
Robotics I
September 15, 2010

For a revolute robot joint, consider the rest-to-rest motion q = q(t) defined by the jerk profile
...
q (t)

shown in Fig. 1, with given jmax > 0. The motion starts from q(0) = q0 at time t = 0, with zero
initial velocity (q̇(0) = 0) and zero initial acceleration (q̈(0) = 0).

Figure 1: Jerk profile

i) Let the bounds |q̇(t)| ≤ vmax, |q̈(t)| ≤ amax (with vmax > 0 and amax > 0) be assigned, as
well as the time interval Tv ≥ 0. Under the assumption

vmax

amax
− amax

jmax
≥ 0,

determine the analytic expression of the maximum feasible displacement ∆q = q(T )− q0 that
can be realized. Provide the numerical solution for

jmax = 12 [rad/s3] amax = 5 [rad/s2] vmax = 3 [rad/s3] Tv = 2 [s].

ii) Let the bounds |q̇(t)| ≤ vmax, |q̈(t)| ≤ amax (with vmax > 0 and amax > 0) be assigned, as
well as the total displacement ∆q > 0. Under the assumptions

vmax

amax
− amax

jmax
≥ 0 ∆q ≥ vmax

(
vmax

amax
+

amax

jmax

)
,

determine the analytic expression of the minimum feasible motion time T that can be realized.
Provide the numerical solution for

jmax = 10 [rad/s3] amax = 4 [rad/s2] vmax = 2 [rad/s3] ∆q = 3 [rad].

[90 minutes; open books]
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Solution
September 15, 2010

The solution is obtained by integration of the jerk profile, using the given initial conditions at time
t = 0 and then the suitable boundary conditions at the instants of jerk switching. In addition, due
to the symmetry of the trajectory derivatives with respect to T/2, it is sufficient to analyze only the
first half of the motion. Without loss of generality, we set q0 = 0 (only the displacement w.r.t. the
initial position matters). We will also see that the assumptions made on the velocity, acceleration,
and jerk bounds, as well as on the total displacement assigned in problem ii), guarantee that none
of the motion segments will vanish.

• First segment:
...
q (t) = jmax, for t ∈ [0, Ts)

q̈(t) = jmax t

q̇(t) = 1
2 jmax t2

q(t) = 1
6 jmax t3

⇒

q̈(Ts) = jmax Ts = amax ⇒ Ts =
amax

jmax

q̇(Ts) = 1
2 jmax T 2

s

q(Ts) = 1
6 jmax T 3

s

• Second segment:
...
q (t) = 0, for t ∈ [Ts, Ts + Ta)

q̈(t) = amax

q̇(t) = 1
2 jmax T 2

s + amax (t− Ts)

q(t) = 1
6 jmax T 3

s + 1
2 jmax T 2

s (t− Ts) + 1
2 amax (t− Ts)2

⇒

q̈(Ts + Ta) = amax

q̇(Ts + Ta) = 1
2 jmax T 2

s + amax Ta

q(Ts + Ta) = 1
6 jmax T 3

s + 1
2 jmax T 2

s Ta + 1
2 amax T 2

a

• Third segment:
...
q (t) = −jmax, for t ∈ [Ts + Ta, 2Ts + Ta)

q̈(t) = amax − jmax (t− (Ts + Ta))

q̇(t) = 1
2 jmax T 2

s + amax Ta + amax (t− (Ts + Ta))− 1
2 jmax(t− (Ts + Ta))2

q(t) = 1
6 jmax T 3

s + 1
2 jmax T 2

s Ta + 1
2 amax T 2

a + ( 1
2 jmax T 2

s + amax Ta)(t− (Ts + Ta))

+ 1
2 amax (t− (Ts + Ta))2 − 1

6 jmax(t− (Ts + Ta))3

⇒

q̈(2Ts + Ta) = amax − jmax Ts = 0

q̇(2Ts + Ta) = 1
2 jmax T 2

s + amax Ta + amax Ts− 1
2 jmax T 2

s = vmax ⇒ Ta =
vmax

amax
− amax

jmax

q(2Ts + Ta) = 1
6 jmax T 3

s + 1
2 jmax T 2

s Ta + 1
2 amax T 2

a + ( 1
2 jmax T 2

s + amax Ta) Ts

+ 1
2 amax T 2

s − 1
6 jmax T 3

s
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• First half of fourth segment:
...
q (t) = 0, for t ∈ [2Ts + Ta, 2Ts + Ta + Tv/2).

q̈(t) = 0

q̇(t) = vmax

q(t) = q(2Ts + Ta) + vmax(t− (2Ts + Ta))

⇒

q̈

(
2Ts + Ta +

Tv

2

)
= 0

q̇

(
2Ts + Ta +

Tv

2

)
= vmax

q

(
2Ts + Ta +

Tv

2

)
= q(2Ts + Ta) + vmax

(
Tv

2

)

Since we have that
T

2
= 2Ts + Ta +

Tv

2
, due to the symmetry of the trajectory, we have

q

(
T

2

)
=

∆q

2
,

or

1
2

jmax T 2
s Ta +

1
2

amax T 2
a + (

1
2

jmax T 2
s + amax Ta) Ts +

1
2

amax T 2
s + vmax

(
Tv

2

)
=

∆q

2
.

Substituting the expressions of Ts and Ta and simplifying, we obtain finally

Tv =
∆q

vmax
− vmax

amax
− amax

jmax
. (1)

While
Ts =

amax

jmax
> 0

always hold, we note that the assumptions made on the relative amplitudes of the bounds vmax,
amax, jmax and on ∆q simultaneously guarantee that

Ta ≥ 0, Tv ≥ 0.

As a result, the total motion time is given by

T = Tv + 2Ta + 4Ts =
∆q

vmax
+

vmax

amax
+

amax

jmax
, (2)

which is the minimum feasible time under the made assumptions. For specific choices of data,
some of the motion segments may collapse, and the actual duration of each of them (and thus the
total motion time) should be computed accordingly.

If Tv is assigned, the maximum feasible displacement is obtained from (1) as

∆q = vmax

(
Tv +

vmax

amax
+

amax

jmax

)
. (3)

3



Plugging the data of problem i) in eq. (3) yields ∆q = 9.05 [rad] (with a total time T = 4.033 [s]).
The obtained profiles of position, velocity, acceleration, and jerk are shown in Fig. 2. With the
data of problem ii), from eq. (2) we have T = 2.4 [s]. The associated profiles of position, velocity,
acceleration, and jerk are shown in Fig. 3. Matlab sources are available.

∗ ∗ ∗ ∗ ∗
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Figure 2: Position, velocity, acceleration, and jerk profiles for the solution to problem i)
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Figure 3: Position, velocity, acceleration, and jerk profiles for the solution to problem ii)
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