Robotics I

February 3, 2011

Consider a 3R anthropomorphic robot mounted on the floor and characterized by the DenavitHartenberg parameters in Table 1, where D, L_{1}, L_{2}, and L_{3} are all strictly positive values.

i	α_{i}	d_{i}	a_{i}	θ_{i}
1	$\pi / 2$	D	L_{1}	q_{1}
2	0	0	L_{2}	q_{2}
3	0	0	L_{3}	q_{3}

Table 1: Table of DH parameters

1. Obtain the 3×3 Jacobian matrix ${ }^{0} \boldsymbol{J}_{L}(\boldsymbol{q})$ relating the joint velocity $\dot{\boldsymbol{q}}$ to the linear velocity ${ }^{0} \boldsymbol{v}$ of the origin O_{3} of frame 3 expressed in frame 0 .
2. Characterize the singular configurations \boldsymbol{q} of the Jacobian ${ }^{3} \boldsymbol{J}_{L}(\boldsymbol{q})$ relating $\dot{\boldsymbol{q}}$ to the linear velocity ${ }^{3} \boldsymbol{v}$ of the origin O_{3} of frame 3 expressed in frame 3.
3. Obtain the 3×3 Jacobian matrix ${ }^{0} \boldsymbol{J}_{A}(\boldsymbol{q})$ relating the joint velocity $\dot{\boldsymbol{q}}$ to the angular velocity ${ }^{0} \boldsymbol{\omega}$ of frame 3 expressed in frame 0 . Show that this matrix is always singular and provide an explanation of this result.
4. Assume that the robot is in the configuration

$$
\boldsymbol{q}^{*}=\left(\begin{array}{ccc}
0 & \frac{\pi}{4} & -\frac{\pi}{4}
\end{array}\right)^{T} \quad[\mathrm{rad}]
$$

with a joint velocity

$$
\dot{\boldsymbol{q}}^{*}=\left(\begin{array}{ccc}
\dot{q}_{1}^{*} & 0 & 0
\end{array}\right)^{T} \quad[\mathrm{rad} / \mathrm{s}], \quad \text { with } \dot{q}_{1}^{*} \neq 0 .
$$

Determine the joint acceleration $\ddot{\boldsymbol{q}}$ that should be imposed so that the resulting linear Cartesian acceleration of the origin O_{3} is directed along \boldsymbol{y}_{3} and has an intensity $A \neq 0$. Provide some comment on the structure of the obtained solution. In particular, is there a value A such that only one joint needs to accelerate?
[150 minutes; open books]

Solution

February 3, 2011

For item 1 , we are interested in the velocity of point O_{3}, whose position $\boldsymbol{p}={ }^{0} \boldsymbol{p}$ is given by the direct kinematics map

$$
\boldsymbol{p}=\left(\begin{array}{c}
p_{x} \tag{1}\\
p_{y} \\
p_{z}
\end{array}\right)=\left(\begin{array}{c}
\cos q_{1}\left(L_{1}+L_{2} \cos q_{2}+L_{3} \cos \left(q_{2}+q_{3}\right)\right) \\
\sin q_{1}\left(L_{1}+L_{2} \cos q_{2}+L_{3} \cos \left(q_{2}+q_{3}\right)\right) \\
D+L_{2} \sin q_{2}+L_{3} \sin \left(q_{2}+q_{3}\right)
\end{array}\right)=\boldsymbol{f}(\boldsymbol{q})
$$

The Jacobian ${ }^{0} \boldsymbol{J}_{L}(\boldsymbol{q})$ can be obtained either by analytical differentiation of $\boldsymbol{f}(\boldsymbol{q})$ in (1) w.r.t. \boldsymbol{q} or by using the expression of the first three rows of the geometric Jacobian. Using the usual short notation for trigonometric functions, the result is in both cases

$$
{ }^{0} \boldsymbol{J}_{L}(\boldsymbol{q})=\left(\begin{array}{ccc}
-s_{1}\left(L_{1}+L_{2} c_{2}+L_{3} c_{23}\right) & -c_{1}\left(L_{2} s_{2}+L_{3} s_{23}\right) & -L_{3} c_{1} s_{23} \tag{2}\\
c_{1}\left(L_{1}+L_{2} c_{2}+L_{3} c_{23}\right) & -s_{1}\left(L_{2} s_{2}+L_{3} s_{23}\right) & -L_{3} s_{1} s_{23} \\
0 & L_{2} c_{2}+L_{3} c_{23} & L_{3} c_{23}
\end{array}\right)
$$

For item 2, we have that

$$
\operatorname{det}^{3} \boldsymbol{J}_{L}(\boldsymbol{q})=\operatorname{det}\left({ }^{2} \boldsymbol{R}_{3}^{T}\left(q_{3}\right)^{1} \boldsymbol{R}_{2}^{T}\left(q_{2}\right)^{0} \boldsymbol{R}_{1}^{T}\left(q_{1}\right)^{0} \boldsymbol{J}_{L}(\boldsymbol{q})\right)=\operatorname{det}{ }^{0} \boldsymbol{J}_{L}(\boldsymbol{q})
$$

Nonetheless, it is useful to rewrite the Jacobian in the successive frames 1, 2, and 3, because the resulting expressions will be simplified. From Table 1, we have

$$
{ }^{0} \boldsymbol{R}_{1}\left(q_{1}\right)=\left(\begin{array}{ccc}
c_{1} & 0 & s_{1} \\
s_{1} & 0 & -c_{1} \\
0 & 1 & 0
\end{array}\right),{ }^{1} \boldsymbol{R}_{2}\left(q_{2}\right)=\left(\begin{array}{ccc}
c_{2} & -s_{2} & 0 \\
s_{2} & c_{2} & 0 \\
0 & 0 & 1
\end{array}\right),{ }^{2} \boldsymbol{R}_{3}\left(q_{3}\right)=\left(\begin{array}{ccc}
c_{3} & -s_{3} & 0 \\
s_{3} & c_{3} & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

From these we obtain

$$
\begin{gathered}
{ }^{1} \boldsymbol{J}_{L}(\boldsymbol{q})={ }^{0} \boldsymbol{R}_{1}^{T}\left(q_{1}\right)^{0} \boldsymbol{J}_{L}(\boldsymbol{q})=\left(\begin{array}{ccc}
0 & -\left(L_{2} s_{2}+L_{3} s_{23}\right) & -L_{3} s_{23} \\
0 & L_{2} c_{2}+L_{3} c_{23} & L_{3} c_{23} \\
-\left(L_{1}+L_{2} c_{2}+L_{3} c_{23}\right) & 0 & 0
\end{array}\right), \\
{ }^{2} \boldsymbol{J}_{L}(\boldsymbol{q})={ }^{1} \boldsymbol{R}_{2}^{T}\left(q_{1}\right)^{1} \boldsymbol{J}_{L}(\boldsymbol{q})=\left(\begin{array}{ccc}
0 & -L_{3} s_{3} & -L_{3} s_{3} \\
0 & L_{2}+L_{3} c_{3} & L_{3} c_{3} \\
-\left(L_{1}+L_{2} c_{2}+L_{3} c_{23}\right) & 0 & 0
\end{array}\right)
\end{gathered}
$$

and

$$
{ }^{3} \boldsymbol{J}_{L}(\boldsymbol{q})={ }^{2} \boldsymbol{R}_{3}^{T}\left(q_{1}\right)^{2} \boldsymbol{J}_{L}(\boldsymbol{q})=\left(\begin{array}{ccc}
0 & L_{2} s_{3} & 0 \\
0 & L_{3}+L_{2} c_{3} & L_{3} \\
-\left(L_{1}+L_{2} c_{2}+L_{3} c_{23}\right) & 0 & 0
\end{array}\right)
$$

In particular from the last expression, it is immediate to see that for any $i \in\{1,2,3\}$

$$
\begin{equation*}
\operatorname{det}^{i} \boldsymbol{J}_{L}(\boldsymbol{q})=-L_{2} L_{3}\left(L_{1}+L_{2} c_{2}+L_{3} c_{23}\right) s_{3} \tag{3}
\end{equation*}
$$

Therefore, the singular configurations of $\boldsymbol{J}_{L}(\boldsymbol{q})$ are:

$$
\begin{aligned}
s_{3}=0 & \Longleftrightarrow q_{3}=\{0, \pm \pi\} \\
L_{1}+L_{2} c_{2}+L_{3} c_{23}=0 & \Longleftrightarrow \quad p_{x}=p_{y}=0
\end{aligned} \quad\left(\begin{array}{l}
\text { third link is stretched or folded) } \\
\left(O_{3} \text { is on the axis } \boldsymbol{z}_{0} \text { of joint } 1\right)
\end{array}\right.
$$

For item 3, we compute the expression of the lower three rows of the geometric Jacobian. It is

$$
\begin{align*}
{ }^{0} \boldsymbol{J}_{A}(\boldsymbol{q}) & =\left(\begin{array}{ccc}
{ }^{0} \boldsymbol{z}_{0} & { }^{0} \boldsymbol{z}_{1} & { }^{0} \boldsymbol{z}_{2}
\end{array}\right)=\left(\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right){ }^{0} \boldsymbol{R}_{1}\left(q_{1}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right){ }^{0} \boldsymbol{R}_{1}\left(q_{1}\right){ }^{1} \boldsymbol{R}_{2}\left(q_{2}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right) \\
& =\left(\begin{array}{ccc}
0 & s_{1} & s_{1} \\
0 & -c_{1} & -c_{1} \\
1 & 0 & 0
\end{array}\right) . \tag{4}
\end{align*}
$$

Matrix ${ }^{0} \boldsymbol{J}_{A}(\boldsymbol{q})$ is always singular, having constant rank equal to 2 . This can be easily explained as follows. The three degrees of freedom of the considered manipulator allow placing the end-effector in any point of the robot primary workspace, and imposing a linear velocity in any direction when the arm is out of singularities. However, the orientation of the end-effector frame can never be changed around the unitary axis $\boldsymbol{n}\left(q_{1}\right)=\left(\begin{array}{ccc}c_{1} & s_{1} & 0\end{array}\right)^{T}$. In fact, $\boldsymbol{\omega}=\alpha \boldsymbol{n}\left(q_{1}\right) \notin \mathcal{R}\left\{{ }^{0} \boldsymbol{J}_{A}(\boldsymbol{q})\right\}$, for every \boldsymbol{q} and for any scalar α.

Finally, for item 4 we use the second-order differential map

$$
\begin{equation*}
{ }^{0} \ddot{\boldsymbol{p}}={ }^{0} \boldsymbol{J}_{L}(\boldsymbol{q}) \ddot{\boldsymbol{q}}+{ }^{0} \dot{\boldsymbol{J}}_{L}(\boldsymbol{q}) \dot{\boldsymbol{q}}, \tag{5}
\end{equation*}
$$

evaluated at $\boldsymbol{q}=\boldsymbol{q}^{*}, \dot{\boldsymbol{q}}=\dot{\boldsymbol{q}}^{*}$. The Cartesian acceleration is specified as

$$
{ }^{0} \ddot{\boldsymbol{p}}={ }^{0} \boldsymbol{R}_{3}(\boldsymbol{q})^{3} \ddot{\boldsymbol{p}}={ }^{0} \boldsymbol{R}_{1}\left(q_{1}\right)^{1} \boldsymbol{R}_{2}\left(q_{2}\right)^{2} \boldsymbol{R}_{3}\left(q_{3}\right)\left(\begin{array}{c}
0 \\
A \\
0
\end{array}\right)=\left(\begin{array}{c}
-A c_{1} s_{23} \\
-A s_{1} c_{23} \\
A c_{23}
\end{array}\right)
$$

which, when evaluated at $\boldsymbol{q}=\boldsymbol{q}^{*}$, yields the desired value

$$
{ }^{0} \ddot{\boldsymbol{p}}_{d}=\left.{ }^{0} \ddot{\boldsymbol{p}}\right|_{\boldsymbol{q}=\boldsymbol{q}^{*}}=\left(\begin{array}{c}
0 \tag{6}\\
0 \\
A
\end{array}\right)
$$

i.e., the acceleration of the end-effector should be directed along \boldsymbol{z}_{0}, the vertical direction. Since the determinant (3) of the associated Jacobian is nonzero at the given configuration, the solution for the joint acceleration is obtained from (5) as

$$
\ddot{\boldsymbol{q}}={ }^{0} \boldsymbol{J}_{L}^{-1}\left(\boldsymbol{q}^{*}\right)\left({ }^{0} \ddot{\boldsymbol{p}}_{d}-{ }^{0} \dot{\boldsymbol{J}}_{L}\left(\boldsymbol{q}^{*}\right) \dot{\boldsymbol{q}}^{*}\right),
$$

where

$$
{ }^{0} \boldsymbol{J}_{L}^{-1}\left(\boldsymbol{q}^{*}\right)=\left(\begin{array}{ccc}
0 & -L_{2} \frac{\sqrt{2}}{2} & 0 \tag{7}\\
L_{1}+L_{2} \frac{\sqrt{2}}{2}+L_{3} & 0 & 0 \\
0 & L_{2} \frac{\sqrt{2}}{2}+L_{3} & L_{3}
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
0 & \frac{1}{L_{1}+L_{2} \frac{\sqrt{2}}{2}+L_{3}} & 0 \\
-\frac{\sqrt{2}}{L_{2}} & 0 & 0 \\
\frac{1}{L_{3}}+\frac{\sqrt{2}}{L_{2}} & 0 & \frac{1}{L_{3}}
\end{array}\right) .
$$

Let ${ }^{0} \boldsymbol{J}_{1}$ be the first column of the Jacobian ${ }^{0} \boldsymbol{J}_{L}$. Thanks to the simple structure of $\dot{\boldsymbol{q}}^{*}$, for the term involving the time derivative of the Jacobian we need only to compute

$$
\begin{align*}
\left.\left({ }^{0} \dot{\boldsymbol{J}}_{L}(\boldsymbol{q}) \dot{\boldsymbol{q}}\right)\right|_{\boldsymbol{q}=\boldsymbol{q}^{*}, \dot{\boldsymbol{q}}=\dot{\boldsymbol{q}}^{*}} & =\left.\left({ }^{0} \dot{\boldsymbol{J}}_{1}(\boldsymbol{q})\right)\right|_{\boldsymbol{q}=\boldsymbol{q}^{*}, \dot{\boldsymbol{q}}=\dot{\boldsymbol{q}}^{*}} \dot{q}_{1}^{*}=\left.\left(\frac{\partial^{0} \boldsymbol{J}_{1}(\boldsymbol{q})}{\partial q_{1}} \dot{q}_{1}^{*}\right)\right|_{\boldsymbol{q}=\boldsymbol{q}^{*}} \dot{q}_{1}^{*} \\
& =\left.\left(\begin{array}{c}
-c_{1}\left(L_{1}+L_{2} c_{2}+L_{3} c_{23}\right) \\
-s_{1}\left(L_{1}+L_{2} c_{2}+L_{3} c_{23}\right) \\
0
\end{array}\right)\right|_{\boldsymbol{q}=\boldsymbol{q}^{*}}\left(\dot{q}_{1}^{*}\right)^{2}=\left(\begin{array}{c}
-\left(L_{1}+L_{2} \frac{\sqrt{2}}{2}+L_{3}\right) \\
0 \\
0
\end{array}\right)\left(\dot{q}_{1}^{*}\right)^{2} . \tag{8}
\end{align*}
$$

As a result, from (6-8) the final solution is

$$
\ddot{\boldsymbol{q}}=A\left(\begin{array}{c}
0 \\
0 \\
\frac{1}{L_{3}}
\end{array}\right)+\left(L_{1}+L_{2} \frac{\sqrt{2}}{2}+L_{3}\right)\left(\dot{q}_{1}^{*}\right)^{2}\left(\begin{array}{c}
0 \\
-\frac{\sqrt{2}}{L_{2}} \\
\frac{1}{L_{3}}+\frac{\sqrt{2}}{L_{2}}
\end{array}\right) .
$$

We note that no acceleration should be applied to the first joint ($\ddot{q}_{1}=0$), as could be argued already from (6). In fact, any angular acceleration imposed to joint 1 (along the vertical joint axis \boldsymbol{z}_{0}) would produce a centrifugal acceleration on the end-effector, which is in contrast with the requested zero acceleration along the \boldsymbol{x}_{0} and \boldsymbol{y}_{0} axes in (6). Moreover, if

$$
A=-\left(1+\frac{L_{3}}{L_{2}} \sqrt{2}\right)\left(L_{1}+L_{2} \frac{\sqrt{2}}{2}+L_{3}\right)\left(\dot{q}_{1}^{*}\right)^{2}
$$

then $\ddot{q}_{1}=\ddot{q}_{3}=0$ in the solution.

