
Robotics I
February 9, 2012

Exercise 1

Consider the non-spherical wrist of the Comau Smart5 NJ4 170 robot, i.e., the last three revolute
joints of this 6R structure (see Fig. 1). The associated Denavit-Hartenberg parameters are given
in the three rows of Tab. 1. Note that α, d4, and d5 are all positive constants, and d6 has been set
to zero.
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Figure 1: The Comau Smart5 NJ4 170 robot and its last three joints constituting a non-spherical
wrist (with DH frames)

i αi ai di θi

4 α 0 d4 θ4

5 −α 0 d5 θ5

6 0 0 0 θ6

Table 1: DH parameters of the robot wrist

Provide the explicit relation between the joint velocity θ̇ =
(
θ̇4 θ̇5 θ̇6

)T
and the angular

velocity 3ωe of the end-effector frame (labeled as 6 in Fig. 1) expressed in frame 3. Also, analyze
the singularities of this differential relation.

Exercise 2

Consider the RRP (polar) robot in Fig. 2, where d1 = 1, and assume that the coordinate q3
associated to the third (prismatic) joint can only take non-negative values.

• Assign the frames according to the Denavit-Hartenberg convention and complete the associ-
ated table of parameters. Choose the reference axes so that αi ≥ 0, for i = 1, 2, 3, and set
the origin of the last frame at the end-effector/tip of the robot.
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Figure 2: A RRP (polar) robot

• Give the explicit expression of the 3× 3 geometric Jacobian J(q) relating the joint velocity
q̇ to the linear velocity ve of the end-effector

ve = J(q)q̇

and discuss its singularities.

Exercise 3

Consider the same robot of Exercise 2.

• Define a desired linear path pd(σ), parametrized by its actual length σ, between the initial
and final Cartesian points

pinit =
(

1 1 1
)T
, pfin =

(
−1 −1 3

)T
.

Verify the existence of a value σ = σs at which the desired path encounters a robot singularity.
Determine whether or not the desired trajectory pd(σ(t)), with σ̇ > 0 at σ = σs, can be
perfectly realized also in that robot configuration. In case it can, provide some reasoning to
justify how to execute the desired trajectory; else, explain in detail why this is not possible.

• Consider the same initial point pinit and a new final point pnew =
(
−1 1 3

)T , and
assume as desired interpolating trajectory pd(σ(t)) a linear Cartesian path with constant
speed σ̇ = 1. The robot is initially in the configuration q(0) =

(
π/3 π/2 1

)T . Design
two different kinematic control laws that exponentially drive the tracking error to zero, either

– by keeping the Cartesian error along z0 constantly at zero,

or, respectively,

– by keeping the joint error on the second coordinate q2 constantly at zero.

[210 minutes; open books]
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Solutions
February 9, 2012

Exercise 1

A first way to solve the problem is to use the 3 × 3 geometric Jacobian JA(θ) associated to the
angular velocity ωe of the end-effector frame,

ωe = JA(θ) θ̇.

Since the considered last three joints of the robot are all revolute and computations have to be
performed w.r.t. the robot frame 3, we have

3JA(θ) =
(

3z3
3z4(θ4) 3z5(θ4, θ5)

)
=

  0
0
1

 3R4(θ4)

 0
0
1

 3R4(θ4)4R5(θ5)

 0
0
1

  (1)

with rotation matrices obtained from the DH table of parameters (using s−α = −sα and c−α = cα):

3R4(θ4) =

 c4 −s4cα s4sα

s4 c4cα −c4sα
0 sα cα


4R5(θ5) =

 c5 −s5cα −s5sα
s5 c5cα c5sα

0 −sα cα


3R4(θ4)4R5(θ5) =

 ∗ ∗ (1− c5) s4sαcα − c4s5sα
∗ ∗ (c5 − 1) c4sαcα − s4s5sα
∗ ∗ c5s

2
α + c2α

 .

Above, a ∗ denotes quantities that need not to be computed. Note also that the values of d4 and
d5 (as well as d6, if present) are irrelevant. Substituting in (1) yields

3JA(θ) =

 0 s4sα (1− c5) s4sαcα − c4s5sα
0 −c4sα (c5 − 1) c4sαcα − s4s5sα
1 cα c5s

2
α + c2α

 .

This matrix has determinant
det
(
3JA(θ)

)
= −s5 s2α

being thus singular for θ5 = 0 (and θ5 = π, but this is likely to be out the admissible range of this
joint). Since the rank of

3JA(θ)
∣∣
θ5=0

=

 0 s4sα 0
0 −c4sα 0
1 cα 1


is equal to 2, an angular vector 3ωe of the form

3ωe = β

 c4

s4

∗

 6∈ R (3JA(θ)|θ5=0

)
, β 6= 0
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cannot be realized in this configuration by any choice of θ̇.

A second way to address the problem would be to use the relation between the derivative of a
rotation matrix and the associated angular velocity

S(ωe) = 3Ṙ6
3RT

6 , with 3R6 = 3R4(θ4)4R5(θ4)5R6(θ6)

where S(·) is the skew-symmetric matrix built from the components of ωe. However, this requires
much more computations, in particular the evaluation of all three DH rotation matrices, and their
complete product and derivation w.r.t. time (to be performed symbolically).

Exercise 2

A DH frame assignment satisfying the stated requirements is shown in Fig. 3, with the associated
parameters given in Tab. 2. Note that the third link is horizontal when q2 = π/2.

x0 

y0 

z0 

d1 

z1 
x1 

x2 

x3 

z3 
z2 

q3 

q2 

q1 

Figure 3: DH frame assignment for the RRP robot

i αi ai di θi

1 π/2 0 d1 q1

2 π/2 0 0 q2

3 0 0 q3 0

Table 2: DH parameters for the RRP robot

The end-effector/tip position (i.e, the origin of frame 3) is then obtained as

pe = f(q) =

 c1s2 q3

s1s2 q3

d1 − c2 q3

 . (2)
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The requested Jacobian matrix relating q̇ to ve = ṗe can be computed either geometrically or by
analytic differentiation of (2), yielding the same result in both cases. We have

J(q) =

 −s1s2 q3 c1c2 q3 c1s2

c1s2 q3 s1c2 q3 s1s2

0 s2 q3 −c2

 . (3)

For later use, we can write the Jacobian in frame 1, using the rotation matrix (from the DH table)

0R1(q1) =

 c1 0 s1

s1 0 −c1
0 1 0

 =

 c1 −s1 0

s1 c1 0

0 0 1


 1 0 0

0 0 −1

0 1 0


where the expression on the right shows that this is composed by an elementary rotation around
the z0 axis and a permutation of axes (preserving the right-hand rule for frames). We compute
thus

1J(q) = 0RT
1(q1)J(q) =

 0 c2 q3 s2

0 s2 q3 −c2
−s2 q3 0 0

 .

The determinant of J(q), equal to that of 1J(q), is

detJ(q) = s2 q
2
3 .

Therefore, the robot is in a singular configuration whenever q3 = 0 or q2 ∈ {0, π}. In the first
case, the rank of the Jacobian drops to 1, whereas in the second case the rank is 2. When both
singularity conditions hold true, the rank of the Jacobian is still equal to 1. In particular, when
s2 = 0 the end-effector position pe is placed on the axis z0 of joint 1 and the Jacobian 1J(q)
becomes

1J(q)
∣∣
s2=0

=

 0 ± q3 0

0 0 ∓ 1

0 0 0

 .

This clearly shows that, when the end-effector is on the z0 axis, any desired Cartesian velocity
vector lying only in the plane (x1,y1), i.e., with zero component along the z1 axis, belongs to
the range space of the Jacobian, and thus can be perfectly realized by the robot. Velocity vectors
ve ∈ R

(
J(q)|s2=0

)
have the form

1ve =

 β1

β2

0

 ⇒ 0ve = 0R1(q1)1ve =

 β1c1

β1s1

β2

 (4)

when expressed, respectively, in frame 1 or in frame 0, and for arbitrary β1 and β2. Finally, note
that also the (double) singularity q3 = 0 corresponds to a situation in which the end-effector is on
the z0 axis.
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Exercise 3

The linear path is parametrized as follows:

pd(σ) = pinit +
σ

L

(
pfin − pinit

)
, L =

∥∥pfin − pinit∥∥ =
√

12

or

pd(σ) =


1− 2σ√

12

1− 2σ√
12

1 +
2σ√
12

 , σ ∈ [0, L].

It is easy to see that this path will cross the z0 axis for

σ = σs =
√

12
2

⇒ pd,x(σs) = pd,y(σs) = 0

so that a singularity of the RRP robot is encountered. The desired velocity along the path has
indeed a constant direction

ṗd(t) =
σ̇(t)
L

(
pfin − pinit

)
=
σ̇(t)√

12

 −2

−2

2

 . (5)

In particular, at σ = σs, this Cartesian velocity is still a feasible one for the RRP robot, since (5)
can be written in the form (4) of a vector ve ∈ R (J) by setting, e.g.,

q1 =
π

4
→ c1 = s1 =

√
2

2
, β1 =

−2 σ̇√
6
, β2 =

2 σ̇√
12
.

This implies that the first joint should be rotated so that the whole linear path belongs to the plane
(x1,y1). If the robot initial configuration is set at q1 = π/4, then the entire desired trajectory can
be realized by using only joint 2 and 3 of the RRP robot (namely, by the planar RP robot obtained
by freezing the first joint) while the first joint does not need to move. This reasoning suggests also
that the inversion of the 3× 3 Jacobian in (3), which would run into problems close to or crossing
the singularity s2 = 0, can be completely avoided.

In fact, consider the 2× 2 top right sub-matrix of the Jacobian 1J(q), i.e.,

1J̄(q) =

(
c2 q3 s2

s2 q3 −c2

)
and note that this matrix is never singular, provided that q3 6= 0 (so, it is independent from the
value of q2). By defining ˙̄q =

(
q̇2 q̇3

)T and 1 ˙̄p =
(

1ṗx
1ṗy

)T , the following differential
relation holds

1 ˙̄p = 1J̄(q) ˙̄q.

Express now the desired Cartesian velocity in frame 1, for a constant q1 = π/4

1ṗd = 0RT
1(q1)

∣∣∣
q1=

π
4

· ṗd =
σ̇√
12



√
2

2

√
2

2
0

0 0 1
√

2
2

−
√

2
2

0


 −2

−2

2

 =
σ̇√
12


−2
√

2

2

0

 =

(
1 ˙̄pd
0

)
.
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Then, the entire desired Cartesian trajectory will be perfectly executed if the robot starts at t = 0
in the configuration

q(0) =

(
q1(0)

q̄(0)

)
=


π

4
π

2√
2

 ⇒ f(q(0)) = pd(0) = pinit (6)

(which is one of the two solutions found by solving the inverse kinematics problem, taking into
account that only q3 ≥ 0 is allowed) by setting, for all t ≥ 0,

q1(t) =
π

4

q̄(t) = q̄(0) +
∫ t

0

1J̄
−1(q(τ)) 1 ˙̄pd(σ(τ))dτ .

(7)

The total motion time T will depend from the time profile of σ(t), under the minimal necessary
boundary conditions σ(0) = 0 and σ(T ) = L. Accordingly, we will obtain from (7) a final value
q(T ) such that f(q(T )) = pfin.

For the second part of this Exercise, we have L = ‖pnew − pinit‖ =
√

8 and the new desired
trajectory pd(σ(t)) is given by the linear geometric path

pd(σ) = pinit +
σ

L
(pnew − pinit) =


1− 2σ√

8
1

1 +
2σ√

8

 , σ ∈ [0,
√

8],

with the timing law σ = σ(t). Since σ̇(t) = 1 (constant) is assigned, we have σ(t) = t, with
t ∈ [0, T ] and T = L =

√
8. At the given initial configuration q(0) =

(
π/3 π/2 1

)T , it follows
from (2)

f(q(0)) =


1
2√
3

2
1

 6=


1

1

1

 = pinit = pd(0)

so that there is an initial position error w.r.t. the desired Cartesian trajectory. However, the initial
error along the z0 axis is zero. In order to be matched with pd(0), the initial configuration of the
RRP robot should be instead, e.g.,

qd(0) =
( π

4
π

2
√

2
)T

(8)

as verified in (6). Indeed, also the initial joint position error is different from zero, but note that we
have now q2(0) = qd,2(0). Moreover, if the robot starts from the desired initial configuration (8),
we could generate an entire desired joint trajectory qd(t) associated to pd(t) as

qd(t) = qd(0) +
∫ t

0

q̇d(τ) dτ = qd(0) +
∫ t

0

J−1(qd(τ)) ṗd(τ) dτ (9)
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since the Jacobian never encounters a singularity in this case.

With the above in mind, in order to recover the initial error and asymptotically track the desired
Cartesian trajectory, a feedback/feedforward control law has to be designed at the kinematic level
(i.e., considering q̇ as the control input). Depending on the additional requirements, the first
solution is a law driven by the Cartesian error ec = pd − f(q), namely

q̇ = J−1(q)
(
ṗd +Kc (pd − f(q))

)
, with Kc > 0 and diagonal.

This will force each component of the Cartesian error ec to converge exponentially to zero with
a rate prescribed by the associated diagonal element of Kc, or ec,i(t) = exp(−Kc,i t) ec,i(0). As
a consequence, the error along the z0 component (i.e, for i = 3) will remain constantly zero also
during the transient phase of the trajectory tracking task (ec,3(0) = 0 → ec,3(t) ≡ 0), so that the
first requested behavior is obtained.

On the other hand, the second solution is a law driven by the joint error e = qd−q, with qd(t)
given by (9), namely

q̇ = q̇d +K (qd − q) , with K > 0 and diagonal.

This will force each component of the joint error e to converge exponentially to zero with a rate
prescribed by the associated diagonal element of K, or ei(t) = exp(−Ki t) ei(0). Thus, the error
on the second component of the joint configuration vector (i.e., on q2) will remain constantly zero
(e2(0) = 0→ e2(t) ≡ 0) and the second requirement is satisfied.

∗ ∗ ∗ ∗ ∗
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