first and second derivatives of p(s) w.r.t. s are then

p′(s) = 2 (pd − p0) (1− s) + vdu(2s− 1), p′′(s) = 2 (vdu − (pd − p0)) . (7)

In particular, the path tangent direction at the starting position p0 will be p′(0) = b = 2 (pd − p0)− vdu.

As for the timing law s(t), to be defined for t ∈ [0, T ], we need to satisfy the four boundary conditions

s(0) = 0, s(T ) = 1, ṡ(0) = 0, ṡ(T ) = V, (8)

being V > 0 the final speed along the path at the final instant t = T . Thus, a cubic polynomial in the
normalized time τ = t/T will be sufficient:

s(τ) = c0 + c1τ + c2τ
2 + c3τ

3, τ = t/T ∈ [0, 1].

Imposing (8), we obtain the timing law

s(t) = (3− TV )

(
t

T

)2

+ (TV − 2)

(
t

T

)3

, t ∈ [0, T ], (9)

and its speed profile

ṡ(t) =
1

T

(
2(3− TV )

(
t

T

)
+ 3(TV − 2)

(
t

T

)2
)
, t ∈ [0, T ]. (10)

Note that at the motion midtime t = T/2, it is

s

(
T

2

)
=

1

2
− TV

8
, ṡ

(
T

2

)
=

1.5

T
− TV

4
. (11)

Replacing now the problem data, we obtain from (4) and (6)

p(s) =

(
0.7
0.7

)
+

(
−0.4
0.6

)
s+

(
−0.3
−0.3

)
s2, s ∈ [0, 1],
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Figure 4: The Cartesian path p(s) interpolating p0 = (0.7 0.0)
T

to pd = (0 1)
T
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Figure 5: The angle α(s) of the tangent to the path (left) and the path curvature κ(s) (right).

and from (7)

p′(s) =

(
−0.4
0.6

)
+

(
−0.6
−0.6

)
s, p′′(s) =

(
−0.6
−0.6

)
.

The planned Cartesian path p(s) is shown in Fig. 4. Note that the path remains always in the primary
workspace of the robot (0.5 = |`1 − `2| ≤ ‖p‖ ≤ `1 + `2 = 1.5). Just for completeness of illustration,
Figure 5 reports, as functions of the path parameter, also the angle α(s) of the tangent to the path w.r.t.
the x-axis and the path curvature κ(s). These have been evaluated as

α(s) = ATAN2
{
p′y(s), p′x(s)

}
, κ(s) =

‖p′(s)× p′′(s)‖
‖p′(s)‖3

, s ∈ [0, 1].

For the cross product in the second formula, vectors were embedded in 3D (with a zero z-component).

Similarly, using V = 1 [m/s] and the given motion time T = 1.6 [s], it follows from (9) and (10)

s(t) = 1.4

(
t

1.6

)2

− 0.4

(
t

1.6

)3

, ṡ(t) = 1.75

(
t

1.6

)
− 0.75

(
t

1.6

)2

, t ∈ [0, 1.6].

The cubic timing law s(t) is shown in Fig. 6, while Figure 7 reports its first and second time derivatives.
Note that ṡ(0) = 0 and ṡ(T ) = V = 1 [m/s].

From the separate profiles in space and time, we can recombine the Cartesian trajectory and its time
derivatives as

p(t) = p(s(t)), ṗ(t) = p′(s(t)) ṡ(t), p̈(t) = p′(s(t)) s̈(t) + p′′(s(t)) ṡ2(t), t ∈ [0, T ].

Figure 8 shows the two components of the obtained Cartesian trajectory, in position p(t), velocity ṗ(t),
and acceleration p̈(t).
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Figure 6: The timing law s(t) for T = 1.6 [s].
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Figure 7: The timing speed ṡ(t) (left) and acceleration s̈(t) (right) for T = 1.6 [s].
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Figure 8: The components (x in blue, y in green) of the Cartesian trajectory p(t) and of its first
and second time derivatives ṗ(t) and p̈(t) for T = 1.6 [s].

Finally, at the midtime t = T/2 = 0.8 [s] of motion, we evaluate from the previous formulas the quantities
of interest:

s(0.8) = 0.3, ṡ(0.8) = 0.6875, ⇒
p(t = 0.8) = p(s = 0.3) =

(
0.5530
0.8530

)
=: pmid

ṗ(t = 0.8) = p′(s = 0.3)ṡ(0.8) =

(
−0.3987
0.2888

)
=: ṗmid.

Up to now, we have not involved the actual robot in the trajectory planning. At this stage, we need to
solve an inverse kinematics problem for pmid, and then an inverse differential kinematic problem for ṗmid.
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Figure 9: The two solutions to the inverse kinematics at the trajectory midtime t = T/2 = 0.8 [s].

By using the usual formulas for a planar 2R robot

c2 =
p2mid,x + p2mid,y − `21 − `22

2`1`2
, s2 = ±

√
1− c22 ⇒ q2 = ATAN2 {s2, c2}

and

s1 = (`1 + `2c2) pmid,y − `2s2 pmid,x, c1 = (`1 + `2c2) pmid,x + `2s2 pmid,y ⇒ q1 = ATAN2 {s1, c1} ,

we obtain the two solutions to the inverse kinematics problem (see Fig. 9)

qmid,A =

(
0.4948
1.7891

)
[rad] =

(
28.35◦

102.51◦

)
, qmid,B =

(
1.4965
−1.7891

)
[rad] =

(
85.74◦

−102.51◦

)
.

Evaluating the robot Jacobian for the 2R robot

J(q) =

(
−(`1 sin q1 + `2 sin(q1 + q2)) −`2 sin(q1 + q2)
`1 cos q1 + `2 cos(q1 + q2)) `2 cos(q1 + q2)

)
,

we have in the first case

J(qmid,A) =

(
0.8530 0.3782
0.5530 0.3271

)
⇒ q̇mid.A = J−1(qmid,A) ṗmid =

(
0.4909
−0.0528

)
[rad/s],

and in the second case

J(qmid,B) =

(
−0.8530 0.1442
0.5530 0.4787

)
⇒ q̇mid.B = J−1(qmid,B) ṗmid =

(
0.4764
0.0528

)
[rad/s].

We obtained thus two different (though quite similar) joint velocity solutions to the given problem.

Exercise 3

From Tab. 1, we evaluate the three homogeneous transformation matrices

0A1(q1) =


cos q1 0 sin q1 0
sin q1 0 − cos q1 0

0 1 0 d1
0 0 0 1

 , 1A2(q2) =


cos q2 − sin q2 0 a2 cos q2
sin q2 cos q2 0 a2 sin q2

0 0 1 0
0 0 0 1

 ,

2A3(q3) =


cos q3 − sin q3 0 a3 cos q3
sin q3 cos q3 0 a3 sin q3

0 0 1 0
0 0 0 1

 .
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Performing computations in an efficient way, we have for the position of the origin of the last frame

phom(q) =

 p(q)

1

 = 0A1(q1)

1A2(q2)

2A3(q3)


0
0
0
1



 = 0A1(q1)

1A2(q2)


a3 cos q3
a3 sin q3

0
1




= 0A1(q1)


a2 cos q2 + a3 cos(q2 + q3)
a2 sin q2 + a3 sin(q2 + q3)

0
1

 =


cos q1 (a2 cos q2 + a3 cos(q2 + q3))
sin q1 (a2 cos q2 + a3 cos(q2 + q3))
d1 + a2 sin q2 + a3 sin(q2 + q3)

1

 .

The last column of the 3× 3 matrix JL(q) in eq. (1) is then easily computed as J13(q)
J23(q)
J33(q)

 =
∂p(q)

∂q3
=

 −a3 cos q1 sin(q2 + q3)
−a3 sin q1 sin(q2 + q3)

a3 cos(q2 + q3)

 . (12)

As for the 3× 3 matrix JA(q), its general expression becomes in the present case

JA(q) =

(
z0 z1 z2

)
=

  0
0
1

 0R1(q1)

 0
0
1

 0R1(q1)1R2(q2)

 0
0
1

 
=

 0 sin q1 sin q1
0 − cos q1 − cos q1
1 0 0

 .

(13)

The singularity analysis of J(q) can be performed in different ways. We start by observing that matrix
JA(q) has always rank exactly equal to 2, since i) the second and third columns are identical (thus its
rank is always less than 3), and ii) sine and cosine of the same angle never vanish simultaneously (thus the
rank never drops below 2). The first observation suggests a transformation on the matrix columns, such
that the study of the rank of the complete matrix J(q) is reduced to the analysis of the last column of
JL(q). In fact, substituting to the third column the difference between the second and the third one, we
have

J ′(q) = J(q)T = J(q)

 1 0 0
0 1 1
0 0 −1



=



− sin q1 (a2 cos q2 + a3 cos(q2 + q3)) − cos q1 (a2 sin q2 + a3 sin(q2 + q3)) −a2 cos q1 sin q2

cos q1 (a2 cos q2 + a3 cos(q2 + q3)) − sin q1 (a2 sin q2 + a3 sin(q2 + q3)) −a2 sin q1 sin q2

0 a2 cos q2 + a3 cos(q2 + q3) a2 cos q2

0 sin q1 0

0 − cos q1 0

1 0 0


.

From the obtained internal structure, it is easy to see that the rank of matrix J ′(q), which is the same as
the rank ρ of J(q), will be full if and only if, in any given configuration, at least one element of its last
column is different from zero or, equivalently, if the last column never vanishes. This is immediate to see,
again because sine and cosine of the same angle never vanish simultaneously. Thus, J(q) has always full
rank ρ = 3, i.e., is never singular.

In alternative, one could resort to the basic definition of full rank for a matrix that has less columns than
rows. Let ci be the ith column of the matrix, with i = 1, 2, 3, for the present case of our J(q). The matrix
will have full (column) rank when, for all possible scalars λi, i = 1, 2, 3,

λ1c1 + λ2c2 + λ3c3 = 0 ⇐⇒ λ =
(
λ1 λ2 λ3

)T
= 0. (14)
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Using the obtained expression (12) and (13) inside the Jacobian in eq. (1), the condition on the left-hand
side of (14) results in six scalar equations. From the last one, it follows necessarily that λ1 = 0. From the
fourth and fifth equations, it follows also that λ2 = −λ3. Squaring and summing the first three equations
in the remaining λ2 (c2 − c3) = 0 yields

λ2a
2
2

(
sin2q2 (cos2q1 + sin2q1) + cos2q2

)
= λ2a

2
2 = 0 ⇐⇒ λ2 = 0.

As a result, λ = 0 is the only solution, and the matrix J(q) has always full rank (for all q!).

Another approach, which is however computationally heavier to perform by hand, is to check that the
following determinant2

det
[
JT(q)J(q)

]
= detT T · det

[
JT(q)J(q)

]
· detT = det

[
J ′

T
(q)J ′(q)

]
= det

 1 + (a2 cos q2 + a3 cos(q2 + q3))2 0 0

0 1 + a22 + a23 + 2 a2a3 cos q3 a22 + a2a3 cos q3

0 a22 + a2a3 cos q3 a22


=
(
1 + (a2 cos q2 + a3 cos(q2 + q3))2

)
a22
(
1 + a23 sin2 q3

)
is in fact never zero —a necessary and sufficient condition for the 6×3 matrix J(q) to have full rank ρ = 3.

Evaluating now JT(q) for q = 0 yields

JT
0 := JT(0) =

 0 a2 + a3 0 0 0 1

0 0 a2 + a3 0 −1 0

0 0 a3 0 −1 0

 .

The joint torque τ that balances statically in the configuration q = 0 the assigned force F =
(

0 1 −1
)T

and moment M =
(

1 1 1
)T

is given by

τ = −JT
0

(
F
M

)
=

 − (1 + a2 + a3)
1 + a2 + a3

1 + a3

 ⇒ for a2 = a3 = 1, τ =

 −3
3
2

 .

In any robot configuration, there will always be some non-zero force/moment pairs that require no balancing
joint torque to keep the robot in its equilibrium state. This is independent from having the Jacobian matrix
J(q) full rank or not. In fact, the 3× 6 matrix JT(q) will always have a null space N

{
JT
}

of dimension
6 − ρ ≥ 3. Since the Jacobian has constant full rank ρ = 3 (in all configurations), the null space will be
of dimension 6− 3 = 3, and there will be always ∞3 such force/moment pairs at any robot configuration.
For example, at q = 0 the pair

F 0 =
(

1 0 0
)T
, M0 =

(
1 0 0

)T
,

yields

τ 0 = −JT
0

(
F 0

M0

)
= 0.

∗ ∗ ∗ ∗ ∗

2Since detT = detT T = −1, the product of these two determinants is equal to 1.
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