Robotics I

July 15, 2013

For a 2R planar robot having links of equal length $\ell_1 = \ell_2 = 0.5$ [m], consider the rest-to-rest motion defined by the joint velocity profiles $\dot{\boldsymbol{q}}(t) = (\dot{q}_1(t) \quad \dot{q}_2(t))^T$ shown in Fig. 1. The motion starts at t = 0 from $\boldsymbol{q}(0) = (-30^\circ \quad 60^\circ)^T$ and ends at t = T. The trajectory parameters are:

$$T = 2$$
 [s], $T_{s,1} = 0.5$ [s], $T_{s,2} = 1$ [s], $V_{max,1} = 50$ [°/s], $V_{max,2} = -90$ [°/s].

Figure 1: Velocity profiles of joint 1 (top) and joint 2 (bottom)

- i) Determine the displacement of both joints at the end of motion and the Cartesian distance between the initial and final position p of the robot end-effector. Does the robot cross a singular configuration?
- ii) Compute the velocity $\dot{\mathbf{p}}$ and acceleration $\ddot{\mathbf{p}}$ of the robot end-effector at $t_1 = T/10$ and $t_2 = T/2$. Sketch the robot configuration and the two vectors at these instants of time.

[120 minutes; open books]