
Robotics I
February 6, 2015

Exercise 1

Consider the 3R robot in Fig. 1 (this is the same robotic structure of an exercise assigned in
September 2007). The base frame and an additional end-effector frame are already specified.
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Figure 1: A robot with three revolute joints.

• Given a desired orientation Rd of the end-effector frame, solve the inverse kinematics problem
in symbolic form. Consider also possible singular cases.

• Apply your result and determine all numerical solutions q for the following two sets of data:

Rd,1 =

 0 1 0
0 0 −1
−1 0 0

 ; Rd,2 =

 1 0 0
0 1 0
0 0 1

 = I.

• Provide for this robot the relation between q̇ and the angular velocity ωE of the end-effector
frame (expressed in the base frame).

• Determine a joint velocity q̇ in the configuration q = 0 that produces the desired angular
velocity ωE,d =

(
0 0 3

)T [rad/s]. Has this problem a solution? If so, is it unique?

• “This robot is of little use for positioning the end-effector in 3D space.” Do you agree with
this statement? Why?

Extra • Based on the analysis you have performed, can this robot realize any pointing task with its
end-effector axis zE? If so, is there a unique solution in the generic case? Are there singular
situations? (If you reply correctly to the extra questions, you get a bonus)
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Exercise 2

Given the two points

A =
(
−3
0

)
[m] and B =

(
0.732

1

)
[m]

on the plane, connect them with the arc (of minimum length) of a circle having radius R = 2 [m]
and parametrize this path by its arc length s. Design a timing law s = s(t) with trapezoidal speed
profile so as to obtain a rest-to-rest circular trajectory p(t) from A to B that performs the transfer
in minimum time T under the maximum velocity and acceleration constraints

‖ṗ(t)‖ ≤ Vmax, ‖p̈(t)‖ ≤ Amax, t ∈ [0, T ],

and the bound on the normal acceleration p̈n(t) to the path

‖p̈n(t)‖ ≤ An,max, t ∈ [0, T ].

Solve this Cartesian trajectory planning problem with the data

Vmax = 3 [m/s], Amax = 4 [m/s2], An,max = 2 [m/s2],

providing also the numerical values of the associated minimum time T .

[180 minutes; open books]
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Solution
February 6, 2015

Exercise 1

For the assignment of DH frames and the associated table of parameters, see Fig. 2 and Tab. 1.
We need also an additional transformation matrix 3TE relating the third DH frame RF3 to RFE :

3TE =

(
3RE 0

0T 1

)
=


0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

 . (1)
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Figure 2: Denavit-Hartenberg frames for the robot of Fig. 1.

i αi ai di θi

1 π/2 0 A q1

2 π/2 0 0 q2

3 0 C B q3

Table 1: Denavit-Hartenberg parameters associated to the frames chosen as in Fig. 2.

Using Tab. 1 and (1), the direct kinematics for the orientation is computed as
0RE = 0R1(q1) 1R2(q2) 2R3(q3) 3RE (2)

=

 − cos q1 sin q2 sin q1 cos q3 − cos q1 cos q2 sin q3 sin q1 sin q3 + cos q1 cos q2 cos q3
− sin q1 sin q2 − cos q1 cos q3 − sin q1 cos q2 sin q3 sin q1 cos q2 cos q3 − cos q1 sin q3

cos q2 − sin q2 sin q3 sin q2 cos q3

 ,
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which is independent of A, B, and C.

The Jacobian matrix in 0ωE

(
= 0ω3

)
= J(q) q̇ =

(
0z0

0z1
0z2

)
q̇ is given by

J(q) =


 0

0
1

 0R1(q1)

 0
0
1

 0R1(q1)1R2(q2)

 0
0
1


 =

 0 sin q1 cos q1 sin q2
0 − cos q1 sin q1 sin q2
1 0 − cos q2

 ,

with det J(q) = sin q2.

For a desired orientation of the end-effector frame, represented by a given rotation matrix
Rd = {Rij}, one can determine the inverse kinematics solution using the elements in (2). First,
compute

qI2 = ATAN2
{√

R2
32 +R2

33, R31

}
.

If R2
32 + R2

33 6= 0, which means sin q2 6= 0, we are in the regular case. A second distinct solution
for q2 is computed as

qII2 = ATAN2
{
−
√
R2

32 +R2
33, R31

}
.

Moreover,

qI1 = ATAN2
{
−R21

sin qI2
,
−R11

sin qI2

}
, qII1 = ATAN2

{
−R21

sin qII2
,
−R11

sin qII2

}
,

and

qI3 = ATAN2
{
−R32

sin qI2
,
R33

sin qI2

}
, qII3 = ATAN2

{
−R32

sin qII2
,
R33

sin qII2

}
.

When R32 = R33 = 0, we are in a singular situation. This occurs if and only if sin q2 = 0, thus
when either q2 = 0 or q2 = π. If q2 = 0, we can solve only for the difference q1 − q3:

0RE

∣∣
q2=0

=

 0 sin(q1 − q3) cos(q1 − q3)
0 − cos(q1 − q3) sin(q1 − q3)
1 0 0

 ⇒ q1−3 := q1 − q3 = ATAN2 {R23, R13} ,

leading to an infinity of solutions of the form

q =
(
α 0 α− q1−3

)T
, ∀α ∈ R.

Similarly, when q2 = π we can solve only for the sum q1 + q3:

0RE

∣∣
q2=π

=

 0 sin(q1 + q3) − cos(q1 + q3)
0 − cos(q1 + q3) − sin(q1 + q3)
−1 0 0

 ⇒ q1+3 := q1+q3 = ATAN2 {R12,−R13} ,

leading to an infinity of solutions of the form

q =
(
β π q1+3 − β

)T
, ∀β ∈ R.

Applying these results to the given data, we have that

Rd,1 =

 0 1 0
0 0 −1
−1 0 0

 ⇒ a singular case with q2 = π,
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leading to the solutions q =
(
β π π/2− β

)T , for any β. On the other hand, Rd,2 = I is a
regular case leading to the pair of solutions

qI =
(
π π/2 0

)T
, qII =

(
0 −π/2 π

)T
.

The Jacobian matrix J(q) is singular in the zero configuration q = 0. However,

J(0) =

 0 0 0
0 −1 0
1 0 −1

 ⇒ ωE,d =

 0
0
3

 ∈ R (J(0)) = span


 0
γ

0

 ,

 0
0
δ


 .

Therefore, there exists an infinite number of joint velocity solutions q̇ providing ωE,d, all having
q̇2 = 0 and with q̇1 − q̇3 = 3 [rad/s]. In particular, q̇ = J#(0) ωE,d =

(
1.5 0 −1.5

)T [rad/s]
provides the minimum norm solution.

Due to its kinematics this robot has a limited use for positioning tasks, since the primary
workspace is very restricted. In fact, it is a thin spherical mantle/surface, placed on top of the
surface of the sphere described by the tip position of the second link (a 2R polar sub-structure).

The solution to the last (extra) question is left as an exercise.

Exercise 2

The specified path from A to B can be constructed easily in a geometric way, by defining a
circumference of given radius R passing through two points, as illustrated in Fig. 3. The shortest
path from A to B on the circle of radius R centered in C1 is shown as a bolded arc (the arrow
indicates its clockwise rotation).
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Figure 3: Geometric steps for constructing a circle of radius R through two points A and B (there
are two solutions in the regular case).

In general, an infinitesimal arc length on a circle of radius R can be written as ds = Rdθ, where
dθ is the angle spanning the arc from the circle center C. Using simple trigonometry, the path
parametrization by the arc length is given by

p(s) = C +R

 cos
(
± s
R

+ φ
)

sin
(
± s
R

+ φ
)
 , s ∈ [0, L], (3)
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where the sign in ± is chosen positive if the path is traced counterclockwise, negative otherwise.
L is the total arc length (from point A to point B), while the phase φ is chosen so as to be in A
for s = 0.

A nice feature of the problem is that one does not have to determine the center C of the circle,
nor the circle itself, in order to satisfy all the design specifications on the trajectory! Even the
path length L can be directly computed from the known formula (see, e.g., wikipedia) relating the
distance d of two points A and B with the length L of the (shortest) arc of a circle of radius R
passing through the two points:

L = RθAB , d = ‖B −A‖ = 2R sin
(
θAB

2

)
⇒ L = 2R arcsin

(
d

2R

)
.

With the length L and the generic expression (3), we can solve completely the assigned problem.

A = (-3,0) 

p(s) 

R = 2 

C = (-1,0)  

B = (0.7321,1) 

D = (-1,2) 

E = (1,0) 

!AB = 5"/6   

L = 5"/3   

Figure 4: The actual geometric path p(s) constructed with the problem data, using a circle of
radius R = 2 m with center at C = (−1, 0).

Nonetheless, due to the specific data values that were given, a center C can be found rather
immediately by visual inspection —see Fig. 4. By imposing p(0) = A, the parametrization of the
clockwise circular path becomes

p(s) = C −R

 cos
(
− s
R

)
sin
(
− s
R

)
 , s ∈ [0, L], L = R

5π
6

=
5π
3

= 5.236 [m], (4)

where the phase φ = π chosen in the argument of the trigonometric functions in (3) leads to the
minus sign in front of the first R. The length L is obtained from the angle θAB spanning the whole
path (equal to 150◦, if expressed in degrees) multiplied by the radius R = 2.

For a generic s = s(t), the first and second time derivatives of p(s) in (4) are given by

ṗ =
dp

ds

ds

dt
=

 sin
( s
R

)
cos
( s
R

)
 ṡ (5)
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and

p̈ = p̈t + p̈n =
dp

ds
s̈+

d2p

ds2
ṡ2 =

 sin
( s
R

)
cos
( s
R

)
 s̈+

1
R

 cos
( s
R

)
− sin

( s
R

)
 ṡ2

=

 cos
( s
R

)
sin
( s
R

)
− sin

( s
R

)
cos
( s
R

)
( ṡ2/R

s̈

)
= RotT

( s
R

)( ṡ2/R

s̈

)
,

(6)

with a decomposition in tangential and normal acceleration to the path, respectively p̈t and p̈n.
The 2×2 matrix Rot(θ) is a planar rotation by an angle θ, acting on 2-dimensional vectors. Thanks
to the used parametrization by the arc length, we have the following properties for the norms∥∥∥∥dpds

∥∥∥∥ = 1 ⇒ ‖ṗ‖ = |ṡ|, ‖p̈t‖ = |s̈|,
∥∥∥∥d2p

ds2

∥∥∥∥ =
1
R
⇒ ‖p̈n‖ =

ṡ2

R
, ‖p̈‖ =

√(
ṡ2

R

)2

+ s̈ 2.

We consider now a generic a trapezoidal profile for ṡ(t) of duration T , with symmetric initial
and final acceleration/deceleration phases of absolute value Ā and equal duration Ts, and a central
constant cruising speed V̄ > 0 to be kept for T − 2Ts seconds. The four quantities V̄ , Ā, Ts, and
T have to be determined so as to cover the total path length L, while minimizing T and satisfying
the constraints specified by Vmax, Amax, and An,max.

The important thing to note is that the curvature 1/R of the path and the bound on the normal
acceleration p̈n

‖p̈n‖ =
ṡ2

R
≤ An,max

may impose a more severe limit on ṡ than the bound Vmax on the norm of ṗ. In fact, we have that

|ṡ| ≤ min
{
Vmax,

√
RAn,max

}
= min{3,

√
4} = 2 =: V̄ ′. (7)

To evaluate the constraint on the total acceleration p̈, we distinguish two situations for the tan-
gential acceleration: constant s̈ = ±Ā 6= 0 (in the initial and final phases) and s̈ = 0 (in the cruise
phase at constant speed). During the cruise phase, it is

‖p̈‖ =
ṡ2

R
≤ Amax ⇒ |ṡ| ≤

√
RAmax =

√
8 =: V̄ ′′. (8)

As a result, combining (7) and (8), we have for the maximum constant speed ṡ during cruising

ṡ(t) = V̄ = min
{
V̄ ′, V̄ ′′

}
= 2, t ∈ [Ts, T − Ts].

In the constant acceleration phase (a specular argument applies to the constant deceleration phase),
the speed increases linearly from 0 at t = 0 (start at rest) to V̄ at t = Ts. The largest value for
the norm of the total acceleration is approached when t = Ts. Thus, we impose satisfaction of the
constraint in the worst case:

‖p̈(Ts)‖ =

√(
V̄ 2

R

)2

+ Ā 2 ≤ Amax ⇒ Ā ≤

√
A2
max −

(
V̄ 2

R

)2

=
√

12.

Since a minimum transfer time is requested, we choose the maximum feasible value of the acceler-
ation norm (i.e., ‖p̈(Ts)‖ = Amax), leading to Ā =

√
12.
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With the above values for V̄ and Ā, having already computed the length L of the path, we
determine the remaining unknowns with the usual formulas:

Ts =
V̄

Ā
=

2√
12

= 0.577 [s], (T − Ts)V̄ = L ⇒ T = Ts +
L

V̄
= 0.577 +

5π
6̄

= 3.195 [s].

We obtained T > 2Ts, confirming that the actual speed profile is trapezoidal.

∗ ∗ ∗ ∗ ∗
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