Robotics I

June 10, 2013

Table 1 contains the Denavit-Hartenberg parameters of a robot with four revolute joints.

i	α_i	a_i	d_i	θ_i
1	$\frac{\pi}{2}$	0	0	θ_1
2	$\frac{\pi}{2}$	0	0	θ_2
3	$-\frac{\pi}{2}$	0	d_3	θ_3
4	0	a_4	0	θ_4

Table 1: Denavit-Hartenberg parameters of a 4R robot

- 1. Draw a kinematic sketch of the robot, including the associated Denavit-Hartenberg frames according to Tab. 1.
- 2. Draw the two robot configurations corresponding to $\theta = \mathbf{0}$ and $\theta = \begin{pmatrix} 0 & \pi/2 & \pi & 0 \end{pmatrix}^T$ [rad].
- 3. Find a singular configuration for the 3×4 Jacobian $J(\theta)$ relating $\dot{\theta}$ to the linear velocity v of the origin of frame 4.
- 4. In such a singular configuration θ^* , consider as numerical data $d_3 = a_4 = 0.5$ [m].
 - a) Provide the numerical value of a feasible v_f and determine a minimum norm joint velocity $\dot{\theta}_f$ such that $J(\theta^*)\dot{\theta}_f = v_f$. Is this minimum norm solution unique?
 - b) Provide the numerical value of an unfeasible v_u and use the Jacobian pseudoinverse to compute the joint velocity $\dot{\theta}_u = J^{\#}(\theta^*)v_u$. Which are the properties of $\dot{\theta}_u$?

[120 minutes; open books]