Robotics I

February 4, 2016

Exercise 1

We are given an incomplete time-varying rotation matrix from frame 0 to frame 1 :

$$
{ }^{0} \boldsymbol{R}_{1}(t)=\left(\begin{array}{ccc}
\cos t & a(t) & b(t) \\
\sin t & \frac{k(t)}{\sqrt{2}} \cos t & c(t) \\
0 & -\frac{k(t)}{\sqrt{2}} \sin t & d(t)
\end{array}\right)
$$

Determine the expressions of $a(t), b(t), c(t), d(t)$, and $k(t)$ in a consistent way.

Exercise 2

The table of Denavit-Hartenberg parameters of a 2-dof robot is:

i	α_{i}	a_{i}	d_{i}	θ_{i}
1	$\pi / 2$	0	0	q_{1}
2	0	0	q_{2}	0

The two joints have a range limitation: $\left|q_{1}\right| \leq 120^{\circ}$ and $\left|q_{2}\right| \leq 2[\mathrm{~m}]$. Determine all feasible inverse kinematics solutions, if any, when the origin of frame 2 needs to be placed at ${ }^{0} \boldsymbol{p}=(-1,1)[\mathrm{m}]$.

Exercise 3

Consider a planar 4R robot with links of lengths $\ell_{i}=0.25[\mathrm{~m}], i=1, \ldots, 4$. The robot performs simultaneously two tasks: moving the end-effector at a desired velocity \boldsymbol{v}_{E} and moving a midpoint in the structure, i.e., the end of link 2, at another desired velocity \boldsymbol{v}_{M}, as in Fig. 1. Formalize the problem and investigate the conditions for its solvability. When the robot is in the configuration $\boldsymbol{q}=(\pi / 3, \pi / 6,0,-\pi / 2)[\mathrm{rad}]$, determine if there exists a joint velocity $\dot{\boldsymbol{q}} \in \mathbb{R}^{4}$ realizing the two Cartesian velocities $\boldsymbol{v}_{M}=(-0.2,0.1)[\mathrm{m} / \mathrm{s}]$ and $\boldsymbol{v}_{E}=(0.2,0)[\mathrm{m} / \mathrm{s}]$. If so, compute a solution. Is it unique?

Figure 1: A 4R planar robot with a double motion task

Exercise 4

The end-effector of a planar robot moves in a cycle along the rectangular path $A B C D$, having short side M and long side L, placed as in Fig. 2. The robot end-effector should pass through the corner points. The Cartesian speed of the end-effector is limited above by $V_{\max }>0$, while the Cartesian acceleration is bounded in norm as $\|\ddot{\boldsymbol{p}}\| \leq A_{\max }>0$. The trajectory should start at rest from point A and return at rest to the same point at the end. The Cartesian velocity $\dot{\boldsymbol{p}}(t)$ should be continuous everywhere.
a) Determine the minimum feasible motion time T in a parametric way, sketching the speed profile along the entire path.
b) Provide the numerical value of T using the following data:

$$
M=0.4[\mathrm{~m}], \quad L=1.6[\mathrm{~m}], \quad V_{\max }=1[\mathrm{~m} / \mathrm{s}], \quad A_{\max }=2\left[\mathrm{~m} / \mathrm{s}^{2}\right] .
$$

Figure 2: The cyclic rectangular path $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$
[210 minutes; open books]

Solution

February 4, 2016

Exercise 1

We need to impose orthonormality conditions to the columns of ${ }^{0} \boldsymbol{R}_{1}(t)$ and check finally that $\operatorname{det}{ }^{0} \boldsymbol{R}_{1}(t)=+1$, for all times t. The first column \boldsymbol{r}_{1} is already of unitary norm. For the second column \boldsymbol{r}_{2}, we need to impose the unit norm condition

$$
\begin{equation*}
\left\|\boldsymbol{r}_{2}\right\|^{2}=a^{2}(t)+\frac{k^{2}(t) \cos ^{2} t}{2}+\frac{k^{2}(t) \sin ^{2} t}{2}=a^{2}(t)+\frac{k^{2}(t)}{2}=1 \tag{1}
\end{equation*}
$$

and the condition of orthogonality $\boldsymbol{r}_{2} \perp \boldsymbol{r}_{1}$

$$
a(t) \cos t+\frac{k(t) \cos t}{\sqrt{2}} \sin t=0
$$

The latter provides $a(t)=-k(t) \sin t / \sqrt{2}$. Substituting in (1) yields

$$
\begin{equation*}
\frac{k^{2}(t) \sin ^{2} t}{2}+\frac{k^{2}(t)}{2}=1 \quad \Rightarrow \quad k(t)= \pm \sqrt{\frac{2}{1+\sin ^{2} t}} . \tag{2}
\end{equation*}
$$

Therefore, the second column of ${ }^{0} \boldsymbol{R}_{1}(t)$ is

$$
\begin{equation*}
\boldsymbol{r}_{2}=\left(\frac{\mp \sin t}{\sqrt{1+\sin ^{2} t}} \quad \frac{ \pm \cos t}{\sqrt{1+\sin ^{2} t}} \frac{\mp \sin t}{\sqrt{1+\sin ^{2} t}}\right)^{T} . \tag{3}
\end{equation*}
$$

Similarly, for the third column \boldsymbol{r}_{3}, we impose first the orthogonality $\boldsymbol{r}_{3} \perp \boldsymbol{r}_{1}$

$$
\begin{equation*}
b(t) \cos t+c(t) \sin t=0 \quad \Rightarrow \quad b(t)=\alpha(t) \sin t, \quad c(t)=-\alpha(t) \cos t . \tag{4}
\end{equation*}
$$

Using (3) and (4), we impose next the orthogonality $\boldsymbol{r}_{3} \perp \boldsymbol{r}_{2}$ as 1

$$
\alpha(t) \frac{\sin ^{2} t}{\sqrt{1+\sin ^{2} t}}+\alpha(t) \frac{\cos ^{2} t}{\sqrt{1+\sin ^{2} t}}+d(t) \frac{\sin t}{\sqrt{1+\sin ^{2} t}}=0 \quad \Rightarrow \quad \alpha(t)=-d(t) \sin t
$$

Finally, the unit norm condition provides

$$
\begin{equation*}
\left\|\boldsymbol{r}_{3}\right\|^{2}=1 \quad \Rightarrow \quad d^{2}(t)\left(\sin ^{4} t+\sin ^{2} t \cos ^{2} t+1\right)=1 \quad \Rightarrow \quad d(t)=\frac{ \pm 1}{\sqrt{1+\sin ^{2} t}} \tag{5}
\end{equation*}
$$

The uncertainty left in the signs of $k(t)$ and $d(t)$, respectively in eq. (2) and eq. (5), is eliminated by imposing the determinant of ${ }^{0} \boldsymbol{R}_{1}(t)$ to be equal to +1 . This holds true when choosing either both positive signs for $k(t)$ and $d(t)$, or both negative. The first solution is

$$
{ }^{0} \boldsymbol{R}_{1}(t)=\left(\begin{array}{ccc}
\cos t & -\frac{\sin t}{\sqrt{1+\sin ^{2} t}} & -\frac{\sin ^{2} t}{\sqrt{1+\sin ^{2} t}} \tag{6}\\
\sin t & \frac{\cos t}{\sqrt{1+\sin ^{2} t}} & \frac{\sin t \cos t}{\sqrt{1+\sin ^{2} t}} \\
0 & -\frac{\sin t}{\sqrt{1+\sin ^{2} t}} & \frac{1}{\sqrt{1+\sin ^{2} t}}
\end{array}\right)
$$

and corresponds to the case when ${ }^{0} \boldsymbol{R}_{1}(0)=\boldsymbol{I}$. The second solution is as in (6), but with each element of the second and third column having the opposite sign.

[^0]
Exercise 2

The given table of parameters refers to the planar RP robot in Fig. 3, where the associated DenavitHartenberg frames are also shown. Please note the definition of the first joint angle q_{1}, which differs from what one may expect (there is an additional $\pi / 2$ with respect to the second link orientation).

Figure 3: The RP robot, with its Denavit-Hartenberg frames and joint coordinates
The direct kinematics for the position \boldsymbol{p} of the origin of frame 2 is then

$$
\boldsymbol{p}=\binom{p_{x}}{p_{y}}=\binom{q_{2} \sin q_{1}}{-q_{2} \cos q_{1}} .
$$

Out of the singularity $\left(q_{2} \neq 0 \Leftrightarrow \boldsymbol{p} \neq 0\right)$, the two solutions of the inverse kinematics are analytically found as

$$
\begin{equation*}
q_{2}= \pm\|\boldsymbol{p}\|= \pm \sqrt{p_{x}^{2}+p_{y}^{2}}, \quad q_{1}=\operatorname{ATAN} 2\left\{\frac{p_{x}}{q_{2}},-\frac{p_{y}}{q_{2}}\right\} \tag{7}
\end{equation*}
$$

Figure 4: Robot workspace for $\left|q_{1}\right| \leq 120^{\circ},\left|q_{2}\right| \leq 2$, shown when $q_{2}>0$ (left) and $q_{2}<0$ (right)

For the desired position $\boldsymbol{p}=(-1,1)$, we obtain

$$
\boldsymbol{q}^{\prime}=\binom{-\frac{3 \pi}{4}}{\sqrt{2}}=\binom{-135^{\circ}}{\sqrt{2}}, \quad \boldsymbol{q}^{\prime \prime}=\binom{\frac{\pi}{4}}{-\sqrt{2}}=\binom{45^{\circ}}{-\sqrt{2}} .
$$

Thus, only the solution $\boldsymbol{q}^{\prime \prime}$ is within the joint range. This end-effector position belongs to the robot workspace shown on the right in Fig. 4.
As a further numerical example, let the desired end-effector position be $\boldsymbol{p}=(0.25,0.5)$ (a point in the first quadrant). From eqs. (7), we have

$$
\boldsymbol{q}^{\prime}=\binom{150^{\circ}}{\frac{\sqrt{3}}{2}}, \quad \boldsymbol{q}^{\prime \prime}=\binom{-30^{\circ}}{-\frac{\sqrt{3}}{2}}
$$

and the solution $\boldsymbol{q}^{\prime \prime}$ is again the only feasible one. Indeed, for any $\boldsymbol{p} \in \mathbb{R}^{2}$ belonging to the intersection of the two 'half' workspaces in Fig. 4 (two cones of 60° around the positive and negative \boldsymbol{x}_{0} axis), there will be two feasible solutions to the inverse kinematics.

Exercise 3

Consider the position \boldsymbol{p}_{M} of the midpoint along the robot structure and the position \boldsymbol{p}_{E} of the end-effector. Use the DH joint angles and partition the four-dimensional joint configuration \boldsymbol{q} into $\boldsymbol{q}_{M}=\left(q_{1}, q_{2}\right)$ and $\boldsymbol{q}_{E}=\left(q_{3}, q_{4}\right)$. The two relevant direct kinematics maps are

$$
\begin{equation*}
\boldsymbol{p}_{M}=\boldsymbol{f}_{M}\left(\boldsymbol{q}_{M}\right)=\binom{\ell_{1} c_{1}+\ell_{2} c_{12}}{\ell_{1} s_{1}+\ell_{2} s_{12}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{p}_{E}=\boldsymbol{f}_{E}\left(\boldsymbol{q}_{M}, \boldsymbol{q}_{E}\right)=\binom{\ell_{1} c_{1}+\ell_{2} c_{12}+\ell_{3} c_{123}+\ell_{4} c_{1234}}{\ell_{1} s_{1}+\ell_{2} s_{12}+\ell_{3} s_{123}+\ell_{4} s_{1234}}=\boldsymbol{p}_{M}+\boldsymbol{p}_{M E} \tag{9}
\end{equation*}
$$

with

$$
\begin{equation*}
\boldsymbol{p}_{M E}=\boldsymbol{f}_{M E}\left(\boldsymbol{q}_{M}, \boldsymbol{q}_{E}\right)=\binom{\ell_{3} c_{123}+\ell_{4} c_{1234}}{\ell_{3} s_{123}+\ell_{4} s_{1234}} \tag{10}
\end{equation*}
$$

and where the usual shorthand notation for trigonometric quantities (e.g., $s_{123}=\sin \left(q_{1}+q_{2}+q_{3}\right)$) has been used.

Differentiating w.r.t. time eq. (8) and (9) yields

$$
\boldsymbol{v}_{M}=\dot{\boldsymbol{p}}_{M}=\frac{\partial \boldsymbol{f}_{M}\left(\boldsymbol{q}_{M}\right)}{\partial \boldsymbol{q}_{M}} \dot{\boldsymbol{q}}_{M}=\left(\begin{array}{cc}
-\ell_{1} s_{1}-\ell_{2} s_{12} & -\ell_{2} s_{12} \tag{11}\\
\ell_{1} c_{1}+\ell_{2} c_{12} & \ell_{2} c_{12}
\end{array}\right)\binom{\dot{q}_{1}}{\dot{q}_{2}}=\boldsymbol{J}_{M M}\left(\boldsymbol{q}_{M}\right) \dot{\boldsymbol{q}}_{M}
$$

and

$$
\begin{align*}
\boldsymbol{v}_{E}=\dot{\boldsymbol{p}}_{E}= & \frac{\partial \boldsymbol{f}_{E}\left(\boldsymbol{q}_{M}, \boldsymbol{q}_{E}\right)}{\partial \boldsymbol{q}_{M}} \dot{\boldsymbol{q}}_{M}+\frac{\partial \boldsymbol{f}_{E}\left(\boldsymbol{q}_{M}, \boldsymbol{q}_{E}\right)}{\partial \boldsymbol{q}_{E}} \dot{\boldsymbol{q}}_{E} \\
= & \left(\begin{array}{cc}
-\left(\ell_{1} s_{1}+\ell_{2} s_{12}+\ell_{3} s_{123}+\ell_{4} s_{1234}\right) & -\left(\ell_{2} s_{12}+\ell_{3} s_{123}+\ell_{4} s_{1234}\right) \\
\ell_{1} c_{1}+\ell_{2} c_{12}+\ell_{3} c_{123}+\ell_{4} c_{1234} & \ell_{2} c_{12}+\ell_{3} c_{123}+\ell_{4} c_{1234}
\end{array}\right)\binom{\dot{q}_{1}}{\dot{q}_{2}} \\
& +\left(\begin{array}{cc}
-\ell_{3} s_{123}-\ell_{4} s_{1234} & -\ell_{4} s_{1234} \\
\ell_{3} c_{123}+\ell_{4} c_{1234} & \ell_{4} c_{1234}
\end{array}\right)\binom{\dot{q}_{3}}{\dot{q}_{4}} \\
= & J_{E M}\left(\boldsymbol{q}_{M}, \boldsymbol{q}_{E}\right) \dot{\boldsymbol{q}}_{M}+\boldsymbol{J}_{E E}\left(\boldsymbol{q}_{M}, \boldsymbol{q}_{E}\right) \dot{\boldsymbol{q}}_{E} . \tag{12}
\end{align*}
$$

Note also that, from (9) and (10),

$$
\boldsymbol{J}_{E E}\left(\boldsymbol{q}_{M}, \boldsymbol{q}_{E}\right)=\frac{\partial \boldsymbol{f}_{E}\left(\boldsymbol{q}_{M}, \boldsymbol{q}_{E}\right)}{\partial \boldsymbol{q}_{E}}=\frac{\partial \boldsymbol{f}_{M E}\left(\boldsymbol{q}_{M}, \boldsymbol{q}_{E}\right)}{\partial \boldsymbol{q}_{E}}
$$

The simultaneous execution of the double task is represented by the 4×4 composite Jacobian $\boldsymbol{J}(\boldsymbol{q})$ as

$$
\boldsymbol{v}=\binom{\boldsymbol{v}_{M}}{\boldsymbol{v}_{E}}=\left(\begin{array}{cc}
\boldsymbol{J}_{M M}\left(\boldsymbol{q}_{M}\right) & \boldsymbol{O} \tag{13}\\
\boldsymbol{J}_{E M}\left(\boldsymbol{q}_{M}, \boldsymbol{q}_{E}\right) & \boldsymbol{J}_{E E}\left(\boldsymbol{q}_{M}, \boldsymbol{q}_{E}\right)
\end{array}\right)\binom{\dot{\boldsymbol{q}}_{M}}{\dot{\boldsymbol{q}}_{E}}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}} .
$$

The block triangular structure of \boldsymbol{J} indicates that the problem is solvable for any pair of generic desired velocities $\boldsymbol{v}_{E} \in \mathbb{R}^{2}$ and $\boldsymbol{v}_{M} \in \mathbb{R}^{2}$ if and only if the two diagonal blocks $\boldsymbol{J}_{M M}$ and $\boldsymbol{J}_{E E}$ are both nonsingular. It is easy to see that $\boldsymbol{J}_{M M}$ is the Jacobian of the 2 R robot sub-structure made by the first two links. Thus

$$
\begin{equation*}
\operatorname{det} \boldsymbol{J}_{M M}\left(\boldsymbol{q}_{M}\right)=0 \quad \Longleftrightarrow \quad q_{2}=0 \text { (stretched) or } \pi \text { (folded). } \tag{14}
\end{equation*}
$$

On the other hand, the block $\boldsymbol{J}_{E E}$ can be expressed in the DH frame 2, i.e., premultiplied by the transpose of the 2×2 (planar) rotation matrix ${ }^{0} \boldsymbol{R}_{2}\left(\boldsymbol{q}_{M}\right)$, resulting in

$$
\begin{aligned}
{ }^{0} \boldsymbol{R}_{2}^{T}\left(\boldsymbol{q}_{M}\right) \boldsymbol{J}_{E E}\left(\boldsymbol{q}_{M}, \boldsymbol{q}_{E}\right) & =\left(\begin{array}{cc}
c_{12} & s_{12} \\
-s_{12} & c_{12}
\end{array}\right)\left(\begin{array}{cc}
-\ell_{3} s_{123}-\ell_{4} s_{1234} & -\ell_{4} s_{1234} \\
\ell_{3} c_{123}+\ell_{4} c_{1234} & \ell_{4} c_{1234}
\end{array}\right) \\
& =\left(\begin{array}{cc}
-\ell_{3} s_{3}-\ell_{4} s_{34} & -\ell_{4} s_{34} \\
\ell_{3} c_{3}+\ell_{4} c_{34} & \ell_{4} c_{34}
\end{array}\right) .
\end{aligned}
$$

Therefore, we recognize that the singularities of $\boldsymbol{J}_{E E}$ are those of the Jacobian of the 2 R robot sub-structure made by the last two links, or

$$
\begin{equation*}
\operatorname{det} \boldsymbol{J}_{E E}(\boldsymbol{q})=0 \quad \Longleftrightarrow \quad q_{4}=0 \text { (stretched) or } \pi \text { (folded). } \tag{15}
\end{equation*}
$$

When none of the singularity conditions (14) and (15) holds, the solution to (13) is given by blockwise inversion of matrix \boldsymbol{J}

$$
\dot{\boldsymbol{q}}=\boldsymbol{J}^{-1}(\boldsymbol{q}) \boldsymbol{v}=\left(\begin{array}{cc}
\boldsymbol{J}_{M M}^{-1}\left(\boldsymbol{q}_{M}\right) & \boldsymbol{O} \tag{16}\\
-\boldsymbol{J}_{E E}^{-1}(\boldsymbol{q}) \boldsymbol{J}_{E M}(\boldsymbol{q}) \boldsymbol{J}_{M M}^{-1}\left(\boldsymbol{q}_{M}\right) & \boldsymbol{J}_{E E}^{-1}(\boldsymbol{q})
\end{array}\right) \boldsymbol{v}
$$

or

$$
\begin{equation*}
\dot{\boldsymbol{q}}_{M}=\boldsymbol{J}_{M M}^{-1}\left(\boldsymbol{q}_{M}\right) \boldsymbol{v}_{M}, \quad \dot{\boldsymbol{q}}_{E}=\boldsymbol{J}_{E E}^{-1}(\boldsymbol{q})\left(\boldsymbol{v}_{E}-\boldsymbol{J}_{E M}(\boldsymbol{q}) \dot{\boldsymbol{q}}_{M}\right) \tag{17}
\end{equation*}
$$

Note that the term in the last parentheses in (17) represents the part of the desired end-effector velocity that is still missing, once the contribution given by the velocity $\dot{\boldsymbol{q}}_{M}$ of the first two joints has been taken into account.
Turning now to the numerical evaluation, the configuration $\boldsymbol{q}=(\pi / 3, \pi / 6,0,-\pi / 2)$ is shown in Fig. 5 and is clearly nonsingular.

Figure 5: The 4R planar robot in the configuration $\boldsymbol{q}=(\pi / 3, \pi / 6,0,-\pi / 2)$ with the prescribed double motion task $\boldsymbol{v}_{M}=(-0.2,0.1)$ and $\boldsymbol{v}_{E}=(0.2,0)$

Using $\ell_{i}=0.25, i=1, \ldots, 4$, the blocks of the complete Jacobian are

$$
\boldsymbol{J}_{M M}=\left(\begin{array}{cc}
-0.4665 & -0.25 \\
0.125 & 0
\end{array}\right), \quad \boldsymbol{J}_{E M}=\left(\begin{array}{cc}
-0.7165 & -0.5 \\
0.375 & 0.25
\end{array}\right), \quad \boldsymbol{J}_{E E}=\left(\begin{array}{cc}
-0.25 & 0 \\
0.25 & 0.25
\end{array}\right) .
$$

The joint velocity $\dot{\boldsymbol{q}}$ realizing the two Cartesian velocities $\boldsymbol{v}_{M}=(-0.2,0.1)$ and $\boldsymbol{v}_{E}=(0.2,0)$ are computed as in (17), yielding

$$
\begin{equation*}
\dot{\boldsymbol{q}}_{M}=\binom{0.8}{-0.6928}[\mathrm{rad} / \mathrm{s}], \quad \dot{\boldsymbol{q}}_{E}=\binom{-1.7072}{1.2}[\mathrm{rad} / \mathrm{s}], \quad \dot{\boldsymbol{q}}=\binom{\dot{\boldsymbol{q}}_{M}}{\dot{\boldsymbol{q}}_{E}} \in \mathbb{R}^{4} \tag{18}
\end{equation*}
$$

This solution is indeed unique.
Final note. A more complex approach to determine the solution would have been the following. Let the solution to the first task be $\dot{\boldsymbol{q}}_{M}=\boldsymbol{J}_{M M}^{-1}\left(\boldsymbol{q}_{M}\right) \boldsymbol{v}_{M}$ and consider the second (redundant) task

$$
\boldsymbol{J}_{E}(\boldsymbol{q}) \dot{\boldsymbol{q}}=\left(\begin{array}{ll}
\boldsymbol{J}_{E M}(\boldsymbol{q}) & \boldsymbol{J}_{E E}(\boldsymbol{q}) \tag{19}
\end{array}\right)\binom{\dot{\boldsymbol{q}}_{M}}{\dot{\boldsymbol{q}}_{E}}=\boldsymbol{v}_{E},
$$

where the Jacobian $\boldsymbol{J}_{E}(\boldsymbol{q})$ is a 2×4 matrix. All solutions to (19) can be written as

$$
\begin{equation*}
\dot{\boldsymbol{q}}^{*}=\binom{\dot{\boldsymbol{q}}_{M}^{*}}{\dot{\boldsymbol{q}}_{E}^{*}}=\boldsymbol{J}_{E}^{\#}(\boldsymbol{q}) \boldsymbol{v}_{E}+\left(\boldsymbol{I}-\boldsymbol{J}_{E}^{\#}(\boldsymbol{q}) \boldsymbol{J}_{E}(\boldsymbol{q})\right) \dot{\boldsymbol{q}}_{0}, \quad \text { with arbitrary } \dot{\boldsymbol{q}}_{0} \in \mathbb{R}^{4} \tag{20}
\end{equation*}
$$

The first term in (20) is the minimum norm joint velocity solution given by the pseudoinverse of the Jacobian \boldsymbol{J}_{E}. The second term is a joint velocity vector belonging to the null space $\mathcal{N}\left\{\boldsymbol{J}_{E}\right\}$ of \boldsymbol{J}_{E}, thanks to the presence of the projection matrix $\boldsymbol{P}=\boldsymbol{I}-\boldsymbol{J}_{E}^{\#} \boldsymbol{J}_{E}$. The null space is explored by changing the generic joint velocity $\dot{\boldsymbol{q}}_{0}$. For $\dot{\boldsymbol{q}}_{0}=\mathbf{0}$, the upper part $\dot{\boldsymbol{q}}_{M}^{*}$ of the minimum norm
solution obtained will differ in general from the solution found for the first task, $\dot{\boldsymbol{q}}_{M}^{*} \neq \boldsymbol{J}_{M M}^{-1} \boldsymbol{v}_{M}$, showing an incompatibility at the level of the velocities of the first two joints. This is what happens in fact with the given numerical data:

$$
\dot{\boldsymbol{q}}^{*}=\boldsymbol{J}_{E}^{\#}(\boldsymbol{q}) \boldsymbol{v}_{E}=\left(\begin{array}{llll}
-0.2037 & -0.1591 & 0.1018 & 0.3627
\end{array}\right)^{T},
$$

which differs in the first two components from (18). However, there exists indeed a choice of $\dot{\boldsymbol{q}}_{0}$ in (20) that will provide a fully consistent solution. This is guaranteed by the fact that we found already the solution (18) to our simultaneous double velocity task problem. For the case study, setting for instance

$$
\dot{\boldsymbol{q}}_{0}=\left(\begin{array}{llll}
1.0037 & -0.5337 & -1.8090 & 0.8373
\end{array}\right)^{T}
$$

in (20) will provide back the solution (18). We note also that $\dot{\boldsymbol{q}}_{0} \in \mathcal{N}\left\{\boldsymbol{J}_{E}\right\}$, and thus $\boldsymbol{P} \dot{\boldsymbol{q}}_{0}=\dot{\boldsymbol{q}}_{0}$.

Exercise 4

The problem addressed in the Cartesian space. To guarantee continuity of the end-effector velocity $\boldsymbol{p}(t)$ during the entire motion, it is necessary to stop at each of the path corners B, C, and D (because the tangent to the path is discontinuous there). Therefore, we can treat separately each side of the rectangle. The minimum time motion along a side will have either a trapezoidal speed profile or a (degenerate) bang-bang acceleration profile. The type of profile will be identical on two opposite sides, since it depends only on the length of the segment (M or L), once $V_{\max }$ and $A_{\max }$ are assigned. In order for a 'coast' phase to exist (i.e., the maximum admissible speed is reached, at least for one instant) on each of the four sides, it is necessary and sufficient that

Case I: $\quad M \geq \frac{V_{\max }^{2}}{A_{\max }}$ (on the short sides) $\Rightarrow L \geq M \geq \frac{V_{\max }^{2}}{A_{\max }}$ (also on the long sides).
Conversely, the profiles on all sides will be of the bang-bang acceleration type if and only if
Case II: $\quad L \leq \frac{V_{\max }^{2}}{A_{\max }}$ (on the long sides) $\Rightarrow \quad M \leq L \leq \frac{V_{\max }^{2}}{A_{\max }}$ (also on the short sides).
Indeed, a mixed situation occurs when
Case III: $\quad M \leq \frac{V_{\max }^{2}}{A_{\max }} \leq L \quad$ (bang-bang on short sides, trapezoidal speed on long sides).
From the known expression of the minimum time needed for a rest-to-rest motion along a straight path of length δ with a trapezoidal speed profile

$$
T_{\delta}=\frac{\delta A_{\max }+V_{\max }^{2}}{A_{\max } V_{\max }}, \quad \text { for } \delta=\{M, L\}
$$

the motion time in Case I will be:

$$
\begin{equation*}
T=2\left(\frac{M A_{\max }+V_{\max }^{2}}{A_{\max } V_{\max }}+\frac{L A_{\max }+V_{\max }^{2}}{A_{\max } V_{\max }}\right)=\frac{2(M+L) A_{\max }+4 V_{\max }^{2}}{A_{\max } V_{\max }} . \tag{21}
\end{equation*}
$$

For Case II, the velocity profile on each side will be triangular, with maximum acceleration and deceleration phases. Let T_{Δ} be the travel time on one of the sides. At the mid time $t=T_{\Delta} / 2$, the
peak speed $A_{\max }\left(T_{\Delta} / 2\right)$ is reached. The displacement will be equal to $\frac{1}{2} A_{\max }(T / 2)^{2}$, where half of the length of the side has been traced. Therefore,

$$
\frac{1}{2} A_{\max }\left(T_{\Delta} / 2\right)^{2}=\frac{\Delta}{2} \quad \Rightarrow \quad T_{\Delta}=2 \sqrt{\frac{\Delta}{A_{\max }}}, \quad \text { for } \Delta=\{M, L\}
$$

and the total motion time will be

$$
\begin{equation*}
T=2\left(2 \sqrt{\frac{M}{A_{\max }}}+2 \sqrt{\frac{L}{A_{\max }}}\right)=4 \frac{\sqrt{M}+\sqrt{L}}{\sqrt{A_{\max }}} . \tag{22}
\end{equation*}
$$

Finally, Case III will be a combination of the two formulas (21) and (22). Thus,

$$
\begin{equation*}
T=2 \frac{L A_{\max }+V_{\max }^{2}}{A_{\max } V_{\max }}+4 \sqrt{\frac{M}{A_{\max }}} . \tag{23}
\end{equation*}
$$

Using the numerical data, we see that Case III applies since

$$
M=0.4<\left(\frac{V_{\max }^{2}}{A_{\max }}=\frac{1}{2}=\right) 0.5<1.6=L .
$$

From (23), the total travel time is then $T=5.989 \mathrm{~s}$.
Note that the total length of the rectangular path is $2(M+L)=4[\mathrm{~m}]$; if we could trace it always at maximum speed $V_{\max }=1 \mathrm{~m} / \mathrm{s}$ from the beginning to its end, this would take $T_{\text {ideal }}=4 \mathrm{~s}$. Because of the limited acceleration and of the required continuity of velocity, motion lasts about 50% longer than in the ideal (but not realizable) limit.

Figure 6: Time profile of the scalar speed along the rectangular path
Figure 6 gives the profile of the (scalar) speed along the entire rectangular path. Note that this speed is always non-negative. Figure 7 reports the associated profiles of the v_{x} and v_{y} components of the Cartesian velocity $\boldsymbol{v}=\dot{\boldsymbol{p}}$. Indeed, continuity is enforced at all times.

Figure 7: Time profiles of the components of the Cartesian velocity \boldsymbol{v} along the rectangular path of Fig. 2: v_{x} (top) and v_{y} (bottom)

[^0]: ${ }^{1}$ The same $\mp \operatorname{sign}$ is factored out in all three terms, and thus eliminated as irrelevant in a homogenous equation.

