
Robotics I
February 4, 2016

Exercise 1

We are given an incomplete time-varying rotation matrix from frame 0 to frame 1:

0R1(t) =


cos t a(t) b(t)

sin t
k(t)√

2
cos t c(t)

0 −k(t)√
2

sin t d(t)

 .

Determine the expressions of a(t), b(t), c(t), d(t), and k(t) in a consistent way.

Exercise 2

The table of Denavit-Hartenberg parameters of a 2-dof robot is:

i αi ai di θi

1 π/2 0 0 q1

2 0 0 q2 0

The two joints have a range limitation: |q1| ≤ 120◦ and |q2| ≤ 2 [m]. Determine all feasible inverse
kinematics solutions, if any, when the origin of frame 2 needs to be placed at 0p = (−1, 1) [m].

Exercise 3

Consider a planar 4R robot with links of lengths `i = 0.25 [m], i = 1, . . . , 4. The robot performs
simultaneously two tasks: moving the end-effector at a desired velocity vE and moving a midpoint
in the structure, i.e., the end of link 2, at another desired velocity vM , as in Fig. 1. Formalize the
problem and investigate the conditions for its solvability. When the robot is in the configuration
q = (π/3, π/6, 0,−π/2) [rad], determine if there exists a joint velocity q̇ ∈ R4 realizing the two
Cartesian velocities vM = (−0.2, 0.1) [m/s] and vE = (0.2, 0) [m/s]. If so, compute a solution. Is
it unique?

x0 

y0 vM 

vE 

Figure 1: A 4R planar robot with a double motion task

[turn the sheet for next exercise]
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Exercise 4

The end-effector of a planar robot moves in a cycle along the rectangular path ABCD, having
short side M and long side L, placed as in Fig. 2. The robot end-effector should pass through the
corner points. The Cartesian speed of the end-effector is limited above by Vmax > 0, while the
Cartesian acceleration is bounded in norm as ‖p̈‖ ≤ Amax > 0. The trajectory should start at rest
from point A and return at rest to the same point at the end. The Cartesian velocity ṗ(t) should
be continuous everywhere.

a) Determine the minimum feasible motion time T in a parametric way, sketching the speed
profile along the entire path.

b) Provide the numerical value of T using the following data:

M = 0.4 [m], L = 1.6 [m], Vmax = 1 [m/s], Amax = 2 [m/s2].

xt 

yt 

A 

B 

D 

C 

L 

M 

Figure 2: The cyclic rectangular path A→ B → C → D → A

[210 minutes; open books]
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Solution
February 4, 2016

Exercise 1

We need to impose orthonormality conditions to the columns of 0R1(t) and check finally that
det 0R1(t) = +1, for all times t. The first column r1 is already of unitary norm. For the second
column r2, we need to impose the unit norm condition

‖r2‖2 = a2(t) +
k2(t) cos2 t

2
+
k2(t) sin2 t

2
= a2(t) +

k2(t)
2

= 1 (1)

and the condition of orthogonality r2 ⊥ r1

a(t) cos t+
k(t) cos t√

2
sin t = 0.

The latter provides a(t) = −k(t) sin t/
√

2. Substituting in (1) yields

k2(t) sin2 t

2
+
k2(t)

2
= 1 ⇒ k(t) = ±

√
2

1 + sin2 t
. (2)

Therefore, the second column of 0R1(t) is

r2 =
( ∓ sin t√

1 + sin2 t

± cos t√
1 + sin2 t

∓ sin t√
1 + sin2 t

)T
. (3)

Similarly, for the third column r3, we impose first the orthogonality r3 ⊥ r1

b(t) cos t+ c(t) sin t = 0 ⇒ b(t) = α(t) sin t, c(t) = −α(t) cos t. (4)

Using (3) and (4), we impose next the orthogonality r3 ⊥ r2 as1

α(t)
sin2 t√

1 + sin2 t
+ α(t)

cos2 t√
1 + sin2 t

+ d(t)
sin t√

1 + sin2 t
= 0 ⇒ α(t) = −d(t) sin t.

Finally, the unit norm condition provides

‖r3‖2 = 1 ⇒ d2(t)
(
sin4 t+ sin2 t cos2 t+ 1

)
= 1 ⇒ d(t) =

±1√
1 + sin2 t

. (5)

The uncertainty left in the signs of k(t) and d(t), respectively in eq. (2) and eq. (5), is eliminated
by imposing the determinant of 0R1(t) to be equal to +1. This holds true when choosing either
both positive signs for k(t) and d(t), or both negative. The first solution is

0R1(t) =



cos t − sin t√
1 + sin2 t

− sin2 t√
1 + sin2 t

sin t
cos t√

1 + sin2 t

sin t cos t√
1 + sin2 t

0 − sin t√
1 + sin2 t

1√
1 + sin2 t


, (6)

and corresponds to the case when 0R1(0) = I. The second solution is as in (6), but with each
element of the second and third column having the opposite sign.

1The same ∓ sign is factored out in all three terms, and thus eliminated as irrelevant in a homogenous equation.
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Exercise 2

The given table of parameters refers to the planar RP robot in Fig. 3, where the associated Denavit-
Hartenberg frames are also shown. Please note the definition of the first joint angle q1, which differs
from what one may expect (there is an additional π/2 with respect to the second link orientation).

x0 

y0 

q1!

q2!

x1 

x2 

z1 

z2 

Figure 3: The RP robot, with its Denavit-Hartenberg frames and joint coordinates

The direct kinematics for the position p of the origin of frame 2 is then

p =
(
px

py

)
=
(

q2 sin q1

−q2 cos q1

)
.

Out of the singularity (q2 6= 0⇔ p 6= 0), the two solutions of the inverse kinematics are analytically
found as

q2 = ±‖p‖ = ±
√
p2
x + p2

y, q1 = ATAN2
{
px
q2
,−py

q2

}
. (7)

x1=x0 

y0 

q1=0!

30°!30°!

q2 > 0!

R=2!

x1=x0 

y0 

q1=0!

30°!30°!

q2 < 0!

R=2!

Figure 4: Robot workspace for |q1| ≤ 120◦, |q2| ≤ 2, shown when q2 > 0 (left) and q2 < 0 (right)
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For the desired position p = (−1, 1), we obtain

q′ =

 −3π
4√
2

 =

(
−135◦
√

2

)
, q′′ =

 π

4
−
√

2

 =

(
45◦

−
√

2

)
.

Thus, only the solution q′′ is within the joint range. This end-effector position belongs to the robot
workspace shown on the right in Fig. 4.

As a further numerical example, let the desired end-effector position be p = (0.25, 0.5) (a point in
the first quadrant). From eqs. (7), we have

q′ =

 150◦
√

3
2

 , q′′ =

 −30◦

−
√

3
2

 ,

and the solution q′′ is again the only feasible one. Indeed, for any p ∈ R2 belonging to the
intersection of the two ‘half’ workspaces in Fig. 4 (two cones of 60◦ around the positive and
negative x0 axis), there will be two feasible solutions to the inverse kinematics.

Exercise 3

Consider the position pM of the midpoint along the robot structure and the position pE of the
end-effector. Use the DH joint angles and partition the four-dimensional joint configuration q into
qM = (q1, q2) and qE = (q3, q4). The two relevant direct kinematics maps are

pM = fM (qM ) =
(
`1c1 + `2c12

`1s1 + `2s12

)
(8)

and

pE = fE(qM , qE) =
(

`1c1 + `2c12 + `3c123 + `4c1234

`1s1 + `2s12 + `3s123 + `4s1234

)
= pM + pME , (9)

with

pME = fME(qM , qE) =
(
`3c123 + `4c1234

`3s123 + `4s1234

)
, (10)

and where the usual shorthand notation for trigonometric quantities (e.g., s123 = sin(q1 + q2 + q3))
has been used.

Differentiating w.r.t. time eq. (8) and (9) yields

vM = ṗM =
∂fM (qM )
∂qM

q̇M =
(
−`1s1 − `2s12 −`2s12

`1c1 + `2c12 `2c12

)(
q̇1

q̇2

)
= JMM (qM )q̇M (11)
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and

vE = ṗE =
∂fE(qM , qE)

∂qM
q̇M +

∂fE(qM , qE)
∂qE

q̇E

=

(
− (`1s1 + `2s12 + `3s123 + `4s1234) − (`2s12 + `3s123 + `4s1234)

`1c1 + `2c12 + `3c123 + `4c1234 `2c12 + `3c123 + `4c1234

)(
q̇1

q̇2

)

+

(
−`3s123 − `4s1234 −`4s1234

`3c123 + `4c1234 `4c1234

)(
q̇3

q̇4

)
= JEM (qM , qE)q̇M + JEE(qM , qE)q̇E .

(12)
Note also that, from (9) and (10),

JEE(qM , qE) =
∂fE(qM , qE)

∂qE
=
∂fME(qM , qE)

∂qE
.

The simultaneous execution of the double task is represented by the 4×4 composite Jacobian J(q)
as

v =
(

vM

vE

)
=

(
JMM (qM ) O

JEM (qM , qE) JEE(qM , qE)

)(
q̇M
q̇E

)
= J(q)q̇. (13)

The block triangular structure of J indicates that the problem is solvable for any pair of generic
desired velocities vE ∈ R2 and vM ∈ R2 if and only if the two diagonal blocks JMM and JEE are
both nonsingular. It is easy to see that JMM is the Jacobian of the 2R robot sub-structure made
by the first two links. Thus

det JMM (qM ) = 0 ⇐⇒ q2 = 0 (stretched) or π (folded). (14)

On the other hand, the block JEE can be expressed in the DH frame 2, i.e., premultiplied by the
transpose of the 2× 2 (planar) rotation matrix 0R2(qM ), resulting in

0RT
2 (qM )JEE(qM , qE) =

(
c12 s12

−s12 c12

)(
−`3s123 − `4s1234 −`4s1234

`3c123 + `4c1234 `4c1234

)

=

(
−`3s3 − `4s34 −`4s34

`3c3 + `4c34 `4c34

)
.

Therefore, we recognize that the singularities of JEE are those of the Jacobian of the 2R robot
sub-structure made by the last two links, or

det JEE(q) = 0 ⇐⇒ q4 = 0 (stretched) or π (folded). (15)

When none of the singularity conditions (14) and (15) holds, the solution to (13) is given by
blockwise inversion of matrix J

q̇ = J−1(q)v =

(
J−1
MM (qM ) O

−J−1
EE(q)JEM (q)J−1

MM (qM ) J−1
EE(q)

)
v (16)

or
q̇M = J−1

MM (qM )vM , q̇E = J−1
EE(q) (vE − JEM (q)q̇M ) . (17)
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Note that the term in the last parentheses in (17) represents the part of the desired end-effector
velocity that is still missing, once the contribution given by the velocity q̇M of the first two joints
has been taken into account.

Turning now to the numerical evaluation, the configuration q = (π/3, π/6, 0,−π/2) is shown in
Fig. 5 and is clearly nonsingular.

x0 

y0 

vM 

vE 

Figure 5: The 4R planar robot in the configuration q = (π/3, π/6, 0,−π/2) with the prescribed
double motion task vM = (−0.2, 0.1) and vE = (0.2, 0)

Using `i = 0.25, i = 1, . . . , 4, the blocks of the complete Jacobian are

JMM =

(
−0.4665 −0.25

0.125 0

)
, JEM =

(
−0.7165 −0.5

0.375 0.25

)
, JEE =

(
−0.25 0

0.25 0.25

)
.

The joint velocity q̇ realizing the two Cartesian velocities vM = (−0.2, 0.1) and vE = (0.2, 0) are
computed as in (17), yielding

q̇M =

(
0.8

−0.6928

)
[rad/s], q̇E =

(
−1.7072

1.2

)
[rad/s], q̇ =

(
q̇M

q̇E

)
∈ R4. (18)

This solution is indeed unique.

Final note. A more complex approach to determine the solution would have been the following.
Let the solution to the first task be q̇M = J−1

MM (qM )vM and consider the second (redundant) task

JE(q)q̇ =
(

JEM (q) JEE(q)
)( q̇M

q̇E

)
= vE , (19)

where the Jacobian JE(q) is a 2× 4 matrix. All solutions to (19) can be written as

q̇∗ =

(
q̇∗M

q̇∗E

)
= J#

E (q)vE +
(
I − J#

E (q)JE(q)
)

q̇0, with arbitrary q̇0 ∈ R4. (20)

The first term in (20) is the minimum norm joint velocity solution given by the pseudoinverse of
the Jacobian JE . The second term is a joint velocity vector belonging to the null space N{JE} of
JE , thanks to the presence of the projection matrix P = I − J#

EJE . The null space is explored
by changing the generic joint velocity q̇0. For q̇0 = 0, the upper part q̇∗M of the minimum norm
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solution obtained will differ in general from the solution found for the first task, q̇∗M 6= J−1
MMvM ,

showing an incompatibility at the level of the velocities of the first two joints. This is what happens
in fact with the given numerical data:

q̇∗ = J#
E (q)vE =

(
−0.2037 −0.1591 0.1018 0.3627

)T
,

which differs in the first two components from (18). However, there exists indeed a choice of q̇0

in (20) that will provide a fully consistent solution. This is guaranteed by the fact that we found
already the solution (18) to our simultaneous double velocity task problem. For the case study,
setting for instance

q̇0 =
(

1.0037 −0.5337 −1.8090 0.8373
)T

in (20) will provide back the solution (18). We note also that q̇0 ∈ N{JE}, and thus P q̇0 = q̇0.

Exercise 4

The problem addressed in the Cartesian space. To guarantee continuity of the end-effector velocity
p(t) during the entire motion, it is necessary to stop at each of the path corners B, C, and D
(because the tangent to the path is discontinuous there). Therefore, we can treat separately each
side of the rectangle. The minimum time motion along a side will have either a trapezoidal speed
profile or a (degenerate) bang-bang acceleration profile. The type of profile will be identical on two
opposite sides, since it depends only on the length of the segment (M or L), once Vmax and Amax
are assigned. In order for a ‘coast’ phase to exist (i.e., the maximum admissible speed is reached,
at least for one instant) on each of the four sides, it is necessary and sufficient that

Case I: M ≥ V 2
max

Amax
(on the short sides) ⇒ L ≥M ≥ V 2

max

Amax
(also on the long sides).

Conversely, the profiles on all sides will be of the bang-bang acceleration type if and only if

Case II: L ≤ V 2
max

Amax
(on the long sides) ⇒ M ≤ L ≤ V 2

max

Amax
(also on the short sides).

Indeed, a mixed situation occurs when

Case III: M ≤ V 2
max

Amax
≤ L (bang-bang on short sides, trapezoidal speed on long sides).

From the known expression of the minimum time needed for a rest-to-rest motion along a straight
path of length δ with a trapezoidal speed profile

Tδ =
δAmax + V 2

max

AmaxVmax
, for δ = {M,L},

the motion time in Case I will be:

T = 2
(
MAmax + V 2

max

AmaxVmax
+
LAmax + V 2

max

AmaxVmax

)
=

2(M + L)Amax + 4V 2
max

AmaxVmax
. (21)

For Case II, the velocity profile on each side will be triangular, with maximum acceleration and
deceleration phases. Let T∆ be the travel time on one of the sides. At the mid time t = T∆/2, the
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peak speed Amax(T∆/2) is reached. The displacement will be equal to 1
2Amax(T/2)2, where half

of the length of the side has been traced. Therefore,

1
2
Amax(T∆/2)2 =

∆
2

⇒ T∆ = 2
√

∆
Amax

, for ∆ = {M,L},

and the total motion time will be

T = 2

(
2
√

M

Amax
+ 2

√
L

Amax

)
= 4
√
M +

√
L√

Amax
. (22)

Finally, Case III will be a combination of the two formulas (21) and (22). Thus,

T = 2
LAmax + V 2

max

AmaxVmax
+ 4

√
M

Amax
. (23)

Using the numerical data, we see that Case III applies since

M = 0.4 <
(
V 2
max

Amax
=

1
2

=
)

0.5 < 1.6 = L.

From (23), the total travel time is then T = 5.989 s.

Note that the total length of the rectangular path is 2(M +L) = 4 [m]; if we could trace it always
at maximum speed Vmax = 1 m/s from the beginning to its end, this would take Tideal = 4 s.
Because of the limited acceleration and of the required continuity of velocity, motion lasts about
50% longer than in the ideal (but not realizable) limit.

t 

T!=0.895"

||v||"[m/s]"

1"

[s]"

0.895"

T!=0.895" TL=2.1" TL=2.1" T=5.989"

A B C D 

Figure 6: Time profile of the scalar speed along the rectangular path

Figure 6 gives the profile of the (scalar) speed along the entire rectangular path. Note that this
speed is always non-negative. Figure 7 reports the associated profiles of the vx and vy components
of the Cartesian velocity v = ṗ. Indeed, continuity is enforced at all times.
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t 

vx![m/s]!

[s]!

0.895!

T=5.989!

A B C D 

t 

[m/s]!

1!

[s]!

T=5.989!

A B C D vy!

-0.895!

-1!

Figure 7: Time profiles of the components of the Cartesian velocity v along the rectangular path
of Fig. 2: vx (top) and vy (bottom)
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