Robotics I

February 6, 2015

Exercise 1

Consider the 3R robot in Fig. 1 (this is the same robotic structure of an exercise assigned in September 2007). The base frame and an additional end-effector frame are already specified.

Figure 1: A robot with three revolute joints.

- Given a desired orientation \boldsymbol{R}_{d} of the end-effector frame, solve the inverse kinematics problem in symbolic form. Consider also possible singular cases.
- Apply your result and determine all numerical solutions \boldsymbol{q} for the following two sets of data:

$$
\boldsymbol{R}_{d, 1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & -1 \\
-1 & 0 & 0
\end{array}\right) ; \quad \boldsymbol{R}_{d, 2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\boldsymbol{I}
$$

- Provide for this robot the relation between $\dot{\boldsymbol{q}}$ and the angular velocity $\boldsymbol{\omega}_{E}$ of the end-effector frame (expressed in the base frame).
- Determine a joint velocity $\dot{\boldsymbol{q}}$ in the configuration $\boldsymbol{q}=\mathbf{0}$ that produces the desired angular velocity $\boldsymbol{\omega}_{E, d}=\left(\begin{array}{lll}0 & 0 & 3\end{array}\right)^{T}[\mathrm{rad} / \mathrm{s}]$. Has this problem a solution? If so, is it unique?
- "This robot is of little use for positioning the end-effector in 3D space." Do you agree with this statement? Why?

Extra - Based on the analysis you have performed, can this robot realize any pointing task with its end-effector axis \boldsymbol{z}_{E} ? If so, is there a unique solution in the generic case? Are there singular situations? (If you reply correctly to the extra questions, you get a bonus)

Exercise 2

Given the two points

$$
\boldsymbol{A}=\binom{-3}{0}[\mathrm{~m}] \quad \text { and } \quad \boldsymbol{B}=\binom{0.732}{1}[\mathrm{~m}]
$$

on the plane, connect them with the arc (of minimum length) of a circle having radius $R=2[\mathrm{~m}]$ and parametrize this path by its arc length s. Design a timing law $s=s(t)$ with trapezoidal speed profile so as to obtain a rest-to-rest circular trajectory $\boldsymbol{p}(t)$ from \boldsymbol{A} to \boldsymbol{B} that performs the transfer in minimum time T under the maximum velocity and acceleration constraints

$$
\|\dot{\boldsymbol{p}}(t)\| \leq V_{\max }, \quad\|\ddot{\boldsymbol{p}}(t)\| \leq A_{\max }, \quad t \in[0, T]
$$

and the bound on the normal acceleration $\ddot{\boldsymbol{p}}_{n}(t)$ to the path

$$
\left\|\ddot{\boldsymbol{p}}_{n}(t)\right\| \leq A_{n, \max }, \quad t \in[0, T] .
$$

Solve this Cartesian trajectory planning problem with the data

$$
V_{\max }=3[\mathrm{~m} / \mathrm{s}], \quad A_{\max }=4\left[\mathrm{~m} / \mathrm{s}^{2}\right], \quad A_{n, \max }=2\left[\mathrm{~m} / \mathrm{s}^{2}\right],
$$

providing also the numerical values of the associated minimum time T.
[180 minutes; open books]

Solution

February 6, 2015

Exercise 1

For the assignment of DH frames and the associated table of parameters, see Fig. 2 and Tab. 1. We need also an additional transformation matrix ${ }^{3} \boldsymbol{T}_{E}$ relating the third DH frame $R F_{3}$ to $R F_{E}$:

$$
{ }^{3} \boldsymbol{T}_{E}=\left(\begin{array}{cc}
{ }^{3} \boldsymbol{R}_{E} & \mathbf{0} \tag{1}\\
\mathbf{0}^{T} & 1
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Figure 2: Denavit-Hartenberg frames for the robot of Fig. 1.

i	α_{i}	a_{i}	d_{i}	θ_{i}
1	$\pi / 2$	0	A	q_{1}
2	$\pi / 2$	0	0	q_{2}
3	0	C	B	q_{3}

Table 1: Denavit-Hartenberg parameters associated to the frames chosen as in Fig. 2.
Using Tab. 1 and (1), the direct kinematics for the orientation is computed as

$$
\begin{align*}
{ }^{0} \boldsymbol{R}_{E} & ={ }^{0} \boldsymbol{R}_{1}\left(q_{1}\right){ }^{1} \boldsymbol{R}_{2}\left(q_{2}\right){ }^{2} \boldsymbol{R}_{3}\left(q_{3}\right){ }^{3} \boldsymbol{R}_{E} \tag{2}\\
& =\left(\begin{array}{ccc}
-\cos q_{1} \sin q_{2} & \sin q_{1} \cos q_{3}-\cos q_{1} \cos q_{2} \sin q_{3} & \sin q_{1} \sin q_{3}+\cos q_{1} \cos q_{2} \cos q_{3} \\
-\sin q_{1} \sin q_{2} & -\cos q_{1} \cos q_{3}-\sin q_{1} \cos q_{2} \sin q_{3} & \sin q_{1} \cos q_{2} \cos q_{3}-\cos q_{1} \sin q_{3} \\
\cos q_{2} & -\sin q_{2} \sin q_{3} & \sin q_{2} \cos q_{3}
\end{array}\right),
\end{align*}
$$

which is independent of A, B, and C.
The Jacobian matrix in ${ }^{0} \boldsymbol{\omega}_{E}\left(={ }^{0} \boldsymbol{\omega}_{3}\right)=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}}=\left({ }^{0} \boldsymbol{z}_{0}{ }^{0} \boldsymbol{z}_{1}{ }^{0} \boldsymbol{z}_{2}\right) \dot{\boldsymbol{q}}$ is given by
$\boldsymbol{J}(\boldsymbol{q})=\left(\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \quad{ }^{0} \boldsymbol{R}_{1}\left(q_{1}\right)\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \quad{ }^{0} \boldsymbol{R}_{1}\left(q_{1}\right){ }^{1} \boldsymbol{R}_{2}\left(q_{2}\right)\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right)=\left(\begin{array}{ccc}0 & \sin q_{1} & \cos q_{1} \sin q_{2} \\ 0 & -\cos q_{1} & \sin q_{1} \sin q_{2} \\ 1 & 0 & -\cos q_{2}\end{array}\right)$,
with $\operatorname{det} \boldsymbol{J}(\boldsymbol{q})=\sin q_{2}$.
For a desired orientation of the end-effector frame, represented by a given rotation matrix $\boldsymbol{R}_{d}=\left\{R_{i j}\right\}$, one can determine the inverse kinematics solution using the elements in (2). First, compute

$$
q_{2}^{I}=\operatorname{ATAN} 2\left\{\sqrt{R_{32}^{2}+R_{33}^{2}}, R_{31}\right\}
$$

If $R_{32}^{2}+R_{33}^{2} \neq 0$, which means $\sin q_{2} \neq 0$, we are in the regular case. A second distinct solution for q_{2} is computed as

$$
q_{2}^{I I}=\operatorname{ATAN} 2\left\{-\sqrt{R_{32}^{2}+R_{33}^{2}}, R_{31}\right\}
$$

Moreover,

$$
q_{1}^{I}=\operatorname{ATAN} 2\left\{\frac{-R_{21}}{\sin q_{2}^{I}}, \frac{-R_{11}}{\sin q_{2}^{I}}\right\}, \quad q_{1}^{I I}=\operatorname{ATAN} 2\left\{\frac{-R_{21}}{\sin q_{2}^{I I}}, \frac{-R_{11}}{\sin q_{2}^{I I}}\right\}
$$

and

$$
q_{3}^{I}=\operatorname{ATAN} 2\left\{\frac{-R_{32}}{\sin q_{2}^{I}}, \frac{R_{33}}{\sin q_{2}^{I}}\right\}, \quad q_{3}^{I I}=\operatorname{ATAN} 2\left\{\frac{-R_{32}}{\sin q_{2}^{I I}}, \frac{R_{33}}{\sin q_{2}^{I I}}\right\}
$$

When $R_{32}=R_{33}=0$, we are in a singular situation. This occurs if and only if $\sin q_{2}=0$, thus when either $q_{2}=0$ or $q_{2}=\pi$. If $q_{2}=0$, we can solve only for the difference $q_{1}-q_{3}$:

$$
\left.{ }^{0} \boldsymbol{R}_{E}\right|_{q_{2}=0}=\left(\begin{array}{ccc}
0 & \sin \left(q_{1}-q_{3}\right) & \cos \left(q_{1}-q_{3}\right) \\
0 & -\cos \left(q_{1}-q_{3}\right) & \sin \left(q_{1}-q_{3}\right) \\
1 & 0 & 0
\end{array}\right) \Rightarrow q_{1-3}:=q_{1}-q_{3}=\operatorname{ATAN} 2\left\{R_{23}, R_{13}\right\}
$$

leading to an infinity of solutions of the form

$$
\boldsymbol{q}=\left(\begin{array}{ccc}
\alpha & 0 & \alpha-q_{1-3}
\end{array}\right)^{T}, \quad \forall \alpha \in \mathbb{R}
$$

Similarly, when $q_{2}=\pi$ we can solve only for the sum $q_{1}+q_{3}$:
$\left.{ }^{0} \boldsymbol{R}_{E}\right|_{q_{2}=\pi}=\left(\begin{array}{ccc}0 & \sin \left(q_{1}+q_{3}\right) & -\cos \left(q_{1}+q_{3}\right) \\ 0 & -\cos \left(q_{1}+q_{3}\right) & -\sin \left(q_{1}+q_{3}\right) \\ -1 & 0 & 0\end{array}\right) \quad \Rightarrow \quad q_{1+3}:=q_{1}+q_{3}=\operatorname{ATAN} 2\left\{R_{12},-R_{13}\right\}$,
leading to an infinity of solutions of the form

$$
\boldsymbol{q}=\left(\begin{array}{lll}
\beta & \pi & q_{1+3}-\beta
\end{array}\right)^{T}, \quad \forall \beta \in \mathbb{R}
$$

Applying these results to the given data, we have that

$$
\boldsymbol{R}_{d, 1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & -1 \\
-1 & 0 & 0
\end{array}\right) \quad \Rightarrow \quad \text { a singular case with } q_{2}=\pi
$$

leading to the solutions $\boldsymbol{q}=\left(\begin{array}{lll}\beta & \pi & \pi / 2-\beta\end{array}\right)^{T}$, for any β. On the other hand, $\boldsymbol{R}_{d, 2}=\boldsymbol{I}$ is a regular case leading to the pair of solutions

$$
\boldsymbol{q}^{I}=\left(\begin{array}{lll}
\pi & \pi / 2 & 0
\end{array}\right)^{T}, \quad \boldsymbol{q}^{I I}=\left(\begin{array}{lll}
0 & -\pi / 2 & \pi
\end{array}\right)^{T} .
$$

The Jacobian matrix $\boldsymbol{J}(\boldsymbol{q})$ is singular in the zero configuration $\boldsymbol{q}=\mathbf{0}$. However,

$$
\boldsymbol{J}(\mathbf{0})=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 0 \\
1 & 0 & -1
\end{array}\right) \Rightarrow \boldsymbol{\omega}_{E, d}=\left(\begin{array}{l}
0 \\
0 \\
3
\end{array}\right) \in \mathcal{R}(\boldsymbol{J}(\mathbf{0}))=\operatorname{span}\left\{\left(\begin{array}{l}
0 \\
\gamma \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
\delta
\end{array}\right)\right\}
$$

Therefore, there exists an infinite number of joint velocity solutions $\dot{\boldsymbol{q}}$ providing $\boldsymbol{\omega}_{E, d}$, all having $\dot{q}_{2}=0$ and with $\dot{q}_{1}-\dot{q}_{3}=3[\mathrm{rad} / \mathrm{s}]$. In particular, $\dot{\boldsymbol{q}}=\boldsymbol{J}^{\#}(\mathbf{0}) \boldsymbol{\omega}_{E, d}=\left(\begin{array}{ccc}1.5 & 0 & -1.5\end{array}\right)^{T}[\mathrm{rad} / \mathrm{s}]$ provides the minimum norm solution.

Due to its kinematics this robot has a limited use for positioning tasks, since the primary workspace is very restricted. In fact, it is a thin spherical mantle/surface, placed on top of the surface of the sphere described by the tip position of the second link (a 2 R polar sub-structure).

The solution to the last (extra) question is left as an exercise.

Exercise 2

The specified path from \boldsymbol{A} to \boldsymbol{B} can be constructed easily in a geometric way, by defining a circumference of given radius R passing through two points, as illustrated in Fig. 3. The shortest path from \boldsymbol{A} to \boldsymbol{B} on the circle of radius R centered in \boldsymbol{C}_{1} is shown as a bolded arc (the arrow indicates its clockwise rotation).

Figure 3: Geometric steps for constructing a circle of radius R through two points \boldsymbol{A} and \boldsymbol{B} (there are two solutions in the regular case).

In general, an infinitesimal arc length on a circle of radius R can be written as $d s=R d \theta$, where $d \theta$ is the angle spanning the arc from the circle center \boldsymbol{C}. Using simple trigonometry, the path parametrization by the arc length is given by

$$
\begin{equation*}
\boldsymbol{p}(s)=\boldsymbol{C}+R\binom{\cos \left(\pm \frac{s}{R}+\phi\right)}{\sin \left(\pm \frac{s}{R}+\phi\right)}, \quad s \in[0, L] \tag{3}
\end{equation*}
$$

where the sign in \pm is chosen positive if the path is traced counterclockwise, negative otherwise. L is the total arc length (from point \boldsymbol{A} to point \boldsymbol{B}), while the phase ϕ is chosen so as to be in \boldsymbol{A} for $s=0$.

A nice feature of the problem is that one does not have to determine the center \boldsymbol{C} of the circle, nor the circle itself, in order to satisfy all the design specifications on the trajectory! Even the path length L can be directly computed from the known formula (see, e.g., wikipedia) relating the distance d of two points \boldsymbol{A} and \boldsymbol{B} with the length L of the (shortest) arc of a circle of radius R passing through the two points:

$$
L=R \theta_{A B}, \quad d=\|\boldsymbol{B}-\boldsymbol{A}\|=2 R \sin \left(\frac{\theta_{A B}}{2}\right) \quad \Rightarrow \quad L=2 R \arcsin \left(\frac{d}{2 R}\right) .
$$

With the length L and the generic expression (3), we can solve completely the assigned problem.

Figure 4: The actual geometric path $\boldsymbol{p}(s)$ constructed with the problem data, using a circle of radius $R=2 \mathrm{~m}$ with center at $\boldsymbol{C}=(-1,0)$.

Nonetheless, due to the specific data values that were given, a center \boldsymbol{C} can be found rather immediately by visual inspection -see Fig. 4. By imposing $\boldsymbol{p}(0)=\boldsymbol{A}$, the parametrization of the clockwise circular path becomes

$$
\begin{equation*}
\boldsymbol{p}(s)=\boldsymbol{C}-R\binom{\cos \left(-\frac{s}{R}\right)}{\sin \left(-\frac{s}{R}\right)}, \quad s \in[0, L], \quad L=R \frac{5 \pi}{6}=\frac{5 \pi}{3}=5.236[\mathrm{~m}] \tag{4}
\end{equation*}
$$

where the phase $\phi=\pi$ chosen in the argument of the trigonometric functions in (3) leads to the minus sign in front of the first R. The length L is obtained from the angle $\theta_{A B}$ spanning the whole path (equal to 150°, if expressed in degrees) multiplied by the radius $R=2$.

For a generic $s=s(t)$, the first and second time derivatives of $\boldsymbol{p}(s)$ in (4) are given by

$$
\begin{equation*}
\dot{\boldsymbol{p}}=\frac{d \boldsymbol{p}}{d s} \frac{d s}{d t}=\binom{\sin \left(\frac{s}{R}\right)}{\cos \left(\frac{s}{R}\right)} \dot{s} \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
\ddot{\boldsymbol{p}}=\ddot{\boldsymbol{p}}_{t}+\ddot{\boldsymbol{p}}_{n} & =\frac{d \boldsymbol{p}}{d s} \ddot{s}+\frac{d^{2} \boldsymbol{p}}{d s^{2}} \dot{s}^{2}=\binom{\sin \left(\frac{s}{R}\right)}{\cos \left(\frac{s}{R}\right)} \ddot{s}+\frac{1}{R}\binom{\cos \left(\frac{s}{R}\right)}{-\sin \left(\frac{s}{R}\right)} \dot{\dot{s}}^{2} \\
& =\left(\begin{array}{cc}
\cos \left(\frac{s}{R}\right) & \sin \left(\frac{s}{R}\right) \\
-\sin \left(\frac{s}{R}\right) & \cos \left(\frac{s}{R}\right)
\end{array}\right)\binom{\dot{s}^{2} / R}{\ddot{s}}=\operatorname{Rot}^{T}\left(\frac{s}{R}\right)\binom{\dot{s}^{2} / R}{\ddot{s}}, \tag{6}
\end{align*}
$$

with a decomposition in tangential and normal acceleration to the path, respectively $\ddot{\boldsymbol{p}}_{t}$ and $\ddot{\boldsymbol{p}}_{n}$. The 2×2 matrix $\operatorname{Rot}(\theta)$ is a planar rotation by an angle θ, acting on 2 -dimensional vectors. Thanks to the used parametrization by the arc length, we have the following properties for the norms

$$
\left\|\frac{d \boldsymbol{p}}{d s}\right\|=1 \Rightarrow\|\dot{\boldsymbol{p}}\|=|\dot{s}|,\left\|\ddot{\boldsymbol{p}}_{t}\right\|=|\ddot{s}|, \quad\left\|\frac{d^{2} \boldsymbol{p}}{d s^{2}}\right\|=\frac{1}{R} \Rightarrow\left\|\ddot{\boldsymbol{p}}_{n}\right\|=\frac{\dot{s}^{2}}{R}, \quad\|\ddot{\boldsymbol{p}}\|=\sqrt{\left(\frac{\dot{s}^{2}}{R}\right)^{2}+\ddot{s}^{2}}
$$

We consider now a generic a trapezoidal profile for $\dot{s}(t)$ of duration T, with symmetric initial and final acceleration/deceleration phases of absolute value \bar{A} and equal duration T_{s}, and a central constant cruising speed $\bar{V}>0$ to be kept for $T-2 T_{s}$ seconds. The four quantities \bar{V}, \bar{A}, T_{s}, and T have to be determined so as to cover the total path length L, while minimizing T and satisfying the constraints specified by $V_{\max }, A_{\max }$, and $A_{n, \max }$.

The important thing to note is that the curvature $1 / R$ of the path and the bound on the normal acceleration $\ddot{\boldsymbol{p}}_{n}$

$$
\left\|\ddot{\boldsymbol{p}}_{n}\right\|=\frac{\dot{s}^{2}}{R} \leq A_{n, \max }
$$

may impose a more severe limit on \dot{s} than the bound $V_{\max }$ on the norm of $\dot{\boldsymbol{p}}$. In fact, we have that

$$
\begin{equation*}
|\dot{s}| \leq \min \left\{V_{\max }, \sqrt{R A_{n, \max }}\right\}=\min \{3, \sqrt{4}\}=2=: \bar{V}^{\prime} \tag{7}
\end{equation*}
$$

To evaluate the constraint on the total acceleration $\ddot{\boldsymbol{p}}$, we distinguish two situations for the tangential acceleration: constant $\ddot{s}= \pm \bar{A} \neq 0$ (in the initial and final phases) and $\ddot{s}=0$ (in the cruise phase at constant speed). During the cruise phase, it is

$$
\begin{equation*}
\|\ddot{\boldsymbol{p}}\|=\frac{\dot{s}^{2}}{R} \leq A_{\max } \quad \Rightarrow \quad|\dot{s}| \leq \sqrt{R A_{\max }}=\sqrt{8}=: \bar{V}^{\prime \prime} \tag{8}
\end{equation*}
$$

As a result, combining (7) and (8), we have for the maximum constant speed \dot{s} during cruising

$$
\dot{s}(t)=\bar{V}=\min \left\{\bar{V}^{\prime}, \bar{V}^{\prime \prime}\right\}=2, \quad t \in\left[T_{s}, T-T_{s}\right]
$$

In the constant acceleration phase (a specular argument applies to the constant deceleration phase), the speed increases linearly from 0 at $t=0$ (start at rest) to \bar{V} at $t=T_{s}$. The largest value for the norm of the total acceleration is approached when $t=T_{s}$. Thus, we impose satisfaction of the constraint in the worst case:

$$
\left\|\ddot{\boldsymbol{p}}\left(T_{s}\right)\right\|=\sqrt{\left(\frac{\bar{V}^{2}}{R}\right)^{2}+\bar{A}^{2}} \leq A_{\max } \quad \Rightarrow \quad \bar{A} \leq \sqrt{A_{\max }^{2}-\left(\frac{\bar{V}^{2}}{R}\right)^{2}}=\sqrt{12}
$$

Since a minimum transfer time is requested, we choose the maximum feasible value of the acceleration norm (i.e., $\left\|\ddot{\boldsymbol{p}}\left(T_{s}\right)\right\|=A_{\max }$), leading to $\bar{A}=\sqrt{12}$.

With the above values for \bar{V} and \bar{A}, having already computed the length L of the path, we determine the remaining unknowns with the usual formulas:

$$
T_{s}=\frac{\bar{V}}{\bar{A}}=\frac{2}{\sqrt{12}}=0.577[\mathrm{~s}], \quad\left(T-T_{s}\right) \bar{V}=L \quad \Rightarrow \quad T=T_{s}+\frac{L}{\bar{V}}=0.577+\frac{5 \pi}{\overline{6}}=3.195[\mathrm{~s}]
$$

We obtained $T>2 T_{s}$, confirming that the actual speed profile is trapezoidal.

