
Robotics I
September 11, 2015

Exercise 1

The kinematics of the spherical wrist of a 6R robot is described by the Denavit-Hartenberg parameters in
Tab. 1.

i αi ai di θi

4 π/2 0 0 q4

5 π/2 0 0 q5

6 0 0 0 q6

Table 1: Denavit-Hartenberg parameters for a spherical wrist

• Provide the differential mapping between the (wrist) joint velocity q̇W =
`
q̇4 q̇5 q̇6

´T
and the

angular velocity of the end-effector ω =
`
ωx ωy ωz

´T
when the first three joints of the robot do

not move. Vector ω is expressed in the Denavit-Hartenberg frame 3 of the robot.

• In the wrist configuration qW =
`
q4 q5 q6

´T
=
`

0 π/2 0
´T

rad, determine a joint velocity

vector q̇W that generates the desired angular velocity ωd =
`

2 −1 1
´T

rad/s.

Exercise 2
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i αi ai di θi

1 −π/2 0 A q1

2 −π/2 0 q2 −π/2

3 0 B 0 q3

Figure 1: A spatial RPR robot with its Denavit-Hartenberg frames and associated table

For the spatial RPR robot in Fig. 1, the direct kinematics map for the position p of the end-effector (i.e.,
the origin of the last frame 3) is given by

p =

0B@ px

py

pz

1CA =

0B@ −(q2 −B sin q3) sin q1

(q2 −B sin q3) cos q1

A+B cos q3

1CA = f(q). (1)

Solve the inverse kinematics problem q = f−1(p) in closed analytical form, assuming unlimited joint
ranges. How many inverse kinematics solutions exist in the generic case?

(continues with Exercise 3)
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Exercise 3

Consider a 3R planar robot having equal and unitary link lengths, with kinematics described in terms
of the standard Denavit-Hartenberg variables. A task is specified at the differential level by a desired

ṙ =
`
vx vy ωz

´T
, namely in terms of linear velocity of the robot end-effector on the plane (x0,y0) and

of the (scalar) angular velocity of the end-effector frame around z0. Find all singular configurations of the
mapping from q̇ ∈ R3 to ṙ ∈ R3. At a singularity, characterize the directions spanning the range space
and the null space of the associated Jacobian matrix J(q).

[210 minutes; open books]
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Solution
September 11, 2015

Exercise 1

From Table 1 of DH parameters, we get the following rotation matrices associated to the three joints of
the spherical wrist:

3R4(q4) =

0@ cos q4 0 sin q4
sin q4 0 − cos q4

0 1 0

1A , 4R5(q5) =

0@ cos q5 0 sin q5
sin q5 0 − cos q5

0 1 0

1A ,

5R6(q6) =

0@ cos q6 − sin q4 0
sin q4 cos q4 0

0 0 1

1A .

With these matrices, one can proceed in two alternative (and equivalent) ways.

The first way is to recognize that the requested mapping is given by part of the geometric Jacobian of the
robot, namely the lower right 3× 3 matrix in the orientation rows,

ω = JO(qW ) q̇W =
“

z3 z4 z5

”0@ q̇4
q̇5
q̇6

1A ,

where zi−1 is the unitary vector along joint i, and all vectors should be expressed here in the DH frame 3.
We obtain:

z3 =

0@ 0
0
1

1A , z4 =3 R4(q4)

0@ 0
0
1

1A =

0@ sin q4
− cos q4

0

1A , z5 =3 R4(q4)4R5(q5)

0@ 0
0
1

1A =

0@ cos q4 sin q5
sin q4 sin q5
− cos q5

1A .

The second way uses the time derivative of rotation matrices, and is a bit longer. The orientation of the
end-effector (with respect to the DH frame 3) is given by

3R6 = 3R4(q4)4R5(q5)5R6(q6)

=

0@ sin q4 sin q6 + cos q4 cos q5 cos q6 cos q6 sin q4 − cos q4 cos q5 sin q6 cos q4 sin q5
cos q5 cos q6 sin q4 − cos q4 sin q6 − cos q4 cos q6 − cos q5 sin q4 sin q6 sin q4 sin q5

cos q6 sin q5 − sin q5 sin q6 − cos q5

1A .

Using the known differential relation ṘRT = S(ω) applied to R = 3R6, one obtains the skew-symmetric
matrix

S(ω) =

0@ 0 −ωz ωy

ωz 0 −ωx

ωy −ωz 0

1A
=

0@ 0 q̇6 cos q5 − q̇4 q̇6 sin q4 sin q5 − q̇5 cos q4
q̇4 − q̇6 cos q5 0 −q̇5 sin q4 − q̇6 cos q4 sin q5

q̇5 cos q4 − q̇6 sin q4 sin q5 q̇5 sin q4 + q̇6 cos q4 sin q5 0

1A ,

from which the angular velocity vector (still expressed in the DH frame 3, i.e., as 3ω) can be extracted:

ω =

0@ ωx

ωy

ωz

1A =

0@ 0 sin q4 cos q4 sin q5
0 − cos q4 sin q4 sin q5
1 0 − cos q5

1A0@ q̇4
q̇5
q̇6

1A = JO(q4, q5) q̇W .
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The determinant of matrix JO(q4, q5) is det JO = sin q5. When qW =
`

0 π/2 0
´T

, the wrist is not in
a singular configuration. Therefore, we can determine the unique solution to the requested task as

JO(0, π/2) q̇W = ωd ⇒

0@ 0 0 1
0 −1 0
1 0 0

1A q̇W =

0@ 2
−1
1

1A ⇒ q̇W =

0@ 1
1
2

1A .

Exercise 2

As a first step, we characterize and analyze the singular configurations of the robot. In fact, in a non-
redundant situation, singular configurations correspond to Cartesian positions where the number of inverse
kinematic solutions differs from the generic one. From the direct kinematics (1), we obtain the analytic
Jacobian

JL(q) =

0@ −(q2 −B sin q3) cos q1 − sin q1 B cos q3 sin q1
−(q2 −B sin q3) cos q1 cos q1 −B cos q3 cos q1

0 0 −B sin q3

1A ,

whose determinant is
det JL(q) = B sin q3(q2 −B sin3).

Therefore, the robot is in a singularity either when sin q3 = 0 (q3 = {0, π}), or when q2 − B sin q3 = 0,
or when these two conditions are simultaneously satisfied, i.e., when both sin q3 = 0 and q2 = 0 hold. In
the first case (sin q3 = 0), the last link is vertical (upwards or downwards) and the robot end-effector is
on one of the two (top or bottom) horizontal planes defining the boundaries of its (otherwise unlimited)
workspace. In correspondence to these boundary points, we shall see that there is is a drop in the number
of inverse kinematic solutions (from four to two). In the second case (q2 − B sin q3 = 0), the end-effector
is placed on the axis of the first joint. For these Cartesian points, it is apparent that any change of q1
only, will not change the position of the robot end-effector. As a consequence, any value of q1 can be part
of a solution to the inverse kinematics (the number of solutions becomes infinite). In the combined case,
the rank of the Jacobian matrix JL drops down to 1 and a double singularity is obtained. For all other
Cartesian positions of the robot end-effector within the primary workspace, we are in the generic case with
a constant, finite number of inverse kinematic solutions (namely, four).

With the above in mind, consider the last equation in the direct kinematics (1). If A− B < pz < A+ B,
we have two solutions for q3:

q
[+]
3 = acos

„
pz −A
B

«
, q

[−]
3 = −q[+]

3 , with
n
q
[+]
3 , q

[−]
3

o
∈ (−π,+π) . (2)

Equivalently, we could have used the ATAN2 function as follows:

c3 =
pz −A
B

, s3 = ±
q

1− c23 ⇒ q
[+/−]
3 = ATAN2 {± s3, c3} .

For pz > A the two solutions q
[+]
3 and q

[−]
3 will both be in the interval (−π/2, π/2), whereas for pz < A

their absolute values will be in the interval (π/2, π). When pz = A, it is q
[+]
3 = +π/2 and q

[−]
3 = −π/2

(the third link is horizontal in both cases). For pz = A+B, the two values collapse into q3 = 0 (the third
link points upward); similarly, for pz = A − B, there is a single solution q3 = π (the third link points
downward). These two cases correspond to singularities at the two boundaries of the workspace. Outside
the above closed interval, i.e., when pz 6∈ [A−B,A+B], there is no solution for q3 and thus to the inverse
kinematics problem: the requested height of the end-effector is outside the workspace.

Squaring and summing the first two equations in (1), we obtain also

p2
x + p2

y = (q2 −Bs3)2 . (3)

When p2
x + p2

y 6= 0 (again, out of the singularity associated to points along the first joint axis), we can
solve for q1 from the first two equations in (1) and find again two solutions. The first solution

q
[+]
1 = ATAN2 {−px, py} (4)
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has the robot facing the desired point (px, py), while the second solution1

q
[−]
1 = ATAN2 {px,−py} (= q

[+]
1 ± π) (5)

has the robot back directed toward the desired point (px, py). For p2
x + p2

y = 0, the angle q1 remains
undefined (singular case).

Finally, the first two equations in (1) can be combined as follows

− sin q1px + cos q1py = q2 −B sin q3 = 0 ⇒ q2 = cos q1py − sin q1px +B sin q3.

Taking into account all four combinations of solutions for q1 and q3 as given by eqs. (2), (4), and (5), we
obtain the four associated solutions for q2 as

q
[++]
2 = cos q

[+]
1 py − sin q

[+]
1 px +B sin q

[+]
3

q
[+−]
2 = cos q

[+]
1 py − sin q

[+]
1 px +B sin q

[−]
3

q
[−+]
2 = cos q

[−]
1 py − sin q

[−]
1 px +B sin q

[+]
3

q
[−−]
2 = cos q

[−]
1 py − sin q

[−]
1 px +B sin q

[−]
3 ,

(6)

with an obvious choice for the notation of sign labels. Note that these solutions can also be rewritten as

q
[++]
2 =

p
p2

x + p2
y +B sin q

[+]
3

q
[+−]
2 =

p
p2

x + p2
y +B sin q

[−]
3

q
[−+]
2 = −

p
p2

x + p2
y +B sin q

[+]
3

q
[−−]
2 = −

p
p2

x + p2
y +B sin q

[−]
3 .

Therefore, in the generic case (i.e., out of singularities and inside the workspace) there is a total of four
distinct inverse kinematics solutions:n

q
[+]
1 , q

[++]
2 , q

[+]
3

o
,

n
q
[+]
1 , q

[+−]
2 , q

[−]
3

o
,

n
q
[−]
1 , q

[−+]
2 , q

[+]
3

o
,

n
q
[−]
1 , q

[−−]
2 , q

[−]
3

o
.

For example, assume that A = B = 1 [m]. We obtain the following joint solutions for two specific desired
Cartesian positions pd

pd =

0@ 1.5
0

1 +
√

3
2

1A [m] ⇒

8<:
0@ −90◦

2
30◦

1A ,

0@ −90◦

1
−30◦

1A ,

0@ 90◦

−1
30◦

1A ,

0@ 90◦

−2
−30◦

1A9=;
pd =

0@ 0
−2
1

1A [m] ⇒

8<:
0@ 180◦

3
90◦

1A ,

0@ 180◦

1
−90◦

1A ,

0@ 0◦

−1
90◦

1A ,

0@ 0◦

−3
−90◦

1A9=; ,

where angles q1 and q3 have been expressed in degrees, while the translation variable q2 is in meters.

Exercise 3

Using the standard DH variables and shorthand notations for trigonometric quantities, the task kinematics
is given by

r =

0@ px

py

αz

1A =

0@ c1 + c12 + c123
s1 + s12 + s123
q1 + q2 + q3

1A = f(q), (7)

1The choice of signs in the additional expression in (5) is made as follows: if q
[+]
1 is in the first or second quadrant,

i.e., q
[+]
1 ∈ (0, π), then q

[−]
1 = q

[+]
1 −π; if q

[+]
1 is in the third or fourth quadrant, q

[+]
1 ∈ (−π, 0), then q

[−]
1 = q

[+]
1 +π.
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and thus

ṙ =

0@ vx

vy

ωz

1A =

0@ −(s1 + s12 + s123) −(s12 + s123) −s123
c1 + c12 + c123 c12 + c123 c123

1 1 1

1A0@ q̇1
q̇2
q̇2

1A = J(q)q̇

Note that we can factorize the Jacobian J(q) and redefine the joint velocity as follows

J(q) =

0@ −s1 −s12 −s123
c1 c12 c123
0 0 1

1A0@ 1 0 0
1 1 0
1 1 1

1A = Ja(q) T , q̇a = T q̇.

Indeed, ṙ = Jaq̇a and qa is the vector of absolute joint angles w.r.t. the x0 axis of the world frame (the
components of qa appear also as arguments of the trigonometric functions in matrix Ja).

It is easy to recognize that all task singularities occur when

det J (= det Ja) = sin q2 = 0 ⇔ q2 = {0, π}.

x0 

y0 

q2 = 0 

q3 

q1 

va 
vb 

Figure 2: The planar 3R robot in a singular configuration for the three-dimensional task r = f(q)
specified in (7), with two range space vectors defined in the text.

Consider for example the case q2 = 0. Then,

J̄a = Ja(q)|q2=0 =

0@ −s1 −s1 −s13
c1 c1 c13
0 0 1

1A .

In this singularity, the range of instantaneous motions covered in the task space is characterized by

R(J̄a) = span

8<:
0@ −s1c1

0

1A ,

0@ −s13c13
1

1A9=; .

With reference to Fig. 2, the first basis vector in the task space is associated to a pure linear motion

of the end-effector position in the plane (x0,y0) —see the unit vector va =
`
−s1 c1

´T
. The second

basis vector implies always a combined roto-translation, with the linear part given by the unitary vector

vb =
`
−s13 c13

´T
(projection of the second basis vector on the (x0,y0) plane) and with the angular

part of unitary value as well.

As for the null space motions in the considered singularity, we have

N (J̄a) = α q̇a,N = α

0@ 1
−1
0

1A ,
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and thus

N (J̄) = αT−1q̇a,N = α

0@ 1 0 0
−1 1 0
0 −1 1

1A0@ 1
−1
0

1A = α

0@ 1
−2
1

1A .

∗ ∗ ∗ ∗ ∗
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