Robotics I

June 10, 2013

Table 1 contains the Denavit-Hartenberg parameters of a robot with four revolute joints.

i	α_{i}	a_{i}	d_{i}	θ_{i}
1	$\frac{\pi}{2}$	0	0	θ_{1}
2	$\frac{\pi}{2}$	0	0	θ_{2}
3	$-\frac{\pi}{2}$	0	d_{3}	θ_{3}
4	0	a_{4}	0	θ_{4}

Table 1: Denavit-Hartenberg parameters of a 4R robot

1. Draw a kinematic sketch of the robot, including the associated Denavit-Hartenberg frames according to Tab. 1.
2. Draw the two robot configurations corresponding to $\boldsymbol{\theta}=\mathbf{0}$ and $\boldsymbol{\theta}=\left(\begin{array}{llll}0 & \pi / 2 & \pi & 0\end{array}\right)^{T}$ [rad].
3. Find a singular configuration for the 3×4 Jacobian $\boldsymbol{J}(\boldsymbol{\theta})$ relating $\boldsymbol{\theta}$ to the linear velocity \boldsymbol{v} of the origin of frame 4.
4. In such a singular configuration $\boldsymbol{\theta}^{*}$, consider as numerical data $d_{3}=a_{4}=0.5[\mathrm{~m}]$.
a) Provide the numerical value of a feasible \boldsymbol{v}_{f} and determine a minimum norm joint velocity $\dot{\boldsymbol{\theta}}_{f}$ such that $\boldsymbol{J}\left(\boldsymbol{\theta}^{*}\right) \dot{\boldsymbol{\theta}}_{f}=\boldsymbol{v}_{f}$. Is this minimum norm solution unique?
b) Provide the numerical value of an unfeasible \boldsymbol{v}_{u} and use the Jacobian pseudoinverse to compute the joint velocity $\dot{\boldsymbol{\theta}}_{u}=\boldsymbol{J}^{\#}\left(\boldsymbol{\theta}^{*}\right) \boldsymbol{v}_{u}$. Which are the properties of $\dot{\boldsymbol{\theta}}_{u}$?
[120 minutes; open books]
