Robotics I

April 2, 2014

Exercise 1

Consider a robot with four revolute joints, having the Denavit-Hartenberg parameters of Table 1.

i	α_{i}	a_{i}	d_{i}	θ_{i}
1	$\pi / 2$	$a_{1}>0$	$d_{1}>0$	q_{1}
2	$\pi / 2$	$a_{2}>0$	0	q_{2}
3	$-\pi / 2$	0	$d_{3}>0$	q_{3}
4	0	$a_{4}>0$	0	q_{4}

Table 1: Denavit-Hartenberg parameters of a 4-dof robot

- Sketch the robot and the associated Denavit-Hartenberg frames in two different configurations: i) $\boldsymbol{q}_{A}=\mathbf{0}$, and ii) $\boldsymbol{q}_{B}=\left(\begin{array}{llll}0 & \pi / 2 & -\pi / 2 & \pi / 2\end{array}\right)^{T}$.
- Provide the symbolic expression of the direct kinematics map $\boldsymbol{p}=\boldsymbol{f}(\boldsymbol{q}) \in \mathbb{R}^{3}$ for the position \boldsymbol{p} of the origin of frame 4.

Exercise 2

For the robot of Exercise 1, find the joint torque $\boldsymbol{\tau} \in \mathbb{R}^{4}$ that balances a force ${ }^{0} \boldsymbol{F}=\left(\begin{array}{lll}0 & 10 & 0\end{array}\right)^{T}[\mathrm{~N}]$ applied to the origin of frame 4 , when the robot is in the configuration $\boldsymbol{q}=\boldsymbol{q}_{B}$. Keep the symbolic dependence on parameters that are not specified numerically.

Exercise 3

Plan a smooth minimum time trajectory $q_{d}(t)$ for a robot joint that provides rest-to-rest motion from $q_{i n}=90^{\circ}$ to $q_{f i n}=-90^{\circ}$, with velocity and acceleration equal to zero at the initial and final instants and satisfying the bounds $\left|\dot{q}_{d}(t)\right| \leq 90^{\circ} / \mathrm{s}$ and $\left|\ddot{q}_{d}(t)\right| \leq 90^{\circ} / \mathrm{s}^{2}$. Give the final expression of $q_{d}(t)$ and plot approximately this solution trajectory and its first and second time derivatives. Provide also the minimum feasible time T and the maximum absolute value attained by the velocity and by the acceleration.
[180 minutes; open books]

