
Robotics I
February 6, 2014

Exercise 1

A pan-tilt1 camera sensor, such as the commercial webcams in Fig. 1, is mounted on the fixed base
of a robot manipulator and is used for pointing at a (point-wise) target in the 3D Cartesian space.
The tilt rotation is typically limited to maximum ±90◦ w.r.t. the vertical axis, or slightly more.
The motion of the optical axis of the camera can be described with the Denavit-Hartenberg (DH)
formalism, as that of a 2-dof simple robot manipulator.
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Figure 1: Pan-tilt cameras, with placement of the reference frame RF0 (shown for two of them)

• Assign the frames according to the DH convention and provide the associated table of parame-
ters. Use mandatorily the reference frame RF0 = {x0,y0, z0} as indicated in Fig. 1. One of the
axes of the last frame should be coincident with the optical axis of the camera.

• Determine the unit vector of the pointing axis as a function of the joint angles q ∈ R2.

• For a given target position 0pT =
(

0xT
0yT

0zT

)T , with 0zT ≥ 0 (and sufficiently large),
determine the value(s) of q that solve the pointing task. Is this inverse kinematics problem
always solvable or well defined?

Exercise 2

In a pick-and-place task, beside the desired initial Cartesian pose r0 at time t = t0 and the final
pose rf at t = tf of the robot, it is common to assign two intermediate robot poses, r1 at t = t1
and r2 at t = t2 (with t0 < t1 < t2 < tf ), so as to shape the total robot motion in three phases:
Lift off from r0 to r1; Travel from r1 to r2; and, Set down from r2 to rf . Smoothness of the
trajectory is requested, with continuity up to the acceleration at any t ∈ [t0, tf ]. The first and
last phases are in ‘guarded’ move, and should be performed with caution because of the closeness
to environmental surfaces. Therefore, we require also zero velocity and acceleration at the initial
and final poses. The four Cartesian poses r0, r1, r2, and rf have been transformed into four
configurations q0, q1, q2, and qf of a robot with revolute joints by means if its inverse kinematics.

1Panning refers to left/right rotations around the vertical axis, tilting to up/down rotations around an horizontal
axis.

1



Define a 4-3-4 trajectory for a generic joint q addressing the given task. Give the expressions used
for each polynomial tract, formulate the problem, and provide the value of all coefficients using:

t0 = 0, t1 = 2, t2 = 4, t1 = 6 [s]

q0 = q(t0) = 0, q1 = q(t1) = 10, q2 = q(t2) = 80, qf = q(tf ) = 90 [deg].

Hint: You can solve the problem numerically (by a direct method) or analytically (by proper choosing the

structure of the polynomials, so as to ease the analysis). Either way is fine. The former approach is rather

straightforward, but only if you use a (simple) Matlab code (do not include this, just report the results as

requested). The latter is more complex, though quite elegant (you can reduce the problem to the solution of

a suitable linear system of two equations in two unknowns, which is indeed solvable in closed form).

Exercise 3

Consider a robot manipulator with n joints, its configuration vector q ∈ Rn, and a task described
by r = r(q), with r ∈ Rm. Assume that m = n and a desired task trajectory rd(t) is given. Prove
that the kinematic control law

q̇ = J−1(q) ṙd + k JT (q) (rd − r(q)) , (1)

with the task Jacobian matrix J(q) = ∂r(q)/∂q and a scalar k > 0, will force any initial error
e(0) = rd(0) − r(q(0)) at time t = 0 to converge to zero, as long as no singularities of J(q) are
encountered. Discuss the above controller in terms of off-line versus on-line computations needed.

Next, assume that m < n. How can the kinematic control law (1) be modified in order to guarantee
the same previous features?

[210 minutes for all exercises; open books]
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Solutions
February 6, 2014

Exercise 1

The DH frame assignment is shown in Fig. 2, with the associated parameters in Table 1. Note
that a non-zero offset d1 > 0 is present, since the reference frame cannot be assigned arbitrarily,
as specified by the text of the problem (otherwise, we could move up the origin O0 along z0 until
intersecting the second joint axis).

x0 

y0 

z0 

x1 

z1 = z2 

x2 

O0 

O1 = O2 

d1 

Figure 2: Assignment of Denavit-Hartenberg frames for a pan-tilt camera

i αi a1 di θi

1 π/2 0 d1 q1

2 0 0 0 q2

Table 1: Denavit-Hartenberg parameters for the pan-tilt camera

The optical axis of the camera is the unit axis 0x2 of last frame, whose expression is given by

0x2 =0 R1(q1) 1R2(q2)

 1
0
0

 =

 cos q1 0 sin q1
sin q1 0 − cos q1

0 1 0

 cos q2 − sin q2 0
sin q2 cos q2 0

0 0 1

 1
0
0


=

 cos q1 cos q2
sin q1 cos q2

sin q2

 .

For the pointing task, observe first that any 3D position 0pT =
(

0xT
0yT

0zT

)T of a target
having 0zT ≥ 0 is mapped into a single value of two task variables, namely the pan angle α and
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the tilt angle β, as

α = ATAN2 {0yT ,
0xT }, β = ATAN2 {0zT ,

√
0x2

T + 0y 2
T }. (2)

When the target is on the (positive) z0 axis, α is not defined2. Otherwise, the mapping in (2) is
surjective (but not injective, since all Cartesian points on a half-ray from the origin give the same
values of (α, β)). If there were no base offset (d1 = 0), these two angles would also coincide with
the values (q1, q2), in the same order, solution of the inverse kinematics problem. Nevertheless,
simple geometry shows that the inverse kinematics solution for the two-dimensional pointing task
is given by

q1 = ATAN2 {0yT ,
0xT }, q2 = ATAN2 {0zT − d1,

√
0x2

T + 0y 2
T }, (3)

except for the singular case 0yT = 0xT = 0, where the angle q1 is not specified (any value of q1
satisfies the problem). Note that there is no choice of signs for angle q2, because of the range
limitation of this joint (moreover, the target position is assumed to lie in the Cartesian region with
positive values of 0zT − d1).

Exercise 2

A numerical procedure for obtaining the solution is detailed in steps A–E below. We may call this
a brute force approach.

A. Define the interpolating polynomials for the three phases L = Lift off (degree 4), T = Travel
(degree 3), and S = Set down (degree 4):

qL(t) = aL0 + aL1t+ aL2t
2 + aL3t

3 + aL4t
4 t ∈ [t0, t1]

qT (t) = aT0 + aT1t+ aT2t
2 + aT3t

3 t ∈ [t1, t2]

qS(t) = aS0 + aS1t+ aS2t
2 + aS3t

3 + aS4t
4 t ∈ [t1, tf ].

(4)

The 4-3-4 trajectory will be the concatenation of these three polynomials for the motion interval
t ∈ [t0, tf ]:

q434(t) =


qL(t) for t ∈ [t0, t1]
qT (t) for t ∈ [t1, t2]
qS(t) for t ∈ [t2, tf ].

(5)

B. The 14 unknown coefficients are organized in the vector

xT =
(
aL0 aL1 aL2 aL3 aL4 aT0 aT1 aT2 aT3 aS0 aS1 aS2 aS3 aS4

)
. (6)

C. Impose the requested 14 boundary conditions on the 14 coefficients:

qL(t0) = q0 q̇L(t0) = 0 q̈L(t0) = 0 q̇L(t1) = q1

q̇L(t1) = q̇T (t1) q̈L(t1) = q̈T (t1) (continuity of velocity and acceleration at t1)

qT (t1) = q1 qT (t2) = q2

q̇T (t2) = q̇S(t2) q̈T (t2) = q̈S(t2) (continuity of velocity and acceleration at t2)

qS(t2) = q2 qS(tf ) = qf q̇S(tf ) = 0 q̈S(tf ) = 0.

(7)

2In order to be interpreted as trigonometric values (sine and cosine of some angle), the arguments of each of the

two ATAN2 functions in the eqs. (2) should be divided, respectively by
q

0x2
T + 0y 2

T and by
q

0x2
T + 0y2T + 0z2T .

When 0x2
T +0 y2T 6= 0, this division by a (positive) value can be avoided. Instead, for 0x2

T =0 y2T = 0, the pan
angle α would remain anyway undefined. So, such divisions are skipped altogether in eqs. (2), while introducing a
preliminary warning in (or close to) a singularity. Similar arguments hold for eqs. (3).
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D. Following the same order, the conditions (7) can be written in matrix form as

A x = b, (8)

with

A =



1 t0 t20 t30 t40 0 0 0 0 0 0 0 0 0
0 1 2t0 3t20 4t30 0 0 0 0 0 0 0 0 0
0 0 2 6t0 12t20 0 0 0 0 0 0 0 0 0
1 t1 t21 t31 t41 0 0 0 0 0 0 0 0 0
0 1 2t1 3t21 4t31 0 −1 −2t1 −3t21 0 0 0 0 0
0 0 2 6t1 12t21 0 0 −2 −6t1 0 0 0 0 0
0 0 0 0 0 1 t1 t21 t31 0 0 0 0 0
0 0 0 0 0 1 t2 t22 t32 0 0 0 0 0
0 0 0 0 0 0 1 2t2 3t22 0 −1 −2t2 −3t22 −4t32
0 0 0 0 0 0 0 2 6t2 0 0 −2 −6t2 −12t22
0 0 0 0 0 0 0 0 0 1 t2 t22 t32 t42

0 0 0 0 0 0 0 0 0 1 tf t2f t3f t4f
0 0 0 0 0 0 0 0 0 0 1 2tf 3t2f 4t3f
0 0 0 0 0 0 0 0 0 0 0 2 6tf 12t2f



(9)

and
b =

(
q0 0 0 q1 0 0 q1 q2 0 0 q2 qf 0 0

)T
.

It can be shown that matrix A in (9) is always non-singular as long as t0 < t1 < t2 < tf , a
condition which is satisfied by assumption. Using the problem data, we have

A =



1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0
1 2 4 8 16 0 0 0 0 0 0 0 0 0
0 1 4 12 32 0 −1 −4 −12 0 0 0 0 0
0 0 2 12 48 0 0 −2 −12 0 0 0 0 0
0 0 0 0 0 1 2 4 8 0 0 0 0 0
0 0 0 0 0 1 4 16 64 0 0 0 0 0
0 0 0 0 0 0 1 8 48 0 −1 −8 −48 −256
0 0 0 0 0 0 0 2 24 0 0 −2 −24 −192
0 0 0 0 0 0 0 0 0 1 4 16 64 256
0 0 0 0 0 0 0 0 0 1 6 36 216 1296
0 0 0 0 0 0 0 0 0 0 1 12 108 864
0 0 0 0 0 0 0 0 0 0 0 2 36 432


and

b =
(

0 0 0 10 0 0 10 80 0 0 80 90 0 0
)T
.
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E. By using Matlab, the linear system of equations (8) is solved as

x = A−1b,

providing the desired coefficients of the three polynomials:

xT =
(
aL0 aL1 aL2 aL3 aL4 aT0 aT1 aT2 aT3 aS0 aS1 aS2 aS3 aS4

)
= ( 0 0 0 −.625 0.9375 90 −125.5 56.25 −6.25 −990 742.5 −191.25 21.875 −0.9375 ) .

(10)

Figure 3 shows the position, velocity, and acceleration of the obtained 4-3-4 trajectory. It
can be noted that the trajectory is fully symmetric because of the specific data distribution. As
requested, the solution trajectory q434(t) is continuous up to the acceleration, and has zero initial
and final values of the first two time derivatives.

Once the above numerical procedure has been coded (e.g., in Matlab), it can be used for other
sets of data. For instance, we can change just the timing through the same knots, i.e.,

t0 = 0, t1 = 1, t2 = 4, t1 = 6 [s]

q0 = 0, q1 = 10, q2 = 80, qf = 90 [deg].
(11)

Figure 4 shows the resulting 4-3-4 trajectory. Symmetry of motion is now lost.

Matrix A in (9) is clearly sparse. As a matter of fact, no special structure has been exploited
in order to reduce the number of independent equations to be solved numerically. A more careful
definition of the interpolating polynomials can lead instead to a complete analytical solution in
closed form. For this, normalization of time is used in each motion phase, together with a symmetric
definition of the first and last quartic polynomials (reversing time for the latter). Moreover, a
similar idea is used as in spline interpolation in order to break the problem in three separate parts.

The analytical solution is found by the procedure a–f below. For the time being, assume that
q0 6= q1 and q2 6= qf . Special cases will be treated at the end.

a. Define the quartic polynomial in the Lift off phase as

qL(τ1) = q0 + (q1 − q0)
(
a13 τ

3
1 + a14 τ

4
1

)
, τ1 =

t− t0
t1 − t0

∈ [0, 1]. (12)

It is easy to see that, by construction, qL(τ1) satisfies the three initial boundary conditions at
t = t0 (or, τ1 = 0) on position, velocity, and acceleration. Moreover,

qL(1) = q0 + (q1 − q0) (a13 + a14) = q1 ⇒ a13 + a14 = 1.

Therefore, for the derivatives and their values at t = t1 (or, τ1 = 1) we have

q̇L(τ1) =
q1 − q0
t1 − t0

(
3 a13 τ

2
1 + 4 a14 τ

3
1

)
⇒ q̇L(1) =

q1 − q0
t1 − t0

(3 + a14) (13)

and

q̈L(τ1) =
q1 − q0

(t1 − t0)2
(
6 a13 τ1 + 12 a14 τ

2
1

)
⇒ q̈L(1) =

6(q1 − q0)
(t1 − t0)2

(1 + a14) . (14)

b. Define the quartic polynomial in the Set down phase as

qS(τ3) = qf + (q2 − qf )
(
a33(1− τ1)3 + a34(1− τ1)4

)
, τ3 =

t− t2
tf − t2

∈ [0, 1]. (15)
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By construction, qS(τ3) satisfies the three final boundary conditions at t = tf (or, τ3 = 1) on
position, velocity, and acceleration. Moreover,

qS(0) = qf + (q2 − qf ) (a33 + a34) = q2 ⇒ a33 + a34 = 1.

Therefore, for the derivatives and their values at t = t2 (or, τ3 = 0) we have

q̇S(τ3) =
qf − q2
tf − t2

(
3 a33(1− τ3)2 + 4 a34(1− τ3)3

)
⇒ q̇S(0) =

qf − q2
tf − t2

(3 + a34) (16)

and

q̈S(τ3) = − qf − q2
(tf − t2)2

(
6 a33(1− τ3) + 12 a34(1− τ3)2

)
⇒ q̈S(0) = −6(qf − q2)

(tf − t2)2
(1 + a34) .

(17)

c. For the cubic polynomial in the Travel phase, we choose the symmetric form

qT (τ2) = q2τ2 + q1(1− τ2) + a21 τ2(1− τ2)2 + a22 τ
2
2 (1− τ2), τ2 =

t− t1
t2 − t1

∈ [0, 1]. (18)

By construction, qT (τ2) satisfies the interpolating conditions on position in t = t1 (τ2 = 0) and
t = t2 (τ2 = 1). Denote at this stage the (yet unknown) velocities at the internal knots as v1 and
v2, respectively. By imposing

q̇T (0) = v1, q̇T (1) = v2,

the cubic polynomial (18) becomes fully specified as

qT (τ2) = q1 + (q2− q1)τ2 + [v1(t2 − t1) + (q2 − q1)] τ2(1− τ2)2 + [(q2 − q1)− v2(t2 − t1)] τ2
2 (1− τ2),

(19)
for τ2 ∈ [0, 1]. For later use, we compute also the expression of its acceleration:

q̈T (τ2) =
6(q2 − q1)
(t2 − t1)2

(1− 2τ2) +
1

t2 − t1
(6(v1 + v2) τ2 − 2(2v1 + v2)) . (20)

d. Using the expressions in (13) and (16), and imposing the equalities

q̇L(1) = v1, q̇S(0) = v2,

we solve for the coefficients of qL(τ1) and qS(τ3) as

a14 = v1
t1 − t0
q1 − q0

− 3, a13 = 1− a14 = 4− v1
t1 − t0
q1 − q0

(21)

and
a34 = v2

tf − t2
qf − q2

− 3, a33 = 1− a34 = 4− v2
tf − t2
qf − q2

. (22)

e. Having tailored the solution as above, we are left only with the problem of finding the correct
values v1 and v2. For this, the conditions of continuity of the acceleration at the intermediate
knots are used, namely

q̈L(1) = q̈T (0), q̈T (1) = q̈S(0).
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Using eqs. (14) and (17), substituting therein the coefficients given by (21) and (22), and evaluat-
ing (20) at τ2 = 0 and τ2 = 1 yields

q̈L(1) =
6v1

t1 − t0
− 12(q1 − q0)

(t1 − t0)2
= −2(v2 + 2v1)

t2 − t1
+

6(q2 − q1)
(t2 − t1)2

= q̈T (0)

q̈T (1) =
2(v1 + 2v2)
t2 − t1

− 6(q2 − q1)
(t2 − t1)2

= − 6v2
tf − t2

+
12(qf − q2)
(tf − t2)2

= q̈S(0).
(23)

After some manipulation, the following linear system of two equations in two unknowns in matrix
form is obtained:

M

(
v1

v2

)
=

(
6 (t2 − t1) + 4 (t1 − t0) 2 (t1 − t0)

2 (tf − t2) 6 (t2 − t1) + 4 (tf − t2)

)(
v1

v2

)

=

 6(q2 − q1)
t1 − t0
t2 − t1

+ 12(q1 − q0)
t2 − t1
t1 − t0

6 (q2 − q1)
tf − t2
t2 − t1

+ 12 (qf − q2)
t2 − t1
tf − t2

 =

(
n1

n2

)
= n.

(24)

Since

det M = 12
{

3(t2 − t1)3 + 2(t2 − t1) [(t1 − t0) + (tf − t2)] + (t1 − t0)(tf − t2)
}
6= 0, (25)

its solution is(
v1

v2

)
= M−1 n =

1
det M

(
6 (t2 − t1) + 4 (tf − t2) −2 (t1 − t0)

−2 (tf − t2) 6 (t2 − t1) + 4 (t1 − t0)

)(
n1

n2

)
, (26)

where n1 and n2 are defined in (24), and eq. (25) is used for the determinant. The closed form
solution of the problem is found by replacing the analytical expressions of v1 and v2 in eq. (19) for
qT (τ2) and in eqs. (21–22) for qL(τ1) and qS(τ3).

f. Using the problem data, we obtain

v1 = v2 = 22.5 [deg/s] (27)

and so
a13 = −0.5, a14 = 1.5, a33 = −0.5, a34 = 1.5.

Indeed, the resulting trajectory is the same as the one obtained with the numerical method.
However, since the symbolic expressions of the used polynomials are different, also the associated
numerical values of the coefficients will be different. In Fig. 3, the computed values (27) are
shown as magenta dots in the velocity plots. Note also that identical values are obtained for the
coefficients of the two quartic polynomials, because of the symmetric nature of the given data. For
the alternative data in (11), we obtain instead (see the plots in Fig. 4)

v1 = 21.4184, v2 = 14.3972 [deg/s] (28)

and
a13 = 1.8582, a14 = −0.8582, a33 = 1.1206, a34 = −0.1206.

To complete the analysis, we have to consider the degenerate (or singular) cases, namely when
q0 = q1 and/or q2 = qf . The numerical approach is totally unaffected by any repetition of values
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at the knots (i.e., matrix A does not lose rank). On the other hand, in the more tailored analytical
approach some changes are needed. In fact, the expressions of the quartic polynomials (12) and (15)
would be forced to become constant in such cases (while they should not, unless q0 = q1 = q2 = qf
and no motion is needed). In a singular case, it is sufficient to replace the previous definitions by

qL(τ1) = q0 + v1(t1 − t0)
(
τ4
1 − τ3

1

)
, τ1 =

t− t0
t1 − t0

∈ [0, 1]

when q1 = q0, and/or by

qS(τ3) = qf + v2(tf − t2)
(
(1− τ3)3 − (1− τ3)4

)
, τ3 =

t− t2
tf − t2

∈ [0, 1]

when q2 = qf . In this way, we have in particular

q̈L(1) =
6v1

t1 − t0
, q̈S(0) = − 6v2

tf − t2

that coincide with the expressions in (23) of the accelerations at the intermediate knots, respectively
when q1 = q0 and when q2 = qf . Therefore, v1 and v2 can be found using (26) as before. For
instance, consider the double degenerate case

t0 = 0, t1 = 2, t2 = 4, t1 = 6 [s]

q0 = q1 = 0, q2 = qf = 90 [deg].
(29)

Figure 5 shows the result obtained via the analytical method, yielding again v1 = v2 = 22.5 [deg/s]
(the same trajectory would be obtained also with the numerical method). From the position
profile, we can see that there is some motion also in the first and last time intervals, which is
needed to guarantee continuity up to the acceleration in the intermediate knots. However, an
under- and over-shooting is present, which makes this particular situation no longer interesting for
a collision-free guarded motion of the robot, when close to environmental surfaces.

Two different Matlab programs for the numerical solution and for the analytical solution (in-
cluding treatment of degenerate cases) are available upon request.

9



0 1 2 3 4 5 6
−20

0

20

40

60

80

100
polynomial 4−3−4 trajectory

[s]

[d
eg

]

0 1 2 3 4 5 6
−5

0

5

10

15

20

25

30

35

40

45
velocity with polynomial 4−3−4

[s]

[d
eg

/s
]

0 1 2 3 4 5 6
−40

−30

−20

−10

0

10

20

30

40
acceleration with polynomial 4−3−4

[s]

[d
eg

/s
2 ]

Figure 3: Position (top, the red dots are the interpolated knots), velocity (center, the magenta
dots are the computed v1 and v2), and acceleration (bottom) of the 4-3-4 solution trajectory
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Figure 4: Position (top), velocity (center), and acceleration (bottom) of the 4-3-4 solution trajec-
tory for the motion task in (11): Same knots, but different timing
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Figure 5: Position (top), velocity (center), and acceleration (bottom) of the 4-3-4 solution trajec-
tory for the motion task in (29): Initial and first intermediate knot, as well as second intermediate
and final knot have repeated position values
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Exercise 3

The proof is based on Lyapunov stability, namely on the analysis of the time evolution of the error
function V = 1

2 eT e = 1
2 (rd − r)T (rd − r) ≥ 0. Using eq. (1) and dropping dependencies, we

have

V̇ = eT ė = eT (ṙd − ṙ) = eT ṙd − eT Jq̇

= eT ṙd − eT J
[
J−1ṙd + k JT (rd − r)

]
= −k eT JJT e ≤ 0.

(30)

As long as J(q) is non-singular, we have JT e = 0 (and so V̇ = 0) if and only if e = 0. Therefore,
the controlled robot will be an asymptotically stable system, and the error e(t) will converge to
zero from any initial condition e(0). Note that, since the closed-loop system is still nonlinear,
asymptotic stability (and convergence) will not be exponential in general.

The two terms in the control law (1), the first with the inverse Jacobian and the second with the
Jacobian transpose, need both to be computed on line (i.e., all vectors and matrices are evaluated
at the current configuration q), even if the desired task trajectory rd(t), t ∈ [0, T ], is completely
known in advance for an arbitrary duration T .

When the robot is kinematically redundant for the given task (m < n), we can just replace
in (1) the inverse of the Jacobian J by its pseudoinverse J#. In fact, as long as the Jacobian is

full (row) rank, it is JJ# = JJT
(
JJT

)−1

= I. Therefore, we obtain the same cancellation of
terms as in (30).

∗ ∗ ∗ ∗ ∗
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