Robotics I

July 10, 2015

Exercise 1

Consider the timing law $s=s(t)$ defined by means of the bang-bang type profile shown in Fig. 1 for the fourth time derivative $s^{(4)}=d^{4} s / d t^{4}$ (called snap) of the path parameter s. The boundary conditions at time $t=0$ and $t=T$ for all lower order time derivatives are zero. Moreover, $s(0)=0$.

Figure 1: The time profile of the fourth time derivative $s^{(4)}(t)$

- Determine the expressions of the total displacement $\Delta=s(T)$, as well as of the maximum speed $\dot{s}_{\text {max }}$ and maximum (absolute value of) acceleration $\ddot{s}_{\text {max }}$ reached during motion, in terms of motion time T and maximum absolute value S of the snap.
- Sketch the time profiles of $s(t), \dot{s}(t), \ddot{s}(t)$, and $\dddot{s}(t)$, for $t \in[0, T]$.

Exercise 2

Consider a 2 R planar robot having link lengths $\ell_{1}=0.8$ and $\ell_{2}=0.4[\mathrm{~m}]$. The robot should execute a motion along the straight path from the initial point $A=\left(\begin{array}{cc}1.42 & 0.6\end{array}\right)^{T}[\mathrm{~m}]$ to the final point $B=\left(\begin{array}{ll}1.42 & -1.6\end{array}\right)^{T}[\mathrm{~m}]$, both expressed in the world reference frame \mathcal{F}_{w}.

- Define a position $\boldsymbol{P}_{0}=\left(\begin{array}{ll}x_{0} & y_{0}\end{array}\right)^{T}$ in the plane, expressed in frame \mathcal{F}_{w}, where to place the robot base so that its end-effector is capable of moving along the entire given path.
- Are there any kinematic singularities encountered along this path?
- Find a robot configuration \boldsymbol{q}^{*} such that the end-effector is at the midpoint of the given path.
- At $\boldsymbol{q}=\boldsymbol{q}^{*}$, compute an instantaneous joint velocity $\dot{\boldsymbol{q}} \in \mathbb{R}^{2}$ that realizes the desired Cartesian motion with a speed $V=1.5[\mathrm{~m} / \mathrm{s}]$.

