Robotics I

July 15, 2013

For a 2 R planar robot having links of equal length $\ell_{1}=\ell_{2}=0.5[\mathrm{~m}]$, consider the rest-to-rest motion defined by the joint velocity profiles $\dot{\boldsymbol{q}}(t)=\left(\begin{array}{ll}\dot{q}_{1}(t) & \dot{q}_{2}(t)\end{array}\right)^{T}$ shown in Fig. 1. The motion starts at $t=0$ from $\boldsymbol{q}(0)=\left(\begin{array}{ll}-30^{\circ} & 60^{\circ}\end{array}\right)^{T}$ and ends at $t=T$. The trajectory parameters are:

$$
T=2[\mathrm{~s}], \quad T_{s, 1}=0.5[\mathrm{~s}], \quad T_{s, 2}=1[\mathrm{~s}], \quad V_{\max , 1}=50[\% \mathrm{~s}], \quad V_{\max , 2}=-90[\% / \mathrm{s}] .
$$

Figure 1: Velocity profiles of joint 1 (top) and joint 2 (bottom)
i) Determine the displacement of both joints at the end of motion and the Cartesian distance between the initial and final position \boldsymbol{p} of the robot end-effector. Does the robot cross a singular configuration?
ii) Compute the velocity $\dot{\boldsymbol{p}}$ and acceleration $\ddot{\boldsymbol{p}}$ of the robot end-effector at $t_{1}=T / 10$ and $t_{2}=T / 2$. Sketch the robot configuration and the two vectors at these instants of time.

