Robotics I

June 5, 2015

Exercise 1

Consider a helix path whose parametrization is given by

$$
\boldsymbol{p}(s)=\left(\begin{array}{c}
x(s) \tag{1}\\
y(s) \\
z(s)
\end{array}\right)=\left(\begin{array}{c}
r(\cos s-1)+x_{0} \\
r \sin s+y_{0} \\
k s+z_{0}
\end{array}\right), \quad s \in \mathbb{R},
$$

and let two Cartesian points $\boldsymbol{P}_{A}=\left(\begin{array}{lll}p_{A x} & p_{A y} & p_{A z}\end{array}\right)^{T}$ and $\boldsymbol{P}_{B}=\left(\begin{array}{lll}p_{B x} & p_{B y} & p_{B z}\end{array}\right)^{T}$ be assigned. Define an interval $s \in\left[0, s_{\max }\right]$ and scalar values r, k, x_{0}, y_{0}, and z_{0} in (1) such that $\boldsymbol{p}(0)=\boldsymbol{P}_{A}$ and $\boldsymbol{p}\left(s_{\max }\right)=\boldsymbol{P}_{B}$. Moreover, associate to this path a rest-to-rest timing law given by a cubic polynomial $s=s(t), t \in[0, T]$, where T is the total motion time.

- Does the trajectory interpolation problem always have a solution? Is the solution unique?
- Determine a path (1) that solves the above problem for the numerical data $\boldsymbol{P}_{A}=\left(\begin{array}{lll}0 & 2 & -10\end{array}\right)^{T}$ and $\boldsymbol{P}_{B}=\left(\begin{array}{lll}-2 & 0 & 10\end{array}\right)^{T}$. Compute the expression of the curvature $\kappa(s)$ of this path.
- For the chosen timing law, provide the expressions of $\dot{\boldsymbol{p}}(t)$ and $\ddot{\boldsymbol{p}}(t)$, and determine the minimum time T that realizes the interpolation under the constraint $\|\dot{\boldsymbol{p}}(t)\| \leq V_{\max }$.

Exercise 2

Consider a 3 R elbow-type robot having its base mounted on the plane $z=0$. The shoulder joint is at a height $\ell_{1}=5$. The links 2 and 3 have equal lengths $\ell_{2}=\ell_{3}=10$.

- Place the robot base at a point $\left(x_{b}, y_{b}\right)$ on the plane $z=0$ so that the end-effector is capable of executing the solution path of Exercise 1.
- Find a robot configuration $\boldsymbol{q}=\boldsymbol{q}^{*}$ at which the end-effector is placed in the (single) point of path (1) where the norm of the Cartesian velocity $\dot{\boldsymbol{p}}$ in the minimum time trajectory of Exercise 1 has its maximum value.
- Compute at \boldsymbol{q}^{*} the joint velocity $\dot{\boldsymbol{q}} \in \mathbb{R}^{3}$ of the robot that realizes the desired velocity $\dot{\boldsymbol{p}}$ of the above minimum time trajectory.

