
Robotics I
April 1, 2016

Consider a planar 2R robot with links of length `1 = 1 and `2 = 0.5 [m]. The end-effector should
move smoothly from an initial point pin to a final point pfin in the robot workspace so that

− the motion starts and ends with zero Cartesian velocity and acceleration;

− at the start, the robot is in the ‘right arm’ inverse kinematics solution (i.e., with positive q2),
and remains in this type of solution throughout the motion;

− coordinated motion is enforced to the joints;

− symmetric limits on joint velocity, acceleration, and jerk are satisfied:

|q̇i| ≤ Vi, |q̈i| ≤ Ai, |
...
q i| ≤ Ji, i = 1, 2.

In order to address this motion task, choose a class of trajectories and determine, within the
considered class, a minimum time trajectory, given the following position data

pin =
(

0.4
1.2

)
⇒ pfin =

(
−1
−0.2

)
[m]

and joint limits

V1 = 1 [rad/s], A1 = 3 [rad/s2], J1 = 30 [rad/s3],

V2 = 2 [rad/s], A2 = 7.5 [rad/s2], J2 = 70 [rad/s3].

Provide the minimum feasible time T ∗ obtained and the maximum (absolute) values attained by
the velocity and the acceleration at the two joints.

At the trajectory midpoint, t = T ∗/2, determine the values of the end-effector Cartesian velocity
v and acceleration a, and draw the robot in its current configuration together with the vectors v
and a.

[180 minutes; open books]



Solution
April 1, 2016

In view of the nature of the given robot motion limits, it is highly recommended to define the
trajectory in the joint space.

The direct and inverse kinematics of the 2R planar robot are given by

p =
(
px

py

)
=
(
`1c1 + `2c12

`1s1 + `2s12

)
= f(q)

⇒ q =

(
q1

+/−

q2
+/−

)
=

(
ATAN2{py(`1 + `2c2)− px`2s2, px(`1 + `2c2) + py`2s2}

ATAN2{s2, c2}

)
= f−1(p),

with

c2 =
p2

x + p2
y − `21 − `22
2`1`2

, s2 = ±
√

1− c22,

and where the +/− associated as index to the joint angles q1 and q2 mean that for their evaluation
the + or, respectively, the − sign has been used in the definition of s2. Substituting the link lengths
and the problem data for p = pin and p = pfin, and picking up the solution with q+2 > 0 yields

qin =
(

49.83◦

69.51◦

)
=
(

0.8697
1.2132

)
[rad], qfin =

(
162.66◦

102.12◦

)
=
(

2.8391
1.7824

)
[rad].

Taking into account the smoothness requirement and the boundary conditions on velocity and
acceleration, we choose a polynomial trajectory of degree 5 for each joint. In the double normalized
form, its expression is

q(τ) = qin + ∆q
(
10τ3 − 15τ4 + 6τ5

)
, ∆q = qfin−qin =

(
1.9712
0.5693

)
[rad], τ =

t

T
∈ [0, 1].

In order to obtain the maximum values reached along this trajectory by the velocity, acceleration,
and jerk, which should satisfy the given limits, we compute the first four time derivatives:

q̇ =
∆q

T

(
30τ2 − 60τ3 + 30τ4

)
q̈ =

∆q

T 2

(
60τ − 180τ2 + 120τ3

)
...
q =

∆q

T 3

(
60− 360τ + 360τ2

)
....
q =

∆q

T 4
(−360 + 720τ) .

We analyze the constraints imposed by the joint limits starting with the one with highest differential
order. We will work now with scalar quantities, i.e., joint by joint, dropping for simplicity the joint
index. The maximum jerk in the closed interval τ ∈ [0, 1] occurs either at the boundaries or where
the fourth derivative is zero:

...
q (0) =

...
q (1) = 60

∆q
T 3

,
....
q (τ) = 0 @ τ∗ = 0.5 ⇒

...
q (0.5) = −30

∆q
T 3

.
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Thus, the minimum motion time T that satisfies the jerk limit is given by

|
...
q (τ)| ≤ J ⇒ T ≥ 3

√
60|∆q|
J

=: TJ .

The maximum acceleration occurs where the third derivative is zero (no need to check the value
at the boundaries, since we have q̈(0) = q̈(1) = 0 by construction):

...
q (τ) = 0 ⇐⇒ 1− 6τ + 6τ2 = 0 @ τ∗ = 0.5±

√
3

6
⇒ q̈(τ∗) = ± 5.7735

∆q
T 2

.

The minimum motion time T that satisfies the acceleration limit is given by

|q̈(τ)| ≤ A ⇒ T ≥
√

5.7735|∆q|
A

=: TA.

Similarly, the maximum velocity occurs where the second derivative is zero (again, no need to
check the value at the boundaries, since q̇(0) = q̇(1) = 0):

q̈(τ) = 0 ⇐⇒ τ(1− 3τ + 2τ2) = 0 @ τ∗ = {0, 0.5, 1} ⇒ q̇(0.5) =
30
16

∆q
T
,

and thus

|q̇(τ)| ≤ V ⇒ T ≥ 30
16
|∆q|
V

=: TV .

As a result, the minimum feasible motion time T ∗ is obtained as

T ∗ = max {TJ , TA, TV } = max

{
3.9148 3

√
|∆q|
J

, 2.4028

√
|∆q|
A

, 1.8750
|∆q|
V

}
.

Using the data (all in radians) of the problem at hand, we compute the minimum motion time for
the first joint as

T ∗1 = max {TJ,1, TA,1, TV,1} = max {1.5792, 1.9468, 3.6926} = 3.6926 [s],

where the velocity limit is the most constraining one. Similarly, for the second joint it is

T ∗2 = max {TJ,2, TA,2, TV,2} = max {0.7872, 0.6619, 0.5336} = 0.7872 [s]

and the jerk will be the variable reaching first its limit. Since coordinated motion of the joints
should be enforced, the common minimum motion time will be

T ∗ = max {T ∗1 , T ∗2 } = T ∗1 = 3.6926 [s],

with the second joint traveling much slower than it could in principle. The trajectory profiles of
position, velocity, acceleration, and jerk of the two joints are shown in Figs. 3–2.

The peak velocity of the two joints is reached at t = T ∗/2 = 1.8463 s

max
t∈[0,T∗]

q̇1(t) = q̇1(1.8463) = 1 [rad/s], max
t∈[0,T∗]

q̇2(t) = q̇2(1.8463) = 0.2890 [rad/s],

while the peak acceleration (in module) is attained at t =
(
0.5±

√
3/6
)
T ∗, namely at t = 0.7803 s

(max positive acceleration) and t = 2.9123 s (max negative acceleration = max deceleration)

max
t∈[0,T∗]

|q̈1(t)| = q̈1(0.7803) = 0.8339 [rad/s2], max
t∈[0,T∗]

|q̈2(t)| = q̈2(0.7803) = 0.2410 [rad/s2].
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Joint motion for T = 3.6926
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Joint velocity for T = 3.6926

Figure 1: Position [left] and velocity [right] of joint 1 (blue, solid) and joint 2 (red, dashed)
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Joint acceleration for T = 3.6926
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Joint jerk for T = 3.6926

Figure 2: Acceleration [left] and jerk [right] of joint 1 (blue, solid) and joint 2 (red, dashed)

We note also that coordinated motion is symmetric w.r.t. to the total time (for all T , and thus
also for T ∗). Therefore, the configuration reached at t = T ∗/2 will simply be

q∗ := q

(
T ∗

2

)
= qin +

∆q

2
=

qin + qfin

2
=
(

106.25◦

85.82◦

)
=
(

1.8544
1.4978

)
[rad].

Moreover, it is

q̇∗ := q̇

(
T ∗

2

)
=

30
16

∆q

T ∗
=
(

57.30
16.56

)
[◦/s] =

(
1

0.2890

)
[rad/s], q̈∗ := q̈

(
T ∗

2

)
= 0.

The robot analytic Jacobian J(q) = (∂f(q)/∂q) and its time derivative H(q, q̇) = J̇(q),

J(q) =
(
− (`1s1 + `2s12) −`2s12
`1c1 + `2c12 `2c12

)
, H(q, q̇) = −

(
`1c1q̇1 + `2c12(q̇1 + q̇2) `2c12(q̇1 + q̇2)
`1s1q̇1 + `2s12(q̇1 + q̇2) `2s12(q̇1 + q̇2)

)
,
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Cartesian motion of the 2R robot

Figure 3: The planar 2R robot arm in its initial configuration (blue), at the midpoint of the
trajectory (red), and in the final configuration (green), with the Cartesian path traced by its end-
effector (thin blue line). The two arrows placed at the midpoint represent the end-effector velocity
(black) and acceleration (magenta), respectively. Their length has been scaled by a factor 2 to fit.

take the numerical values at q = q∗, q̇ = q̇∗

J∗ := J(q∗) =
(
−0.8555 0.1045
−0.7688 −0.4890

)
, J̇

∗
:= H(q∗, q̇∗) =

(
0.9101 0.6303
−0.8253 0.1347

)
.

Therefore, the required Cartesian velocity and acceleration of the robot end-effector at the trajec-
tory midpoint are

ṗ∗ = J∗q̇∗ =
(
−0.8253
−0.9101

)
[m/s] p̈∗ = J∗q̈∗ + J̇

∗
q̇∗ = J̇

∗
q̇∗ =

(
1.0922
−0.7864

)
[m/s2].
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