Robotics I

June 11, 2012

Exercise 1

The time derivative of a rotation matrix can be given the following two alternative expressions:

$$\dot{\boldsymbol{R}} = \boldsymbol{R}\boldsymbol{S}(\boldsymbol{\Omega}), \qquad \dot{\boldsymbol{R}} = \boldsymbol{S}(\boldsymbol{\omega})\boldsymbol{R}.$$

Prove the correctness of both expressions and give the physical interpretation of ω and Ω .

Exercise 2

Figure 1: Planar RPR robot

For the planar RPR robot shown in Fig. 1, derive the 2×3 Jacobian matrix J(q) relating the joint velocity $\dot{q} \in \mathbb{R}^3$ to the Cartesian velocity $\dot{p} \in \mathbb{R}^2$ of the end effector, and find all its singularities. Keeping q_1 as arbitrary, choose a singular configuration of this robot and denote the Jacobian in this configuration as $\bar{J} = \bar{J}(q_1)$. For each of the following linear subspaces,

 $\mathcal{R}\left(ar{J}
ight) \qquad \mathcal{N}\left(ar{J}
ight) \qquad \mathcal{R}\left(ar{J}^T
ight) \qquad \mathcal{N}\left(ar{J}^T
ight),$

provide the symbolic expression of a unitary basis (i.e., a set of linearly independent unit vectors spanning the whole subspace).

Exercise 3

Figure 2: A planar 2R robot with the second link at $q_2 = \pi/2$

Consider a planar 2R robot, with links of length $\ell_1 = 1$ and $\ell_2 = 0.5$ [m], in the configuration shown in Fig. 2. The two motors at the joints are equipped with incremental encoders, respectively providing r_1 and r_2 pulses/turn. The gear ratios of the transmission/reduction systems of the two motors are $N_1 = 100$ and $N_2 = 80$. Determine the minimum resolutions of the two encoders so that they can be used to sense a displacement at the robot end-effector level as small as $\Delta p = 10^{-4}$ [m], alternatively in one of two arbitrary orthogonal directions.

[150 minutes; open books]

Solution

June 11, 2012

Exercise 1

As presented in the lecture slides, we consider first the identity $\mathbf{R}\mathbf{R}^T = \mathbf{I}$. Taking the time derivative:

$$\frac{d}{dt}\left(\boldsymbol{R}\boldsymbol{R}^{T}\right) = \dot{\boldsymbol{R}}\boldsymbol{R}^{T} + \boldsymbol{R}\dot{\boldsymbol{R}}^{T} = \left(\dot{\boldsymbol{R}}\boldsymbol{R}^{T}\right) + \left(\dot{\boldsymbol{R}}\boldsymbol{R}^{T}\right)^{T} = \boldsymbol{O}.$$

Therefore, the matrix $\dot{\boldsymbol{R}} \boldsymbol{R}^T$ is skew symmetric. We can write

$$\dot{\boldsymbol{R}}\boldsymbol{R}^T = \boldsymbol{S}(\boldsymbol{\omega}) \qquad \Rightarrow \qquad \dot{\boldsymbol{R}} = \boldsymbol{S}(\boldsymbol{\omega})\boldsymbol{R},$$

where the angular velocity $\boldsymbol{\omega}$ is expressed in the *base* (unrotated) frame.

Similarly, consider the identity $\mathbf{R}^T \mathbf{R} = \mathbf{I}$. Taking the time derivative:

$$\frac{d}{dt}\left(\boldsymbol{R}^{T}\boldsymbol{R}\right) = \dot{\boldsymbol{R}}^{T}\boldsymbol{R} + \boldsymbol{R}^{T}\dot{\boldsymbol{R}} = \left(\boldsymbol{R}^{T}\dot{\boldsymbol{R}}\right) + \left(\boldsymbol{R}^{T}\dot{\boldsymbol{R}}\right)^{T} = \boldsymbol{O}.$$

Therefore, the matrix $\boldsymbol{R}^T \dot{\boldsymbol{R}}$ is skew symmetric. We can write

$$\boldsymbol{R}^T \dot{\boldsymbol{R}} = \boldsymbol{S}(\boldsymbol{\Omega}) \qquad \Rightarrow \qquad \dot{\boldsymbol{R}} = \boldsymbol{R} \, \boldsymbol{S}(\boldsymbol{\Omega}),$$

where the angular velocity Ω is now expressed in the *body* (rotated) frame.

From this interpretation, it also follows that

$$\omega=R\Omega$$

and so

$$\dot{\boldsymbol{R}} = \boldsymbol{S}(\boldsymbol{\omega})\boldsymbol{R} = \boldsymbol{S}(\boldsymbol{R}\boldsymbol{\Omega})\boldsymbol{R} = \boldsymbol{R}\,\boldsymbol{S}(\boldsymbol{\Omega}).$$

This implies that (see Exercise 3.1 in the textbook)

$$\boldsymbol{S}(\boldsymbol{R}\boldsymbol{\Omega}) = \boldsymbol{R}\,\boldsymbol{S}(\boldsymbol{\Omega})\boldsymbol{R}^{T}.$$

Conversely,

$$S(R^T \omega) = R^T S(\omega) R.$$

Exercise 2

The direct kinematics of the considered RPR planar robot is

$$\boldsymbol{p} = \boldsymbol{f}(\boldsymbol{q}) = \left(egin{array}{c} q_2 c_1 + L c_{13} \\ q_2 s_1 + L s_{13} \end{array}
ight).$$

Therefore, the Jacobian of interest is

$$\boldsymbol{J}(\boldsymbol{q}) = \frac{\partial \boldsymbol{f}(\boldsymbol{q})}{\partial \boldsymbol{q}} = \begin{pmatrix} -(q_2 s_1 + L s_{13}) & c_1 & -L s_{13} \\ q_2 c_1 + L c_{13} & s_1 & L c_{13} \end{pmatrix} = \begin{pmatrix} \boldsymbol{J}_1 & \boldsymbol{J}_2 & \boldsymbol{J}_3 \end{pmatrix}.$$

To check the singularities (i.e., where rank J < 2), we consider the three 2×2 minors:

$$\det \begin{pmatrix} \mathbf{J}_1 & \mathbf{J}_2 \end{pmatrix} = (q_2 + Lc_3), \quad \det \begin{pmatrix} \mathbf{J}_1 & \mathbf{J}_3 \end{pmatrix} = Lq_2s_3, \quad \det \begin{pmatrix} \mathbf{J}_2 & \mathbf{J}_3 \end{pmatrix} = Lc_3.$$

They are simultaneously zero iff $\{q_2 = 0 \text{ .AND. } c_3 = 0\}$. Let then q_1 be arbitrary, $q_2 = 0$, and choose for instance $q_3 = +\pi/2$. In this configuration,

$$\bar{\boldsymbol{J}} = \bar{\boldsymbol{J}}(q_1) = \left(\begin{array}{ccc} -Lc_1 & c_1 & -Lc_1 \\ -Ls_1 & s_1 & -Ls_1 \end{array}\right)$$

Unitary bases for the range and null spaces of interest are provided as follows:

$$\mathcal{R}\left(\bar{\boldsymbol{J}}\right) = \operatorname{span}\left\{ \begin{pmatrix} c_1\\s_1 \end{pmatrix} \right\} \qquad \mathcal{N}\left(\bar{\boldsymbol{J}}^T\right) = \operatorname{span}\left\{ \begin{pmatrix} s_1\\-c_1 \end{pmatrix} \right\},$$
$$\mathcal{R}\left(\bar{\boldsymbol{J}}^T\right) = \operatorname{span}\left\{ \frac{1}{\sqrt{1+2L^2}} \begin{pmatrix} L\\-1\\L \end{pmatrix} \right\} \qquad \mathcal{N}\left(\bar{\boldsymbol{J}}\right) = \operatorname{span}\left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \frac{1}{\sqrt{1+L^2}} \begin{pmatrix} 1\\L\\0 \end{pmatrix} \right\}.$$

Exercise 3

Denote by $\Delta \theta$ the vector of motor position variations (the increments measured by the encoders at the motor sides), by Δq the associated vector of link position variations, by Δp the resulting vector of end-effector position variations, and by N the diagonal matrix of reduction ratios

$$\boldsymbol{N} = \left(\begin{array}{cc} N_1 & 0\\ 0 & N_2 \end{array}\right) = \left(\begin{array}{cc} 100 & 0\\ 0 & 80 \end{array}\right).$$

We have

$$\Delta \boldsymbol{p} = \boldsymbol{J}(\boldsymbol{q}) \Delta \boldsymbol{q} = \boldsymbol{J}(\boldsymbol{q}) \boldsymbol{N}^{-1} \Delta \boldsymbol{\theta}, \tag{1}$$

with the Jacobian of the 2R planar robot given by

$$\boldsymbol{J}(\boldsymbol{q}) = \left(\begin{array}{cc} -\left(\ell_1 s_1 + \ell_2 s_{12}\right) & -\ell_2 s_{12} \\ \ell_1 c_1 + \ell_2 c_{12} & \ell_2 c_{12} \end{array}\right).$$

To eliminate the appearance of q_1 , it is convenient to work in the rotated frame 1 attached to the first link. Since we are working in the plane (x, y), it is

$${}^{1}\boldsymbol{J}(\boldsymbol{q}) = \boldsymbol{R}_{1}^{T}(q_{1})\boldsymbol{J}(\boldsymbol{q}) = \begin{pmatrix} c_{1} & s_{1} \\ -s_{1} & c_{1} \end{pmatrix} \boldsymbol{J}(\boldsymbol{q}) = \begin{pmatrix} -\ell_{2}s_{2} & -\ell_{2}s_{2} \\ \ell_{1} + \ell_{2}c_{2} & \ell_{2}c_{2} \end{pmatrix}.$$

Therefore, we replace eq. (1) by

$${}^{1}\Delta \boldsymbol{p} = {}^{1}\boldsymbol{J}(\boldsymbol{q})\boldsymbol{N}^{-1}\Delta\boldsymbol{\theta}.$$
(2)

At the given configuration $q_2 = \pi/2$,

$${}^{1}\boldsymbol{J}\boldsymbol{N}^{-1} = \left(\begin{array}{cc} -\ell_{2}/N_{1} & -\ell_{2}/N_{2} \\ \ell_{1}/N_{1} & 0 \end{array}\right).$$

The end-effector displacement Δp that is requested to be sensed in either of two orthogonal directions can be defined using again the coordinate axes of frame 1. Let

$${}^{1}\Delta \boldsymbol{p}_{I} = \left(\begin{array}{c} \Delta p \\ 0 \end{array} \right), \qquad {}^{1}\Delta \boldsymbol{p}_{II} = \left(\begin{array}{c} 0 \\ \Delta p \end{array} \right).$$

In case I, we solve from eq. (2)

$$\Delta \boldsymbol{\theta}_{I} = \boldsymbol{N} \cdot {}^{1} \boldsymbol{J}^{-1} \cdot {}^{1} \Delta \boldsymbol{p}_{I} = \begin{pmatrix} 0 \\ -N_{2} \Delta p/\ell_{2} \end{pmatrix}$$

Plugging the data $\ell_2 = 0.5$, $N_2 = 80$, and $\Delta p = 10^{-4}$, we obtain the minimum increment that should be sensed by the encoder at motor 2 in case *I*:

$$|\Delta \theta_{2,I}| = 16 \cdot 10^{-3} \, [\text{rad}].$$

Since the resolution of this encoder is $|\Delta \theta_2| = 2\pi/r_2$, the minimum number of pulses/turn needed is

$$r_2 = \frac{\pi}{8} \cdot 10^3 \simeq 392.7.$$

Being the number r of pulses/turn typically a power of 2, an incremental encoder with $512 = 2^9$ pulses/turn would be sufficient for joint 2 in this case.

Similarly, in case II

$$\Delta \boldsymbol{\theta}_{II} = \boldsymbol{N} \cdot {}^{1} \boldsymbol{J}^{-1} \cdot {}^{1} \Delta \boldsymbol{p}_{II} = \begin{pmatrix} N_{1} \Delta p / \ell_{1} \\ -N_{2} \Delta p / \ell_{1} \end{pmatrix}.$$

Plugging the data $\ell_1 = 1$, $N_1 = 100$, $N_2 = 80$, and $\Delta p = 10^{-4}$, we obtain the minimum increments that should be sensed by the two encoders in case II:

$$|\Delta \theta_{1,II}| = 10^{-2} \,[\text{rad}], \qquad |\Delta \theta_{2,II}| = 8 \cdot 10^{-3} \,[\text{rad}].$$

Note that the obtained condition on the second encoder will be more stringent in case II than in case I. From $|\Delta \theta_1| = 2\pi/r_1$ and $|\Delta \theta_2| = 2\pi/r_2$, the minimum resolutions for the two encoders will be

$$r_1 = 2\pi \cdot 10^2 \simeq 614,$$
 $r_2 = \frac{\pi}{4} \cdot 10^3 \simeq 785.4.$

Being the number of pulses/turn typically a power of 2, two equal incremental encoders with $1024 = 2^{10}$ pulses/turn mounted at the motor sides of the two robot joints would be sufficient to satisfy the requested end-effector sensing accuracy.

* * * * *