Robotics I

July 7, 2010

Based on the data sheet of the KUKA KR 30-3 robot with six revolute joints and spherical wrist:
i) assign the reference frames according to the Denavit-Hartenberg formalism, putting the origin of the reference frame $R F_{0}$ on the floor, and derive the associated table of parameters;
ii) using the numerical data (in mm), determine the position of the spherical wrist center with respect to $R F_{0}$ in the configuration $\boldsymbol{\theta}=\left(0, \pi / 2,0, \theta_{4}, \theta_{5}, \theta_{6}\right)$, for arbitrary $\theta_{i}, i=4,5,6$.

[120 minutes; open books]

Solution

July 7, 2010

Figure 1: D-H frame assignment for the KUKA KR 30-3 robot
With reference to Fig. 1, the table of Denavit-Hartenberg parameters is the following:

i	α_{i}	d_{i}	a_{i}	θ_{i}
1	$\pi / 2$	$d_{1}=815$	$a_{1}=350$	θ_{1}
2	0	0	$a_{2}=850$	θ_{2}
3	$\pi / 2$	0	$a_{3}=145$	θ_{3}
4	$-\pi / 2$	$d_{4}=820$	0	θ_{4}
5	$\pi / 2$	0	0	θ_{5}
6	0	$d_{6}=170$	0	θ_{6}

The numerical values (in mm) assigned to the constant parameters in the table are taken from the data sheet. The robot configuration shown corresponds to $\boldsymbol{\theta}=\left(0 \frac{\pi}{2} 0000\right)^{T}$. Only the first
three homogeneous transformation matrices are needed for determining the position of the center $W=0_{4}=0_{5}$ of the spherical wrist:

$$
\begin{gathered}
{ }^{0} \boldsymbol{A}_{1}\left(\theta_{1}\right)=\left(\begin{array}{cccc}
c_{1} & 0 & s_{1} & a_{1} c_{1} \\
s_{1} & 0 & -c_{1} & a_{1} s_{1} \\
0 & 1 & 0 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right) \quad{ }^{1} \boldsymbol{A}_{2}\left(\theta_{2}\right)=\left(\begin{array}{cccc}
c_{2} & -s_{2} & 0 & a_{2} c_{2} \\
s_{2} & c_{2} & 0 & a_{2} s_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
{ }^{2} \boldsymbol{A}_{3}\left(\theta_{3}\right)=\left(\begin{array}{cccc}
c_{3} & 0 & s_{3} & a_{3} c_{3} \\
s_{3} & 0 & -c_{3} & a_{3} s_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
\end{gathered}
$$

In fact, we may compute the position ${ }^{0} \boldsymbol{p}_{04}$ of O_{4} as

$$
{ }^{0} \boldsymbol{p}_{04, \text { hom }}=\binom{{ }^{0} \boldsymbol{p}_{04}}{1}={ }^{0} \boldsymbol{A}_{1}\left(\theta_{1}\right)^{1} \boldsymbol{A}_{2}\left(\theta_{2}\right)^{2} \boldsymbol{A}_{3}\left(\theta_{3}\right)^{3} \boldsymbol{A}_{4}\left(\theta_{4}\right)\binom{\mathbf{0}}{1}
$$

but also as

$$
{ }^{0} \boldsymbol{p}_{04, \text { hom }}={ }^{0} \boldsymbol{A}_{1}\left(\theta_{1}\right){ }^{1} \boldsymbol{A}_{2}\left(\theta_{2}\right)^{2} \boldsymbol{A}_{3}\left(\theta_{3}\right)\binom{{ }^{3} \boldsymbol{p}_{34}}{1} \quad \text { with } \quad{ }^{3} \boldsymbol{p}_{34}=\left(\begin{array}{c}
0 \\
0 \\
d_{4}
\end{array}\right) .
$$

The most efficient way is to perform computations as matrix/vector products:

$$
\begin{gathered}
{ }^{2} \boldsymbol{p}_{24, h o m}={ }^{2} \boldsymbol{A}_{3}\left(\theta_{3}\right){ }^{3} \boldsymbol{p}_{34, \text { hom }}=\left(\begin{array}{c}
a_{3} c_{3}+d_{4} s_{3} \\
a_{3} s_{3}-d_{4} c_{3} \\
0 \\
1
\end{array}\right), \\
{ }^{1} \boldsymbol{p}_{14, \text { hom }}={ }^{1} \boldsymbol{A}_{2}\left(\theta_{2}\right){ }^{2} \boldsymbol{p}_{24, \text { hom }}=\left(\begin{array}{c}
\left(a_{2}+a_{3} c_{3}+d_{4} s_{3}\right) c_{2}-\left(a_{3} s_{3}-d_{4} c_{3}\right) s_{2} \\
\left(a_{2}+a_{3} c_{3}+d_{4} s_{3}\right) s_{2}+\left(a_{3} s_{3}-d_{4} c_{3}\right) c_{2} \\
0 \\
1
\end{array}\right), \\
{ }^{0} \boldsymbol{p}_{04, \text { hom }}={ }^{0} \boldsymbol{A}_{1}\left(\theta_{1}\right){ }^{1} \boldsymbol{p}_{14, \text { hom }}=\left(\begin{array}{c}
\left(a_{1}+\left(a_{2}+a_{3} c_{3}+d_{4} s_{3}\right) c_{2}-\left(a_{3} s_{3}-d_{4} c_{3}\right) s_{2}\right) c_{1} \\
\left(a_{1}+\left(a_{2}+a_{3} c_{3}+d_{4} s_{3}\right) c_{2}-\left(a_{3} s_{3}-d_{4} c_{3}\right) s_{2}\right) s_{1} \\
d_{1}+\left(a_{2}+a_{3} c_{3}+d_{4} s_{3}\right) s_{2}+\left(a_{3} s_{3}-d_{4} c_{3}\right) c_{2} \\
1
\end{array}\right) .
\end{gathered}
$$

At the desired configuration (for the first three joints), substituting the numerical values, yields

$$
{ }^{0} \boldsymbol{p}_{04}\left(0, \frac{\pi}{2}, 0\right)=\left(\begin{array}{c}
a_{1}+d_{4} \\
0 \\
d_{1}+a_{2}+a_{3}
\end{array}\right)=\left(\begin{array}{c}
1170 \\
0 \\
1810
\end{array}\right)[\mathrm{mm}] .
$$

