Robotics I

June 15, 2010

Exercise 1

For a planar RP robot, consider a class of one-dimensional tasks defined only in terms of the y-component of the end-effector Cartesian position

$$
y=p_{y}\left(q_{1}, q_{2}\right) .
$$

a) Study the singularity conditions for the robot performing this class of tasks.
b) Given a desired task trajectory $y_{d}(t)$, admitting second time derivative, provide the expression of a kinematic control law that is able to zero the task error $e=y_{d}-y$ in an exponential way starting fron any initial robot condition $(\boldsymbol{q}(0), \dot{\boldsymbol{q}}(0))$, when the available control commands are the joint accelerations $\ddot{\boldsymbol{q}}$.

Exercise 2

For a minimal representation of the orientation of a rigid body given by Euler angles $\phi=(\alpha, \beta, \gamma)$ around the sequence of mobile axes $Y X^{\prime} Z^{\prime \prime}$, determine the relation

$$
\omega=\boldsymbol{T}(\phi) \dot{\phi}
$$

between the time derivatives of the Euler angles and the angular velocity $\boldsymbol{\omega}$ of the rigid body. Find the singularities of $\boldsymbol{T}(\boldsymbol{\phi})$, and provide an example of an angular velocity vector $\boldsymbol{\omega}$ that cannot be represented in a singularity.
[90 minutes; open books]

Solutions

June 15, 2010

Exercise 1

The direct kinematics associated to the end-effector position of the RP robot is

$$
\boldsymbol{p}=\binom{p_{x}}{p_{y}}=\binom{q_{2} \cos q_{1}}{q_{2} \sin q_{1}}
$$

where a 'natural' set of coordinates has been chosen, with q_{1} being the angle between the \boldsymbol{x}_{0} axis and the second link of the robot ${ }^{1}$.

Being the task defined only in terms of the p_{y} component, it is

$$
\dot{p}_{y}=\left(\begin{array}{cc}
q_{2} \cos q_{1} & \sin q_{1}
\end{array}\right) \dot{\boldsymbol{q}}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}}
$$

and

$$
\ddot{p}_{y}=\boldsymbol{J}(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\dot{\boldsymbol{J}}(\boldsymbol{q}) \dot{\boldsymbol{q}}=\boldsymbol{J}(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\left(\begin{array}{c}
\dot{q}_{2} \cos q_{1}-q_{2} \sin q_{1} \dot{q}_{1}
\end{array} \quad \cos q_{1} \dot{q}_{1}\right) \dot{\boldsymbol{q}} .
$$

The task Jacobian \boldsymbol{J} is then singular when

$$
\sin q_{1}=0 \quad \text { AND } \quad q_{2}=0 .
$$

In this case, the rank of the \boldsymbol{J} matrix is zero and the one-dimensional task cannot be correctly performed. Out of singularities, all the joint accelerations $\ddot{\boldsymbol{q}}$ that realize a desired \ddot{y}_{d} can be written in the form

$$
\ddot{\boldsymbol{q}}=\boldsymbol{J}^{\#}(\boldsymbol{q})\left(\ddot{y}_{d}-\dot{\boldsymbol{J}}(\boldsymbol{q}) \dot{\boldsymbol{q}}\right)+\left(\boldsymbol{I}-\boldsymbol{J}^{\#}(\boldsymbol{q}) \boldsymbol{J}(\boldsymbol{q})\right) \ddot{\boldsymbol{q}}_{0}
$$

being the task redundant $(M=1)$ for the RP robot $(N=2)$. Setting $\ddot{\boldsymbol{q}}_{0}=\mathbf{0}$ one obtains the solution with minimum joint acceleration norm. Assuming full rank (equal to 1) for the task Jacobian \boldsymbol{J}, its pseudoinverse has the explicit expression

$$
\boldsymbol{J}^{\#}(\boldsymbol{q})=\frac{1}{q_{2}^{2} \cos ^{2} q_{1}+\sin ^{2} q_{1}}\binom{q_{2} \cos q_{1}}{\sin q_{1}} .
$$

A kinematic control law with the requested performance is defined by

$$
\ddot{\boldsymbol{q}}=\boldsymbol{J}^{\#}(\boldsymbol{q})\left(\ddot{y}_{d}+k_{d}\left(\dot{y}_{d}-\dot{p}_{y}\right)+k_{p}\left(y_{d}-p_{y}\right)-\dot{\boldsymbol{J}}(\boldsymbol{q}) \dot{\boldsymbol{q}}\right),
$$

where $k_{d}>0$ and $k_{p}>0$ and we set for simplicity $\ddot{\boldsymbol{q}}_{0}=\mathbf{0}$. A more convenient choice would be to include an acceleration $\ddot{\boldsymbol{q}}_{0}=-\boldsymbol{K}_{D} \dot{\boldsymbol{q}}$, with a diagonal, positive definite matrix \boldsymbol{K}_{D}, in the null space of the task Jacobian. As a matter of fact, such additional term allows to damp possible increases of internal joint velocity without perturbing the task.

[^0]
Exercise 2

The orientation of a rigid body is represented, using the Euler angles $\phi=(\alpha, \beta, \gamma)$ around the sequence of mobile axes $Y X^{\prime} Z^{\prime \prime}$, by the product of elementary rotation matrices

$$
\boldsymbol{R}=\boldsymbol{R}_{Y}(\alpha) \boldsymbol{R}_{X^{\prime}}(\beta) \boldsymbol{R}_{Z^{\prime \prime}}(\gamma)
$$

The angular velocity $\boldsymbol{\omega}$ due to $\dot{\boldsymbol{\phi}}$ can be obtained as the sum of the three angular velocities contributed by, respectively, $\dot{\alpha}$ (along the unit vector \boldsymbol{Y}), $\dot{\beta}$ (along \boldsymbol{X}^{\prime}), and $\dot{\gamma}\left(\right.$ along $\left.\boldsymbol{Z}^{\prime \prime}\right)$

$$
\boldsymbol{\omega}=\boldsymbol{\omega}_{\dot{\alpha}}+\boldsymbol{\omega}_{\dot{\beta}}+\boldsymbol{\omega}_{\dot{\gamma}}=\boldsymbol{Y} \dot{\alpha}+\boldsymbol{X}^{\prime} \dot{\beta}+\boldsymbol{Z}^{\prime \prime} \dot{\gamma}
$$

where the unit vectors $\boldsymbol{Y}, \boldsymbol{X}$ e $\boldsymbol{Z}^{\prime \prime}$ are expressed with respect to the initial reference frame. It is

$$
\boldsymbol{Y}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad \boldsymbol{X}^{\prime}=\boldsymbol{R}_{Y}(\alpha)\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right), \quad \boldsymbol{Z}^{\prime \prime}=\boldsymbol{R}_{Y}(\alpha) \boldsymbol{R}_{X^{\prime}}(\beta)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Thus, it is sufficient to compute

$$
\begin{gathered}
\boldsymbol{R}_{Y}(\alpha)=\left(\begin{array}{ccc}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right), \quad \boldsymbol{R}_{X^{\prime}}(\beta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \beta & -\sin \beta \\
0 & \sin \beta & \cos \beta
\end{array}\right), \\
\boldsymbol{R}_{Y}(\alpha) \boldsymbol{R}_{X^{\prime}}(\beta)=\left(\begin{array}{ccc}
* & * & \sin \alpha \cos \beta \\
* & * & -\sin \beta \\
* & * & \cos \alpha \cos \beta
\end{array}\right)
\end{gathered}
$$

in order to obtain
$\boldsymbol{\omega}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \dot{\alpha}+\left(\begin{array}{c}\cos \alpha \\ 0 \\ -\sin \alpha\end{array}\right) \dot{\beta}+\left(\begin{array}{c}\sin \alpha \cos \beta \\ -\sin \beta \\ \cos \alpha \cos \beta\end{array}\right) \dot{\gamma}=\left(\begin{array}{ccc}0 & \cos \alpha & \sin \alpha \cos \beta \\ 1 & 0 & -\sin \beta \\ 0 & -\sin \alpha & \cos \alpha \cos \beta\end{array}\right)\left(\begin{array}{c}\dot{\alpha} \\ \dot{\beta} \\ \dot{\gamma}\end{array}\right)=\boldsymbol{T}(\boldsymbol{\phi}) \dot{\boldsymbol{\phi}}$.
Note also, as a general property, that matrix \boldsymbol{T} depends only on the first two Euler angles. Matrix \boldsymbol{T} is singular when

$$
\operatorname{det} \boldsymbol{T}=-\cos \beta=0 \quad \Longleftrightarrow \quad \beta= \pm \frac{\pi}{2}
$$

In this condition, an angular velocity vector (with norm k) of the form

$$
\boldsymbol{\omega}=k\left(\begin{array}{c}
\sin \alpha \\
0 \\
\cos \alpha
\end{array}\right) \notin \mathcal{R}\left\{\boldsymbol{T}\left(\alpha, \pm \frac{\pi}{2}\right)\right\}
$$

cannot be represented by any choice of $\dot{\boldsymbol{\phi}}$.

[^0]: ${ }^{1}$ When using the Denavit-Hartenberg formalism, one would define $q_{2}^{\mathrm{DH}}=q_{2} \pm \frac{\pi}{2}$. The rest of the developments follows accordingly in a similar way.

