
Robotics I

January 11, 2016

Exercise 1

The 5-dof KUKA KR60 L45 robot is shown in Fig. 1. It has all revolute joints and a spherical
wrist. The base has no rotation around the vertical axis (and this makes it a robot with 5-dof only).
Assign the Denavit-Hartenberg frames and define the associated table of parameters, complying
with the positive sense of joint rotation as shown in the left picture. Use the data in the right
picture for the constant parameters.
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Figure 1: The KUKA KR60 L45 robot and its workspace

Exercise 2

Consider a planar 3R robot with links of equal lengths `1 = `2 = `3 = 0.5 [m]. Assuming a
Denavit-Hartenberg convention for the definition of the joint angles, consider the robot in the
configuration q = (30◦, 30◦, 120◦).

a) Compute a joint velocity vector q̇ = (q̇1, q̇2, q̇3) that realizes, if possible, the robot end-effector
instantaneous motion specified by the velocity components

vx = 0, vy = 1 [m/s], ωz = 0.

In case a solution exists, are there multiple possible solutions to this problem?

b) Compute a joint torque τ = (τ1, τ2, τ3) that balances a force F e = (Fx, Fy) = (−5, 0) [N]
applied to the robot end-effector, so that the robot remains in static conditions? Is such a τ
unique?
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Exercise 3

Consider a planar 2R robot with links of lengths `1 = 0.1 and `2 = 0.2 [m]. The end-effector should
trace the desired Cartesian trajectory

pd(t) =

(
0.15 + 0.05 cos 5πt

0.05 sin 5πt

)
, t ∈ [0, T ],

for some arbitrarily large period of time T .

a) At time t = 0.2 [s], which robot configuration qd and joint velocity q̇d would instantaneously
realize the desired trajectory? Do such numerical values qd and q̇d exist? If so, are they
unique?

b) Suppose that the robot motion is controlled by the kinematic control law

q̇ = J−1(q)
[
ṗd +Kp (pd − f(q))

]
, Kp = 10 · I2×2, (1)

where f(q) is the direct kinematics for this task, and that at time t = 1.8 [s] the robot is in
the configuration q = (−π/2, π/2). Provide the value of the command q̇ given by (1) in such
a condition. Compute also the associated end-effector velocity and sketch it on the robot.
Where is this end-effector velocity vector pointing?

c) When f(q) = pd(0.2), how can the control law (1) be modified so as to generate q̇ = q̇d as
in item a), if this is at all possible for some configuration q?

[240 minutes; open books]
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Solution
January 11, 2016

Exercise 1

Figures 2–3 show two views of a possible DH frame assignment consistent with the requested sense
of joint rotation (counterclockwise = positive). The associated parameters are given in Table 1.
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Figure 2: Denavit-Hartenberg frame assignment (perspective view from the right side)
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Figure 3: Denavit-Hartenberg frame assignment (lateral view from the left side)
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i αi ai di θi

1 0 a1 0 q1

2 π/2 a2 0 q2

3 −π/2 0 d3 q3

4 π/2 0 0 q4

5 π 0 d5 q5

a1 = 850 mm

a2 = 145 mm

d3 = −1020 mm

d5 = −170 mm.

Table 1: Denavit-Hartenberg table of parameters associated with the frame assignment in Figs. 2–3
for the KUKA KR60 L45 robot.

Exercise 2

For a), we consider the direct kinematics for the three-dimensional task vector r associated to
the end-effector position (px, py) in the plane and the angle αz of the DH end-effector frame with
respect to the x0 axis, i.e.,

r =

 px

py

αz

 =

 l1c1 + l2c12 + l3c123

l1s1 + l2s12 + l3s123

q1 + q2 + q3

 = f(q), (2)

where we used the usual shorthand notation c123 = cos(q1+q2+q3) and similar. Differentiating (2),
we get

ṙ =

 ṗx

ṗy

α̇z

 =

 vx

vy

ωz

 =
∂f(q)

∂q
q̇ = J(q)q̇,

with the (3× 3) Jacobian matrix J(q) expressed by

J(q) =

 − (l1s1 + l2s12 + l3s123) − (l2s12l3s123) −l3s123
l1c1 + l2c12 + l3c123 l2c12 + l3c123 l3c123

1 1 1

 . (3)

It is easy to see that the Jacobian in (3) is nonsingular at the given configuration (detJ = 0.125).
Therefore, the numerical solution (computed in Matlab) is

q̇ = J−1ṙ =

−0.6830 −0.4330 0.0000

0.1830 −0.2500 −0.5000

1.0000 1.0000 1.0000


−1 0

1

0

 =

 3.4641

−5.4641

2.0000

 =

 2
√

3

−2(1 +
√

3)

2

 rad/s.

Similarly for b), considering that the external is no external moment Mz applied to the end-
effector, the joint torque balancing (thus, having the opposite sign due to the principle of action
and reaction) the external pure force F e is

τ = −JT

 Fx

Fy

Mz

 = −JT

 −5

0

0

 =

−3.4151

−2.1651

0.0000

 =

 −5(1 +
√

3)/4

−5
√

3/4

0

 Nm.
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This torque is unique. Note that the torque component at the third joint is zero, since the line of
action of the force F e in the given robot configuration passes through the axis of this joint.

Exercise 3

The desired end-effector position and velocity are

pd(t) =

(
0.15 + 0.05 cos 5πt

0.05 sin 5πt

)
, vd(t) = ṗd(t) =

(
−0.25π sin 5πt

0.25π cos 5πt

)
.

With reference to Fig. 4, we see that the desired path is tangent to the inner boundary of the robot
workspace.
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Figure 4: The desired Cartesian path and the robot workspace

In case a), when t = 0.2 it is

pd(0.2) =

(
0.1

0

)
[m], vd(0.2) =

(
0

−π/4

)
[m/s] (4)

and the end-effector touches the boundary so that the robot can be there in the unique configuration
qd = (π, π). Moreover, the desired velocity at this point is feasible since it belongs to the range
space of the (singular) robot Jacobian at that configuration,

J(qd) =

(
0 0

0.1 0.2

)
, vd(0.2) =

(
0

−π/4

)
∈ R{J(qd)} .

In fact, there is an infinite number of combinations for the velocities of the two joints that realize
the desired Cartesian velocity. The joint velocity solution with minimum norm is obtained as

q̇d,min = J#(qd)vd =

(
0 2

0 4

)(
0

−π/4

)
= −

(
π/2

π

)
.

All other solutions can be written as

0.1 q̇d1 + 0.2 q̇d2 = vd2 = −π/4 ⇒ q̇d = q̇d,min +

(
−2α

α

)
, for anyα ∈ R.

For case b), when t = 1.8 the position and velocity of the desired trajectory are again as in (4).
With the 2R robot in the configuration q = (−π/2, π/2), the Jacobian is out of singularities and
can be safely inverted. From the direct kinematics, the robot end-effector position is

p = f(q) =

(
l1c1 + l2c12

l1s1 + l2s12

)∣∣∣∣
q=(−π/2,π/2)

=

(
0.2

−0.1

)
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with a Cartesian position error

ep = pd − p =

(
0.1

0

)
−
(

0.2

−0.1

)
=

(
−0.1

0.1

)
.

The Cartesian kinematic controller provides then

q̇ = J−1(q)
[
ṗd +Kp (pd − f(q))

]
= J−1(q)

[
vd +Kpep

]
=

(
0.1 0

0.1 0.2

)−1 [(
0

−π/4

)
+ 10 · I2×2

(
−0.1

0.1

)]

=

(
−10.0000

11.0730

)
=

(
−10

15− 5π/4

)
[rad/s].

(5)

The instantaneous Cartesian velocity associated to (5) is

v = J(q)q̇ =

(
−1

0.2146

)
[m/s].

The two situations at t = 0.2 s (motion in nominal conditions) and at t = 1.8 s (motion with
tracking error) are illustrated in Fig. 5.

Finally, the answer to c) is that it is certainly possible to obtain the solution in the conditions of
case a) using the control law (1), by replacing the inverse of the Jacobian with its pseudoinverse,
possibly specifying also a generic term in the null space of the Jacobian

q̇ = J#(q)
[
vd +Kpep

]
+
(
I − J#(q)J(q)

)
q̇0. (6)
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Figure 5: The solution at t = 0.2 s [left] and at t = 1.8 s [left] (for the sake of illustration, vectors
are not represented in scale: only their correct direction is preserved)
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