Robotics I

June 10, 2009

Consider the planar PRP robot with $n=3$ joints in the figure above. The world reference frame $R F_{w}=\left(\boldsymbol{x}_{w}, \boldsymbol{y}_{w}, \boldsymbol{z}_{w}\right)$ and the end-effector frame $R F_{e}=\left(\boldsymbol{x}_{e}, \boldsymbol{y}_{e}, \boldsymbol{z}_{e}\right)$ are also shown.

- Assign the robot reference frames according to the Denavit-Hartenberg (DH) convention and write down the associated table of parameters. Moreover, specify the (constant) transformation matrices ${ }^{w} T_{0}$, between the world frame and frame 0 of DH , and ${ }^{3} T_{e}$, between frame 3 of DH and the end-effector frame.
- Based on the variables \boldsymbol{q} defined in the Denavit-Hartenberg convention, compute the analytical Jacobian $\boldsymbol{J}(\boldsymbol{q})$ for a task involving only the end-effector position in the plane of motion, and analyze its singular configurations. With the robot in a singular configuration \boldsymbol{q}_{0}, define a set of base vectors for each of the following four linear subspaces:

$$
\mathcal{R}\left(\boldsymbol{J}\left(\boldsymbol{q}_{0}\right)\right) \quad \mathcal{N}\left(\boldsymbol{J}\left(\boldsymbol{q}_{0}\right)\right) \quad \mathcal{R}\left(\boldsymbol{J}^{T}\left(\boldsymbol{q}_{0}\right)\right) \quad \mathcal{N}\left(\boldsymbol{J}^{T}\left(\boldsymbol{q}_{0}\right)\right) .
$$

- For a motion task of dimension $m=3$ specified for the robot end-effector, consider the use of a kinematic control law in the task space,

$$
\begin{equation*}
\dot{\boldsymbol{q}}=\boldsymbol{J}^{-1}(\boldsymbol{q})\left(\dot{\boldsymbol{r}}_{d}+\boldsymbol{K}_{P}\left(\boldsymbol{r}_{d}-\boldsymbol{f}(\boldsymbol{q})\right),\right. \tag{1}
\end{equation*}
$$

where $\boldsymbol{r} \in \mathbb{R}^{3}$ includes the position (in the plane) as well as the orientation of the end-effector (i.e., the angle ϕ between the horizontal axis \boldsymbol{x}_{w} and the axis \boldsymbol{x}_{e}) and $\boldsymbol{f}(\boldsymbol{q})$ is the direct kinematic function associated to these task variables. Assume that the (positive definite) gain matrix \boldsymbol{K}_{P} is chosen as diagonal, and let the joint velocities be bounded as $\left|\dot{q}_{i}\right| \leq V_{i}$, with given values $V_{i}>0(i=1,2,3)$.
a) With the desired task velocity being $\dot{\boldsymbol{r}}_{d}=\left(\begin{array}{ccc}0 & 0 & -1\end{array}\right)^{T}$, determine a joint configuration \boldsymbol{q}^{*} which is nonsingular for the task (and 'matched' to it, i.e., $\boldsymbol{e}=\boldsymbol{r}_{d}-\boldsymbol{f}\left(\boldsymbol{q}^{*}\right)=\mathbf{0}$ for a suitable \boldsymbol{r}_{d}) and is such that the desired task can never be realized without violating one of the bounds on the joint velocities.
b) Let the robot initial configuration be $\boldsymbol{q}(0)=\left(\begin{array}{lll}1.2 & \pi / 2 & 1\end{array}\right)^{T}$, and let $\boldsymbol{r}_{d}(0)=$ $\left(\begin{array}{ccc}1.5 & 1.5 & -\pi / 4\end{array}\right)^{T}$ and $\dot{\boldsymbol{r}}_{d}(0)=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{T}$ be the specified task at time $t=0$. Define the numerical values of the diagonal matrix \boldsymbol{K}_{P} in the control law (1) so that the initial task error $\boldsymbol{e}(0)$ will be reduced as fast as possible without violating the following bounds on the joint velocities: $V_{1}=5[\mathrm{~m} / \mathrm{s}], V_{2}=\pi[\mathrm{rad} / \mathrm{s}]$, and $V_{3}=4[\mathrm{~m} / \mathrm{s}]$.
[180 minutes; open books]

Solution

June 10, 2009

A possible assignment of the Denavit-Hartenberg frames is shown in the figure below, together with the associated table of parameters.

i	α_{i}	a_{i}	d_{i}	θ_{i}
1	$\frac{\pi}{2}$	0	q_{1}	0
2	$\frac{\pi}{2}$	0	0	q_{2}
3	0	0	q_{3}	0

From this, it is easy to obtain the general expression of the direct kinematics for this robot:

$$
\begin{aligned}
{ }^{0} \boldsymbol{T}_{3}(\boldsymbol{q})=\left(\begin{array}{cc}
{ }^{0} \boldsymbol{R}_{3}(\boldsymbol{q}) & { }^{0} \boldsymbol{p}_{3}(\boldsymbol{q}) \\
\mathbf{0}^{T} & 1
\end{array}\right) & ={ }^{0} A_{1}\left(q_{1}\right)^{1} A_{2}\left(q_{2}\right){ }^{2} A_{3}\left(q_{3}\right) \\
& =\left(\begin{array}{cccc}
\cos q_{2} & 0 & \sin q_{2} & q_{3} \sin q_{2} \\
0 & -1 & 0 & 0 \\
\sin q_{2} & 0 & -\cos q_{2} & q_{1}-q_{3} \cos q_{2} \\
0 & 0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Use of the additional transformations between the frames defined in the problem text leads to

$$
\begin{aligned}
{ }^{w} \boldsymbol{T}_{e}(\boldsymbol{q})={ }^{w} \boldsymbol{T}_{0}{ }^{0} \boldsymbol{T}_{3}(\boldsymbol{q})^{3} \boldsymbol{T}_{e} & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right){ }^{0} \boldsymbol{T}_{3}(\boldsymbol{q})\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\sin q_{2} & \cos q_{2} & 0 & q_{3} \sin q_{2} \\
-\cos q_{2} & \sin q_{2} & 0 & q_{1}-q_{3} \cos q_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cc}
{ }^{w} \boldsymbol{R}_{e}(\boldsymbol{q}) & { }^{w} \boldsymbol{p}_{e}(\boldsymbol{q}) \\
\mathbf{0}^{T} & 1
\end{array}\right),
\end{aligned}
$$

from which one can obtain the kinematic functions of interest (which could be derived also by direct inspection, once the joint variables have been defined according to the Denavit-Hartenberg convention). To this end, note that the final rotation matrix ${ }^{w} \boldsymbol{R}_{e}(\boldsymbol{q})$ takes the form of an elementary rotation matrix by an angle $\phi=q_{2}-\pi / 2$ around the world axis \boldsymbol{z}_{w}. In fact, it is

$$
\left(\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
\cos \left(q_{2}-\frac{\pi}{2}\right) & -\sin \left(q_{2}-\frac{\pi}{2}\right) & 0 \\
\sin \left(q_{2}-\frac{\pi}{2}\right) & \cos \left(\left(q_{2}-\frac{\pi}{2}\right)\right. & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
\sin q_{2} & \cos q_{2} & 0 \\
-\cos q_{2} & \sin q_{2} & 0 \\
0 & 0 & 1
\end{array}\right)={ }^{w} \boldsymbol{R}_{e}\left(q_{2}\right)
$$

For the (first) task involving only the end-effector position on the plane, it is

$$
\boldsymbol{r}_{1}=\boldsymbol{f}_{1}(\boldsymbol{q})=\binom{{ }^{w} p_{x}}{{ }^{w} p_{y}}=\binom{q_{3} \sin q_{2}}{q_{1}-q_{3} \cos q_{2}}
$$

and the analytical (2×3) Jacobian matrix is

$$
\boldsymbol{J}_{1}(\boldsymbol{q})=\frac{\partial \boldsymbol{f}_{1}(\boldsymbol{q})}{\partial \boldsymbol{q}}=\left(\begin{array}{ccc}
0 & q_{3} \cos q_{2} & \sin q_{2} \\
1 & q_{3} \sin q_{2} & -\cos q_{2}
\end{array}\right)
$$

Analyzing the three minors of $\boldsymbol{J}_{1}(\boldsymbol{q})$, this matrix looses rank if and only if $\sin q_{2}=0$ and $q_{3}=0$, i.e., when the third robot link is oriented along the vertical direction and the third joint is completely retracted. In such a configuration, the Jacobian becomes

$$
\boldsymbol{J}_{1}\left(\boldsymbol{q}_{0}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & \mp 1
\end{array}\right)
$$

where the upper sign corresponds to the case $q_{2}=0$ and the lower sign to the case $q_{2}=\pi$. The four linear subspaces indicated in the text are spanned by the following basis vectors:

$$
\begin{gathered}
\mathcal{N}\left(\boldsymbol{J}\left(\boldsymbol{q}_{0}\right)\right)=\left\{\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
\mp 1
\end{array}\right)\right\} \quad \mathcal{R}\left(\boldsymbol{J}^{T}\left(\boldsymbol{q}_{0}\right)\right)=\left\{\left(\begin{array}{c}
1 \\
0 \\
\mp 1
\end{array}\right)\right\} \quad \text { in } \mathbb{R}^{3}, \\
\mathcal{R}\left(\boldsymbol{J}\left(\boldsymbol{q}_{0}\right)\right)=\left\{\binom{0}{1}\right\} \quad \mathcal{N}\left(\boldsymbol{J}^{T}\left(\boldsymbol{q}_{0}\right)\right)=\left\{\binom{1}{0}\right\} \quad \text { in } \mathbb{R}^{2} .
\end{gathered}
$$

For the end-effector planar positioning and orientation task (of dimension $m=3$), it is

$$
\boldsymbol{r}=\boldsymbol{f}(\boldsymbol{q})=\left(\begin{array}{c}
{ }^{w} p_{x} \tag{2}\\
{ }^{w} p_{y} \\
\phi
\end{array}\right)=\left(\begin{array}{c}
q_{3} \sin q_{2} \\
q_{1}-q_{3} \cos q_{2} \\
q_{2}-\pi / 2
\end{array}\right)
$$

The analytical (3×3) Jacobian matrix associated to this task,

$$
J(\boldsymbol{q})=\frac{\partial \boldsymbol{f}(\boldsymbol{q})}{\partial \boldsymbol{q}}=\left(\begin{array}{ccc}
0 & q_{3} \cos q_{2} & \sin q_{2} \\
1 & q_{3} \sin q_{2} & -\cos q_{2} \\
0 & 1 & 0
\end{array}\right)
$$

is singular if and only if $\sin q_{2}=0$.

Under the condition of question a), namely with $\sin q_{2}^{*} \neq 0$, it is

$$
\dot{\boldsymbol{q}}=\boldsymbol{J}^{-1}\left(\boldsymbol{q}^{*}\right) \dot{\boldsymbol{r}}_{d}=\frac{1}{\sin q_{2}^{*}}\left(\begin{array}{ccc}
\cos q_{2}^{*} & \sin q_{2}^{*} & -q_{3}^{*} \\
0 & 0 & \sin q_{2}^{*} \\
1 & 0 & -q_{3}^{*} \cos q_{2}^{*}
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)=\frac{1}{\sin q_{2}^{*}}\left(\begin{array}{c}
q_{3}^{*} \\
-\sin q_{2}^{*} \\
q_{3}^{*} \cos q_{2}^{*}
\end{array}\right) .
$$

It is then easy to see that, by sufficiently extending the prismatic joint 3 , the robot will violate the velocity bound at the first joint for any assigned value $V_{1}>0$. More specifically, it is

$$
q_{3}^{*}>V_{1} \cdot\left|\sin q_{2}^{*}\right|>0 \quad \Rightarrow \quad\left|\dot{q}_{1}\right|>V_{1} .
$$

Under the condition of question b), the robot is not in a singularity at the initial time $t=0$. Thus, using the problem data and eq. (2), the initial control velocity can be computed as

$$
\begin{aligned}
\dot{\boldsymbol{q}}(0) & =\boldsymbol{J}^{-1}(\boldsymbol{q}(0))\left(\dot{\boldsymbol{r}}_{d}(0)+\boldsymbol{K}_{P}\left(\boldsymbol{r}_{d}(0)-\boldsymbol{f}(\boldsymbol{q}(0))\right)\right. \\
& =\left(\begin{array}{ccc}
0 & 1 & -1 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{c}
0.5 K_{r_{1}} \\
0.3 K_{r_{2}} \\
-\frac{\pi}{4} K_{r_{3}}
\end{array}\right)\right)=\left(\begin{array}{c}
1+0.3 K_{r_{2}}+\frac{\pi}{4} K_{r_{3}} \\
-\frac{\pi}{4} K_{r_{3}} \\
0.5 K_{r_{1}}
\end{array}\right),
\end{aligned}
$$

having set $\boldsymbol{K}_{P}=\operatorname{diag}\left\{K_{r_{1}}, K_{r_{2}}, K_{r_{3}}\right\}$. From these expressions, one can directly choose two out of the three control gains:

$$
\begin{aligned}
\left|\dot{q}_{3}(0)\right| \leq V_{3} \quad \Rightarrow \quad 0.5 K_{r_{1}} \leq V_{3}=4 \quad & \Rightarrow \quad K_{r_{1}}=8>0 \\
\left|\dot{q}_{2}(0)\right| \leq V_{2} \quad \Rightarrow \quad \frac{\pi}{4} K_{r_{3}} \leq V_{2}=\pi \quad & \Rightarrow \quad K_{r_{3}}=4>0
\end{aligned}
$$

Finally, using this definition, also the remaining gain is chosen:
$\left|\dot{q}_{1}(0)\right| \leq V_{1} \quad \Rightarrow \quad 1+0.3 K_{r_{2}}+\frac{\pi}{4} K_{r_{3}}=1+0.3 K_{r_{2}}+\pi \leq V_{1}=5 \quad \Rightarrow \quad K_{r_{2}}=\frac{10}{3}(4-\pi)>0$.
With the selected gains, all joint velocities will saturate at time $t=0$ (the second joint velocity being at its negative limit $-V_{2}=-\pi$) and, as a result, the fastest decrease of the initial task error $\boldsymbol{e}(0)=\boldsymbol{r}_{d}(0)-\boldsymbol{f}(\boldsymbol{q}(0))$ will be realized (with the task error converging anyway exponentially to zero, in a decoupled way for each task component). The situation at time $t=0$ is depicted in the following figure, where the desired initial robot configuration is the lightly shaded one.

