Robotics I

October 28, 2016

Exercise 1

Consider the following matrix

$$
{ }^{A} \boldsymbol{R}_{B}(\rho, \sigma)=\left(\begin{array}{ccc}
\cos \rho & -\sin \rho & 0 \\
\sin \rho \cos \sigma & \cos \rho \cos \sigma & -\sin \sigma \\
\sin \rho \sin \sigma & \cos \rho \sin \sigma & \cos \sigma
\end{array}\right)
$$

- Prove that this is a rotation matrix (representing thus the orientation of a frame B with respect to a fixed frame A) for any value of the pair of angles (ρ, σ).
- Which is the sequence of two elementary rotations around fixed coordinate axes providing ${ }^{A} \boldsymbol{R}_{B}(\rho, \sigma)$?
- Which is the sequence of two elementary rotations around moving coordinate axes providing ${ }^{A} \boldsymbol{R}_{B}(\rho, \sigma)$?
- Verify your statements for $\rho=90^{\circ}$ and $\sigma=-90^{\circ}$.

Exercise 2

Consider the planar 2R robot in Fig. 1, having link lengths $\ell_{1}=0.8$ and $\ell_{2}=0.6[\mathrm{~m}]$, and let the direct kinematic mapping that characterizes the position of its end-effector be defined as $\boldsymbol{p}=\boldsymbol{f}(\boldsymbol{q})$. The motion of this robot is controlled by specifying the joint accelerations $\ddot{\boldsymbol{q}}$.

Figure 1: A planar 2R robot.

- What is the expression of the nominal joint acceleration command $\ddot{\boldsymbol{q}}=\ddot{\boldsymbol{q}}_{d}$ when the robot is in a state $(\boldsymbol{q}, \dot{\boldsymbol{q}})$ and its end-effector needs to move instantaneously with a desired acceleration $\ddot{\boldsymbol{p}}_{d}$? Try out your expression by determining the numerical value of $\ddot{\boldsymbol{q}}_{d}$ at the time instant $t=\bar{t}=0.8[\mathrm{~s}]$, when

$$
\boldsymbol{q}(\bar{t})=\binom{0}{\pi / 2}[\mathrm{rad}], \quad \dot{\boldsymbol{q}}(\bar{t})=\binom{-\pi}{\pi}[\mathrm{rad} / \mathrm{s}], \quad \boldsymbol{p}_{d}(t)=\binom{0}{0.6\left(t^{3}-1\right)}[\mathrm{m}] .
$$

- For the same end-effector trajectory specified above, assume now that, at time $t=0$, the robot is in an initial state $(\boldsymbol{q}(0), \dot{\boldsymbol{q}}(0))$ such that $\boldsymbol{p}(0)=\boldsymbol{f}(\boldsymbol{q}(0))=\boldsymbol{p}_{d}(0)$, but $\dot{\boldsymbol{p}}(0) \neq \dot{\boldsymbol{p}}_{d}(0)$. What should be the expression of the feedback control law for the joint acceleration $\ddot{\boldsymbol{q}}$ in order to recover the initial Cartesian trajectory error over time, achieving thus asymptotic trajectory tracking? Define all the needed terms and parameters in this second-order kinematic control law, and determine accordingly the initial numerical value $\ddot{\boldsymbol{q}}(0)$ of the control law.

Solution

October 28, 2016

Exercise 1

It is easy to verify that the given matrix ${ }^{A} \boldsymbol{R}_{B}(\rho, \sigma)$ is a rotation matrix: for any pair (ρ, σ), its three columns are of unitary norm and orthogonal each to other, while $\operatorname{det}{ }^{A} \boldsymbol{R}_{B}(\rho, \sigma)=+1$. Moreover, matrix ${ }^{A} \boldsymbol{R}_{B}(\rho, \sigma)$ is obtained as the product of two elementary rotation matrices in the form

$$
\boldsymbol{R}_{\boldsymbol{x}}(\sigma) \boldsymbol{R}_{\boldsymbol{z}}(\rho)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \sigma & -\sin \sigma \\
0 & \sin \sigma & \cos \sigma
\end{array}\right)\left(\begin{array}{ccc}
\cos \rho & -\sin \rho & 0 \\
\sin \rho & \cos \rho & 0 \\
0 & 0 & 1
\end{array}\right)={ }^{A} \boldsymbol{R}_{B}(\rho, \sigma) .
$$

Therefore, it represents

- either a sequence of two rotations around fixed axes: first a rotation by ρ around the \boldsymbol{z}-axis, and then a rotation by σ around the original \boldsymbol{x}-axis;
- or, a sequence of two rotations around moving axes: first a rotation by σ around the \boldsymbol{x}-axis, and then a rotation by ρ around the already rotated \boldsymbol{z}-axis (i.e., \boldsymbol{z}^{\prime}).

By substituting $\rho=\pi / 2$ and $\sigma=-\pi / 2$, we obtain

$$
{ }^{A} \boldsymbol{R}_{B}(\pi / 2,-\pi / 2)=\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & 1 \\
-1 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)=\boldsymbol{R}_{\boldsymbol{x}}(-\pi / 2) \boldsymbol{R}_{\boldsymbol{z}}(\pi / 2) .
$$

Considering for example the case of moving axes, the first (clockwise) rotation by $\sigma=-\pi / 2$ keeps the \boldsymbol{x}-axis unchanged, $\boldsymbol{x}^{\prime} \equiv \boldsymbol{x}$, while $\boldsymbol{y}^{\prime} \equiv-\boldsymbol{z}$ and $\boldsymbol{z}^{\prime} \equiv \boldsymbol{y}$; the second (counterclockwise) rotation by $\rho=\pi / 2$ keeps the current \boldsymbol{z}^{\prime}-axis unchanged, $\boldsymbol{z}^{\prime \prime} \equiv \boldsymbol{z}^{\prime}$, while $\boldsymbol{x}^{\prime \prime} \equiv \boldsymbol{y}^{\prime}$ and $\boldsymbol{y}^{\prime \prime} \equiv-\boldsymbol{x}^{\prime}$; concatenating the two rotations, we obtain $\boldsymbol{x}^{\prime \prime} \equiv-\boldsymbol{z}, \boldsymbol{y}^{\prime \prime} \equiv-\boldsymbol{x}$, and $\boldsymbol{z}^{\prime \prime} \equiv \boldsymbol{y}$, which is ${ }^{A} \boldsymbol{R}_{B}(\pi / 2,-\pi / 2)$ as expected.

Exercise 2

The following piece of Matlab code summarizes the computations needed to answer to the first question:

```
% first question
tbar=0.8;
ddp1=0;ddp2=3.6*tbar;
ddpd=[ddp1;ddp2] % outputs the desired Cartesian acceleration at time t=0.8 s
% current state
q1=0;q2=pi/2;
dq1=-pi;dq2=pi;
dq=[dq1; dq2];
% direct kinematics
p=[l1*\operatorname{cos(q1) +l2* cos(q1+q2);}
    l1*sin(q1)+l2*sin(q1+q2)];
% Jacobian matrix
J=[-l1*sin(q1) - l2*sin(q1+q2) -l2*sin(q1+q2);
```



```
% time derivative of the Jacobian
dJ=[-l1*\operatorname{cos}(q1)*dq1-l2*\operatorname{cos}(q1+q2)*(dq1+dq2) -l2*\operatorname{cos(q1+q2)*(dq1+dq2);}
    -l1*sin(q1)*dq1-l2*sin(q1+q2)*(dq1+dq2) -l2*sin(q1+q2)*(dq1+dq2)];
ddqd=inv(J)*(ddpd - dJ*dq) % outputs the requested joint acceleration command
% end
```

The two resulting outputs of this code are

$$
\ddot{\boldsymbol{p}}_{d}(0.8)=\binom{0}{2.88}\left[\mathrm{~m} / \mathrm{s}^{2}\right], \quad \ddot{\boldsymbol{q}}_{d}(0.8)=\binom{3.6}{-16.7595}\left[\mathrm{rad} / \mathrm{s}^{2}\right] .
$$

Similarly, at time $t=0$ we request

$$
\boldsymbol{p}_{d}(0)=\binom{0}{0.6\left(t^{3}-1\right)}_{t=0}=\binom{0}{-0.6}[\mathrm{~m}]
$$

and

$$
\dot{\boldsymbol{p}}_{d}(0)=\binom{0}{1.8 t^{2}}_{t=0}=\mathbf{0}[\mathrm{m} / \mathrm{s}], \quad \ddot{\boldsymbol{p}}_{d}(0)=\binom{0}{3.6 t}_{t=0}=\mathbf{0}\left[\mathrm{m} / \mathrm{s}^{2}\right] .
$$

The robot should be in an initial state $(\boldsymbol{q}(0), \dot{\boldsymbol{q}}(0))$ such that $\boldsymbol{p}(0)=\boldsymbol{f}(\boldsymbol{q}(0))=\boldsymbol{p}_{d}(0)$, but $\dot{\boldsymbol{p}}(0) \neq \dot{\boldsymbol{p}}_{d}(0)$. To determine $\boldsymbol{q}(0)$, we solve the inverse kinematics for $\boldsymbol{p}_{d}(0)$, picking just one of the two solutions (in an arbitrary way):

```
pd0=[0; -0.6];
% second joint computations
c2=(pd0(1)^2+pd0(2)^2-11^2-12^2)/(2*l1*12);
s2=sqrt(1-c2^2); %other solution: -sqrt(1-c2^2)
% first joint computations
det=11^2+12^2+2*l1*l2*c2;
s1=(pd0(2)*(11+12*c2)-pd0(1)*l2*s2)/det;
c1=(pd0(1)*(11+12*c2)+pd0(2)*l2*s2)/det;
% output
q01=atan2(s1,c1);
q02=atan2(s2,c2);
q0=[q01; q02]
```

We note that the desired Cartesian position is strictly inside the workspace of the 2 R robot, so that we are away from kinematic singularities. The output of the above code gives

$$
\boldsymbol{q}(0)=\binom{-2.4119}{2.3005}[\mathrm{rad}]=\binom{-138.19}{131.81}[\mathrm{deg}]
$$

yielding no initial Cartesian position error at $t=0, \boldsymbol{e}(0)=\boldsymbol{p}_{d}(0)-\boldsymbol{p}(0)=\boldsymbol{p}_{d}(0)-\boldsymbol{f}(\boldsymbol{q}(0))=\mathbf{0}$, as desired. In order to be sure that $\dot{\boldsymbol{p}}(0)=\boldsymbol{J}(\boldsymbol{q}(0)) \dot{\boldsymbol{q}}(0) \neq \dot{\boldsymbol{p}}_{d}(0)=\mathbf{0}$, we just need to avoid the specific choice $\dot{\boldsymbol{q}}(0)=\mathbf{0}$. For example, by choosing

$$
\dot{\boldsymbol{q}}(0)=\binom{0.5}{0.1}[\mathrm{rad} / \mathrm{s}] \quad \Rightarrow \quad \dot{\boldsymbol{e}}(0)=\dot{\boldsymbol{p}}_{d}(0)-\dot{\boldsymbol{p}}(0)=-\boldsymbol{J}(\boldsymbol{q}(0)) \dot{\boldsymbol{q}}(0)=\binom{-0.3067}{-0.0596}[\mathrm{~m} / \mathrm{s}] .
$$

To recover any initial Cartesian trajectory error (in velocity and/or position) over time and achieve thus asymptotic trajectory tracking, the control law for the joint acceleration input should be chosen as

$$
\ddot{\boldsymbol{q}}=\boldsymbol{J}^{-1}(\boldsymbol{q})\left(\ddot{\boldsymbol{p}}_{d}+\boldsymbol{K}_{d}\left(\dot{\boldsymbol{p}}_{d}-\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}}\right)+\boldsymbol{K}_{p}\left(\boldsymbol{p}_{d}-\boldsymbol{f}(\boldsymbol{q})\right)-\dot{\boldsymbol{J}}(\boldsymbol{q}) \dot{\boldsymbol{q}}\right),
$$

with (symmetric) gain matrices $\boldsymbol{K}_{p}>0, \boldsymbol{K}_{d}>0$ (a PD feedback action). By choosing for instance

$$
\boldsymbol{K}_{p}=100 \cdot \boldsymbol{I}_{2 \times 2}, \quad \boldsymbol{K}_{d}=20 \cdot \boldsymbol{I}_{2 \times 2},
$$

we finally obtain at time $t=0$

$$
\ddot{\boldsymbol{q}}(0)=\binom{-9.8614}{-2.2639}\left[\mathrm{rad} / \mathrm{s}^{2}\right] .
$$

