
Robotics I
October 28, 2016

Exercise 1

Consider the following matrix

ARB(ρ, σ) =

0B@ cos ρ − sin ρ 0

sin ρ cosσ cos ρ cosσ − sinσ

sin ρ sinσ cos ρ sinσ cosσ

1CA .

• Prove that this is a rotation matrix (representing thus the orientation of a frame B with respect to
a fixed frame A) for any value of the pair of angles (ρ, σ).

• Which is the sequence of two elementary rotations around fixed coordinate axes providing ARB(ρ, σ)?

• Which is the sequence of two elementary rotations around moving coordinate axes providing ARB(ρ, σ)?

• Verify your statements for ρ = 90◦ and σ = −90◦.

Exercise 2

Consider the planar 2R robot in Fig. 1, having link lengths `1 = 0.8 and `2 = 0.6 [m], and let the direct
kinematic mapping that characterizes the position of its end-effector be defined as p = f(q). The motion
of this robot is controlled by specifying the joint accelerations q̈.

x 

y 

q1 

ℓ1 

ℓ2 

q2 

p 

Figure 1: A planar 2R robot.

• What is the expression of the nominal joint acceleration command q̈ = q̈d when the robot is in a
state (q, q̇) and its end-effector needs to move instantaneously with a desired acceleration p̈d? Try
out your expression by determining the numerical value of q̈d at the time instant t = t̄ = 0.8 [s],
when

q(t̄) =

 
0

π/2

!
[rad], q̇(t̄) =

 
−π
π

!
[rad/s], pd(t) =

 
0

0.6 (t3 − 1)

!
[m].

• For the same end-effector trajectory specified above, assume now that, at time t = 0, the robot is
in an initial state (q(0), q̇(0)) such that p(0) = f(q(0)) = pd(0), but ṗ(0) 6= ṗd(0). What should be
the expression of the feedback control law for the joint acceleration q̈ in order to recover the initial
Cartesian trajectory error over time, achieving thus asymptotic trajectory tracking? Define all the
needed terms and parameters in this second-order kinematic control law, and determine accordingly
the initial numerical value q̈(0) of the control law.

[150 minutes; open books]

1



Solution
October 28, 2016

Exercise 1

It is easy to verify that the given matrix ARB(ρ, σ) is a rotation matrix: for any pair (ρ, σ), its three
columns are of unitary norm and orthogonal each to other, while det ARB(ρ, σ) = +1. Moreover, matrix
ARB(ρ, σ) is obtained as the product of two elementary rotation matrices in the form

Rx(σ)Rz(ρ) =

0B@ 1 0 0

0 cosσ − sinσ

0 sinσ cosσ

1CA
0B@ cos ρ − sin ρ 0

sin ρ cos ρ 0

0 0 1

1CA = ARB(ρ, σ).

Therefore, it represents

• either a sequence of two rotations around fixed axes: first a rotation by ρ around the z-axis, and
then a rotation by σ around the original x-axis;

• or, a sequence of two rotations around moving axes: first a rotation by σ around the x-axis, and
then a rotation by ρ around the already rotated z-axis (i.e., z′).

By substituting ρ = π/2 and σ = −π/2, we obtain

ARB(π/2,−π/2) =

0B@ 0 −1 0

0 0 1

−1 0 0

1CA =

0B@ 1 0 0

0 0 1

0 −1 0

1CA
0B@ 0 −1 0

1 0 0

0 0 1

1CA = Rx(−π/2)Rz(π/2).

Considering for example the case of moving axes, the first (clockwise) rotation by σ = −π/2 keeps the
x-axis unchanged, x′ ≡ x, while y′ ≡ −z and z′ ≡ y; the second (counterclockwise) rotation by ρ = π/2
keeps the current z′-axis unchanged, z′′ ≡ z′, while x′′ ≡ y′ and y′′ ≡ −x′; concatenating the two
rotations, we obtain x′′ ≡ −z, y′′ ≡ −x, and z′′ ≡ y, which is ARB(π/2,−π/2) as expected.

Exercise 2

The following piece of Matlab code summarizes the computations needed to answer to the first question:

% first question

tbar=0.8;

ddp1=0;ddp2=3.6*tbar;

ddpd=[ddp1;ddp2] % outputs the desired Cartesian acceleration at time t=0.8 s

% current state

q1=0;q2=pi/2;

dq1=-pi;dq2=pi;

dq=[dq1; dq2];

% direct kinematics

p=[l1*cos(q1)+l2*cos(q1+q2);

l1*sin(q1)+l2*sin(q1+q2)];

% Jacobian matrix

J=[-l1*sin(q1)-l2*sin(q1+q2) -l2*sin(q1+q2);

l1*cos(q1)+l2*cos(q1+q2) l2*cos(q1+q2)];

% time derivative of the Jacobian

dJ=[-l1*cos(q1)*dq1-l2*cos(q1+q2)*(dq1+dq2) -l2*cos(q1+q2)*(dq1+dq2);

-l1*sin(q1)*dq1-l2*sin(q1+q2)*(dq1+dq2) -l2*sin(q1+q2)*(dq1+dq2)];

ddqd=inv(J)*(ddpd - dJ*dq) % outputs the requested joint acceleration command

% end

2



The two resulting outputs of this code are

p̈d(0.8) =

 
0

2.88

!
[m/s2], q̈d(0.8) =

 
3.6

−16.7595

!
[rad/s2].

Similarly, at time t = 0 we request

pd(0) =

 
0

0.6
`
t3 − 1

´ !
t=0

=

 
0

−0.6

!
[m]

and

ṗd(0) =

 
0

1.8 t2

!
t=0

= 0 [m/s], p̈d(0) =

 
0

3.6 t

!
t=0

= 0 [m/s2].

The robot should be in an initial state (q(0), q̇(0)) such that p(0) = f(q(0)) = pd(0), but ṗ(0) 6= ṗd(0).
To determine q(0), we solve the inverse kinematics for pd(0), picking just one of the two solutions (in an
arbitrary way):

pd0=[0; -0.6];

% second joint computations

c2=(pd0(1)^2+pd0(2)^2-l1^2-l2^2)/(2*l1*l2);

s2=sqrt(1-c2^2); %other solution: -sqrt(1-c2^2)

% first joint computations

det=l1^2+l2^2+2*l1*l2*c2;

s1=(pd0(2)*(l1+l2*c2)-pd0(1)*l2*s2)/det;

c1=(pd0(1)*(l1+l2*c2)+pd0(2)*l2*s2)/det;

% output

q01=atan2(s1,c1);

q02=atan2(s2,c2);

q0=[q01; q02]

We note that the desired Cartesian position is strictly inside the workspace of the 2R robot, so that we
are away from kinematic singularities. The output of the above code gives

q(0) =

 
−2.4119

2.3005

!
[rad] =

 
−138.19

131.81

!
[deg],

yielding no initial Cartesian position error at t = 0, e(0) = pd(0)−p(0) = pd(0)−f(q(0)) = 0, as desired.
In order to be sure that ṗ(0) = J(q(0))q̇(0) 6= ṗd(0) = 0, we just need to avoid the specific choice q̇(0) = 0.
For example, by choosing

q̇(0) =

 
0.5

0.1

!
[rad/s] ⇒ ė(0) = ṗd(0)− ṗ(0) = −J(q(0)) q̇(0) =

 
−0.3067

−0.0596

!
[m/s].

To recover any initial Cartesian trajectory error (in velocity and/or position) over time and achieve thus
asymptotic trajectory tracking, the control law for the joint acceleration input should be chosen as

q̈ = J−1(q)
“
p̈d + Kd (ṗd − J(q)q̇) + Kp (pd − f(q))− J̇(q)q̇

”
,

with (symmetric) gain matrices Kp > 0, Kd > 0 (a PD feedback action). By choosing for instance

Kp = 100 · I2×2, Kd = 20 · I2×2,

we finally obtain at time t = 0

q̈(0) =

 
−9.8614

−2.2639

!
[rad/s2].

∗ ∗ ∗ ∗ ∗

3


