Robotics I

September 10, 2012

A 3R robot manipulator has the following Denavit-Hartenberg table:

i	α_{i}	a_{i}	d_{i}	θ_{i}
1	$\pi / 2$	$a_{1}>0$	0	θ_{1}
2	0	$a_{2}>0$	0	θ_{2}
3	0	$a_{3}>0$	0	θ_{3}

Table 1: DH table of a 3R robot

1. Sketch the kinematic structure of the robot and place the D-H frames according to Table 1.
2. Draw the robot in the configuration $\boldsymbol{\theta}=\left(\begin{array}{lll}0 & \pi / 4 & -\pi / 4\end{array}\right)^{T}[\mathrm{rad}]$.

Assume now the numerical data $a_{1}=0.2, a_{2}=0.5$, and $a_{3}=0.5[\mathrm{~m}]$ and let the robot be in the configuration specified at step 2.
3. Given a desired velocity $\boldsymbol{v}=\left(\begin{array}{lll}1 & 1 & 0.5\end{array}\right)^{T}[\mathrm{~m} / \mathrm{s}]$ for the robot end-effector (the origin O_{3} of frame 3), determine the instantaneous joint velocity vector $\dot{\boldsymbol{\theta}}$ that realizes \boldsymbol{v}.
4. With the solution $\dot{\boldsymbol{\theta}}$ found at step 3, compute the associated angular velocity $\boldsymbol{\omega}$ of the robot end-effector frame.
5. Let the value $\boldsymbol{\omega}$ found at step 4 be the desired angular velocity for the robot end-effector frame. Characterize all instantaneous joint velocities $\dot{\boldsymbol{\theta}}$ that realize $\boldsymbol{\omega}$ at the given robot configuration.
6. What is the structure of all feasible $\boldsymbol{\omega}$ that can be realized by this robot in a generic configuration $\boldsymbol{\theta}$? What can we say about the differential mapping $\boldsymbol{\theta} \rightarrow \boldsymbol{\omega}$?
[120 minutes; open books]

Solution

September 10, 2012

The robot has a kinematic structure similar to that of the first three joints of the KUKA KR5 robot (the industrial robot in our Robotics Laboratory). Figures 1 and 2 provide, respectively, a sketch of the kinematic structure, with associated D-H frames, and the robot posture at the specified $\boldsymbol{\theta}$.

Figure 1: Kinematic structure and D-H frames

Figure 2: The robot at the configuration $\boldsymbol{\theta}=\left(\begin{array}{lll}0 & \pi / 4 & -\pi / 4\end{array}\right)^{T}$
For steps 3-6, we need to compute the robot Jacobian $\boldsymbol{J}(\boldsymbol{\theta})$. For the linear part, $\boldsymbol{J}_{L}(\boldsymbol{\theta})$, we may use either the vector product computations of the geometric Jacobian or simply differentiate analytically the positional direct kinematics. From the product of the homogeneous matrices
associated to the D-H table 1, it follows

$$
\boldsymbol{p}_{\text {hom }}=\binom{\boldsymbol{p}}{1}={ }^{0} \boldsymbol{A}_{1}\left(\theta_{1}\right)^{1} \boldsymbol{A}_{2}\left(\theta_{2}\right)^{2} \boldsymbol{A}_{3}\left(\theta_{3}\right)\binom{\mathbf{0}}{1}=\left(\begin{array}{c}
\left(a_{1}+a_{2} c_{2}+a_{3} c_{23}\right) c_{1} \\
\left(a_{1}+a_{2} c_{2}+a_{3} c_{23}\right) s_{1} \\
a_{2} s_{2}+a_{3} s_{23} \\
1
\end{array}\right)
$$

Therefore,
$\boldsymbol{v}=\dot{\boldsymbol{p}}=\frac{\partial \boldsymbol{p}}{\partial \boldsymbol{\theta}} \dot{\boldsymbol{\theta}}=\boldsymbol{J}_{L}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}}$, with $\boldsymbol{J}_{L}(\boldsymbol{\theta})=\left(\begin{array}{ccc}-\left(a_{1}+a_{2} c_{2}+a_{3} c_{23}\right) s_{1} & -\left(a_{2} s_{2}+a_{3} s_{23}\right) c_{1} & -a_{3} s_{23} c_{1} \\ \left(a_{1}+a_{2} c_{2}+a_{3} c_{23}\right) c_{1} & -\left(a_{2} s_{2}+a_{3} s_{23}\right) s_{1} & -a_{3} s_{23} s_{1} \\ 0 & a_{2} c_{2}+a_{3} c_{23} & a_{3} c_{23}\end{array}\right)$.
For the angular part, $\boldsymbol{J}_{A}(\boldsymbol{\theta})$, we have by definition (taking into account that velocity vectors are expressed by default in the 0th frame)

$$
\boldsymbol{J}_{A}(\boldsymbol{\theta})=\left(\begin{array}{ccc}
{ }^{0} \boldsymbol{z}_{0} & { }^{0} \boldsymbol{z}_{1} & { }^{0} \boldsymbol{z}_{2}
\end{array}\right)=\left(\begin{array}{ccc}
{ }^{0} \boldsymbol{z}_{0} & { }^{0} \boldsymbol{R}_{1}\left(\theta_{1}\right)^{1} \boldsymbol{z}_{1} & { }^{0} \boldsymbol{R}_{1}\left(\theta_{1}\right)^{1} \boldsymbol{R}_{2}\left(\theta_{2}\right)^{2} \boldsymbol{z}_{2}
\end{array}\right),
$$

with ${ }^{i} \boldsymbol{z}_{i}=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)^{T}$, for $i=0,1,2$. As a result,

$$
\boldsymbol{\omega}=\boldsymbol{J}_{A}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}}, \quad \text { with } \boldsymbol{J}_{A}(\boldsymbol{\theta})=\left(\begin{array}{ccc}
0 & s_{1} & s_{1} \tag{1}\\
0 & -c_{1} & -c_{1} \\
1 & 0 & 0
\end{array}\right)
$$

Evaluating the two Jacobians at the configuration $\boldsymbol{\theta}=\left(\begin{array}{lll}0 & \pi / 4 & -\pi / 4\end{array}\right)^{T}$ with the given numerical data yields

$$
\boldsymbol{J}_{L}=\left(\begin{array}{ccc}
0 & -0.3536 & 0 \tag{2}\\
1.0536 & 0 & 0 \\
0 & 0.8536 & 0.5
\end{array}\right), \quad \boldsymbol{J}_{A}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & -1 \\
1 & 0 & 0
\end{array}\right)
$$

Therefore, for $\boldsymbol{v}=\left(\begin{array}{lll}1 & 1 & 0.5\end{array}\right)^{T}$,

$$
\dot{\boldsymbol{\theta}}=\boldsymbol{J}_{L}^{-1} \boldsymbol{v}=\left(\begin{array}{c}
0.9492 \tag{3}\\
-2.8284 \\
5.8284
\end{array}\right)[\mathrm{rad} / \mathrm{s}] \quad \Rightarrow \quad \boldsymbol{\omega}=\boldsymbol{J}_{A} \dot{\boldsymbol{\theta}}=\left(\begin{array}{c}
0 \\
-3 \\
0.9492
\end{array}\right)[\mathrm{rad} / \mathrm{s}] .
$$

From the general structure of $\boldsymbol{J}_{A}(\boldsymbol{\theta})$ in (1) we see that this matrix is always singular, having constant rank equal to 2 . At a generic configuration (i.e., for a generic value of θ_{1}), we characterize the following subspaces of interest:

$$
\mathcal{R}\left(\boldsymbol{J}_{A}(\boldsymbol{\theta})\right)=\operatorname{span}\left\{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
s_{1} \\
-c_{1} \\
0
\end{array}\right)\right\}, \quad \mathcal{N}\left(\boldsymbol{J}_{A}(\boldsymbol{\theta})\right)=\operatorname{span}\left\{\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)\right\} .
$$

Therefore, all feasible $\boldsymbol{\omega}$ will have the form

$$
\boldsymbol{\omega} \in \mathcal{R}\left(\boldsymbol{J}_{A}(\boldsymbol{\theta})\right) \quad \Rightarrow \quad \boldsymbol{\omega}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \alpha+\left(\begin{array}{c}
s_{1} \\
-c_{1} \\
0
\end{array}\right) \beta
$$

with $\alpha=\dot{\theta}_{1} \in \mathbb{R}$ and $\beta=\dot{\theta}_{1}+\dot{\theta}_{2} \in \mathbb{R}$. Conversely, given a generic $\dot{\boldsymbol{\theta}}$ generating a $\boldsymbol{\omega}$, the same value of end-effector angular velocity is obtained by adding a joint velocity vector $\boldsymbol{\theta}_{0} \in \mathcal{N}\left(\boldsymbol{J}_{A}(\boldsymbol{\theta})\right)$, or

$$
\dot{\boldsymbol{\theta}}+\gamma \dot{\boldsymbol{\theta}}_{0}=\dot{\boldsymbol{\theta}}+\gamma\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) \quad \Rightarrow \quad \boldsymbol{\omega}=\boldsymbol{J}_{A}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}}=\boldsymbol{J}_{A}(\boldsymbol{\theta})\left(\dot{\boldsymbol{\theta}}+\gamma \dot{\boldsymbol{\theta}}_{0}\right) .
$$

for any $\gamma \in \mathbb{R}$.
Particularizing this general result to the specific configuration $\boldsymbol{\theta}=\left(\begin{array}{lll}0 & \pi / 4 & -\pi / 4\end{array}\right)^{T}$, with \boldsymbol{J}_{A} given in (2), all joint velocities that generate the same value $\boldsymbol{\omega}$ as in (3) are given by

$$
\dot{\boldsymbol{\theta}}_{\gamma}=\left(\begin{array}{c}
0.9492 \\
-2.8284 \\
5.8284
\end{array}\right)+\gamma\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right), \quad \text { for any } \gamma \in \mathbb{R} \quad \Rightarrow \quad \boldsymbol{\omega}=\boldsymbol{J}_{A} \dot{\boldsymbol{\theta}}_{\gamma}=\left(\begin{array}{c}
0 \\
-3 \\
0.9492
\end{array}\right)
$$

Note that the minimum norm joint velocity $\dot{\boldsymbol{\theta}}^{*}$ realizing this value of $\boldsymbol{\omega}$ is obtained by unconstrained minimization of $\left\|\dot{\boldsymbol{\theta}}_{\gamma}\right\|^{2}$ with respect to γ. This yields

$$
\gamma=-\frac{\dot{\boldsymbol{\theta}}^{T} \dot{\boldsymbol{\theta}}_{0}}{\dot{\boldsymbol{\theta}}_{0}^{T} \dot{\boldsymbol{\theta}}_{0}}=4.3284 \quad \Rightarrow \quad \dot{\boldsymbol{\theta}}^{*}=\left(\begin{array}{c}
0.9492 \\
1.5 \\
1.5
\end{array}\right)
$$

with $\left\|\dot{\boldsymbol{\theta}}^{*}\right\|=2.3240$ —as opposed to $\|\dot{\boldsymbol{\theta}}\|=6.5476$ for the value $\dot{\boldsymbol{\theta}}$ computed in (3). As could be expected, the minimum norm solution balances the effort between the velocities of joints 2 and 3 .

