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Exercise 1

Consider the planar RP robot shown in the figure, where ` is the length of the first link and
the generalized coordinates to be used are indicated. Let p = (px py)T be the position of the
end-effector P .

• Solve the inverse kinematic problem for this robot, providing the number and type of the
solutions for varying positions of P .

• Draw the robot primary workspace (with dimensions) in the case when the joint variables
are bounded as: q1 ∈ [−π/2,+π/2], q2 ∈ [−L,+L]. Discuss the presence of singularities on
the boundaries of the workspace.

Exercise 2

Let an initial pose A and a final pose B be given in the robot Cartesian space, with the locations
of the associated frame represented by the homogeneous transformation matrices:

0T A =


1 0 0 1
0 0 −1 1
0 1 0 1
0 0 0 1

 , 0T B =


0 −1 0 1
1 0 0 0
0 0 1 −0.5
0 0 0 1

 .

• Plan a coordinated motion trajectory from pose A to pose B along a straight path from OA

to OB in a time T = 2 sec, and with zero initial and final linear and angular velocities.

• Provide the numerical value at time t = T/2 of the linear velocity (of the origin of moving
frame) and of the angular velocity.

[120 minutes; open books]



Solutions
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Exercise 1

The robot direct kinematics is

p =
(
px

py

)
=
(
` cos q1 − q2 sin q1
` sin q1 + q2 cos q1

)
.

Rewriting this in the form (
px

py

)
= R(q1)

(
`
q2

)
,

where R(θ) is the 2× 2 planar rotation matrix by an angle θ, it immediately follows that

pT p = p2
x + p2

y =
(
` q2

)T
RT (q1)R(q1)

(
`
q2

)
= `2 + q22 ,

and hence
q2 = ±

√
p2

x + p2
y − `2.

Depending on whether ‖p‖ is larger, equal to, or smaller than `, there will be respectively two, one
(singular), or no solutions. In this analysis, no joint limits are taken into account (in particular,
the one for the prismatic joint).

Once q2 is determined, in order to find the analytic expression of the solution for the first joint
variable, we can rewrite the direct kinematics as(

px

py

)
=
(
−q2 `
` q2

)(
sin q1
cos q1

)
,

where the matrix that appears is always non-singular (with determinant equal to −(q22 + `2) < 0).
This yields (

sin q1
cos q1

)
=

1
q22 + `2

(
`py − q2px

`px + q2py

)
.

Therefore,
q1 = ATAN2{`py − q2px, `px + q2py},

where, in the regular case, the two solutions found for q2 have to be replaced. In the singular case,
one has only q2 = 0 and thus the single associated solution q1 = ATAN2{py, px}.

The robot workspace is shown in Figure 1. The case when only the prismatic joint variable is
limited (|q2| ≤ L) is shown on the left, while the full requested case is given on the right. The
radius of the inner and outer circumferences are r = ` and R =

√
`2 + L2. Note that on the

external boundary of the workspace (arc of the circumference of radius R), as well as on the two
straight segments belonging to the boundary, the analytic 2× 2 robot Jacobian is non-singular; in
fact, these limitations to the workspace are imposed by the joint limits and not by the kinematic
configuration of the robot itself. Equivalently, on the parts of the workspace boundary where the
Jacobian is full rank the space of admissible Cartesian velocities is still two-dimensional (though
with unilaterally constrained along certain directions).
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Figure 1: Robot workspace, with r = ` and R =
√
`2 + L2; on the left, the case when only the

second joint range is limited (|q2| ≤ L); on the right, the full case including also |q1| ≤ π/2

Figure 2: Number of inverse solutions in the various regions of the workspace

Finally, Figure 2 shows the partition of the workspace in terms of number of inverse kinematics
solutions when joint limits are present. In particular, two solutions exist in the deep green region,
including its two straight boundaries and the arc of the external circumference (on the internal
one, there is only one, singular solution).
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Exercise 2

The distance between the origins OA and OB of the frames associated to the initial and final poses
is

L =
∥∥0p0B − 0p0A

∥∥ =

∥∥∥∥∥∥
 1

0
−0.5

−
 1

1
1

∥∥∥∥∥∥ =

∥∥∥∥∥∥
 0
−1
−1.5

∥∥∥∥∥∥ =
√

3.25.

The linear path for the origin of the motion frame can be parametrized as

p(s) = 0p0A +
s

L

(
0p0B − 0p0A

)
=

 1
1
1

+
s√
3.25

 0
−1
−1.5

 , s ∈ [0, L].

The relative rotation between pose A and pose B is given by

ARB = 0RT
A

0RB =

 1 0 0
0 0 1
0 −1 0

 0 −1 0
1 0 0
0 0 1

 =

 0 −1 0
0 0 1
−1 0 0

 .

From this, one can plan a reorientation motion using the axis/angle method. We need to com-
pute the unit vector Ar (defined with respect to the initial frame) and thee angle θAB satisfying
R(Ar, θAB) = ARB . Denoting with rij the elements of the rotation matrix ARB , from the inverse
formulas of the axis/angle method we obtain

θAB = ATAN2{+
√

(r21 − r12)2 + (r13 − r31)2 + (r23 − r32)2, r11 + r22 + r33 − 1}

= ATAN2{
√

3,−1} =
2
3
π = 2.0944 rad (= 120◦)

and

Ar =
1

2 sin θAB

 r32 − r23
r13 − r31
r21 − r12

 =
1√
3

 −1
1
1

 = 0.5774

 −1
1
1

 (being ‖Ar‖ = 1).

Note that only one of the two possible solutions is used. The orientation path can be (still linearly)
parametrized as

θ(s) =
s

L
θAB , s ∈ [0, L].

The absolute orientation for a given value of parameter s will be

R(s) = 0RA R(Ar, θ(s)).

Having use the same parameter s for the position and orientation paths, planning a single timing
law s = s(t), with t ∈ [0, T ], will automatically yield a coordinated motion: the translation and
the rotation between the initial and final poses will be completed simultaneously.

For the timing law, the simplest choice is a cubic (bi-normalized) polynomial with zero time
derivative in t = 0 and t = T . It is

s(t) = L

[
−2
(
t

T

)3

+ 3
(
t

T

)2
]
, t ∈ [0, T ].
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Its time derivative is

ṡ(t) =
6L
T

[(
t

T

)
−
(
t

T

)2
]
,

and thus
ṡ(T/2) =

3L
2T

.

The linear and angular velocity during the transfer motion are

0ṗ(t) =
dp

ds
ṡ(t) =

ṡ(t)
L

 0
−1
−1.5


and

Aω(t) = Ar
dθ(s)
ds

ṡ(t) =
ṡ(t)
L

θAB
Ar.

At t = T/2 = 1 sec, we have

0ṗ(1) =
3
2

 0
−1
−1.5

 , Aω(1) =
3
2
· 2.0944 · 0.5774

 −1
1
1

 = 1.8138

 −1
1
1

 rad/sec,

and finally

0ω(1) = 0RA
Aω(1) = 1.8138

 −1
−1
1

 rad/sec.

∗ ∗ ∗ ∗ ∗
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