Robotics I - Homework 1

Hand out: November 15, 2011; Return on: November 22, 2011

Figures 1 and 2 show different views of the Comau Smart5 NJ4 170 robot for spot welding. This is a 6 R anthropomorphic manipulator with a fully symmetric geometry, having a parallelogram structure for motion transmission (for links 2 and 3), and a so-called hollow wrist that allows to keep welding gun service and power cables all inside the robot. This wrist is non-spherical, with the last three joint axes intersecting two by two.

Figure 1: Rear and frontal CAD views of the Comau NJ4 robot

Figure 2: Perspective and side views of the Comau NJ4 robot

In the following analysis, neglect the presence of the parallelogram structure (a closed kinematic chain).

1. Assign the robot frames according to the Denavit-Hartenberg convention and provide the associated table of parameters. Use symbols for numerically unknown quantities. Note that the twist angles of joint axes 5 and 6 can be chosen as equal and opposite (their absolute value, which is 60°, should be left in symbolic form).
2. Compute (possibly with the help of a symbolic algebraic and manipulation program) the direct kinematics in the form

$$
{ }^{0} \boldsymbol{T}_{6}(\boldsymbol{q})=\left(\begin{array}{cc}
{ }^{0} \boldsymbol{R}_{6}(\boldsymbol{q}) & { }^{0} \boldsymbol{p}_{6}(\boldsymbol{q}) \\
\mathbf{0}^{T} & 1
\end{array}\right)=\left(\begin{array}{cccc}
{ }^{0} \boldsymbol{n}_{6}(\boldsymbol{q}) & { }^{0} \boldsymbol{s}_{6}(\boldsymbol{q}) & { }^{0} \boldsymbol{a}_{6}(\boldsymbol{q}) & { }^{0} \boldsymbol{p}_{6}(\boldsymbol{q}) \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where $\boldsymbol{q}=\left(\begin{array}{llllll}q_{1} & q_{2} & q_{3} & q_{4} & q_{5} & q_{6}\end{array}\right)^{T}$.
3. Draw a sketch of the robot in the zero configuration $(\boldsymbol{q}=\mathbf{0})$, as it follows from the chosen frame assignment. In this configuration, give the expression of the position of origin O_{6} of the end-effector frame and of the position of intersection point H between joint axes 4 and 5 .
[estimated time: 210 minutes (open books)]

Comau Smart5 NJ4 170

DH frame assignment, parameter table, direct kinematics, and zero configuration

Comau Smart5 NJ4 170

Comau Smart5 NJ4 170

The Spot Welding Reference

The third generation of "hollow wrist" robot family signed Comau Robotics: the new spot welding reference. Ten years experience in designing hollow wrist robots together with the new parallelogram structure of latest generation of industrial robots: SMART5 NJ4. The structure of the robot $\mathrm{NJ4}$ "hollow wrist" makes it possible to keep all the welding gun service and power cables inside the robot. It provides agility, penetrability and applicability characteristics that, at present, cannot be found elsewhere on the market.

Technical Features

- integrated dressing from the base to the flange of the robot
- parallelogram structure with no balancing mass
- perfect symmetry of the mechanical structure
- strong, agile and streamlined kinetic structure
- low power consumption: energy saving, up to 25% more
- possibility of installation both on floor and at ceiling
- AC brushless motors with incremental encoders
- braking system (removable axis by axis)

NJ4 170-2.5: maximum horizontal reach 2500 mm , repeatability 0.10 mm

Comau Smart5 NJ4 170

workspace

Robotics 1 - Homework 1 - 2011/12

Comau Smart5 NJ4 170
 envelope

Note: these data are NOT related to the DH parameters of the following table!

Comau Smart5 NJ4 170
 DH frames

Robotics 1 - Homework 1 - 2011/12

Comau Smart5 NJ4 170

DH table of parameters

i	α_{i}	a_{i}	d_{i}	θ_{i}
1	$\pi / 2$	$\mathrm{a}_{1}>0$	$\mathrm{~d}_{1}>0$	$\mathrm{q}_{1}=0$
2	0	$\mathrm{a}_{2}>0$	0	$\mathrm{q}_{2}=\pi / 2$
3	$\pi / 2$	$\mathrm{a}_{3}>0$	0	$\mathrm{q}_{3}=0$
4	$\alpha_{4}=\alpha>0$	0	$\mathrm{~d}_{4}>0$	$\mathrm{q}_{4}=\pi / 2$
5	$\alpha_{5}=-\alpha<0$	0	$\mathrm{~d}_{5}>0$	$\mathrm{q}_{5}=0$
6	0	0	$\mathrm{~d}_{6}>0$	$\mathrm{q}_{6}=\pi / 2$
\uparrow in the configuration shown				

point H (origin of frame 4)

$$
\left[\begin{array}{c}
{ }^{0} p_{4} \\
1
\end{array}\right]={ }^{0} A_{1}\left(q_{1}\right)^{\prime} A_{2}\left(q_{2}\right)^{2} A_{3}\left(q_{3}\right)^{3} A_{4}\left(q_{4}\right)\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

point O_{6} (origin of frame 6)
$\left[\begin{array}{c}0 \\ p_{6} \\ 1\end{array}\right]={ }^{0} A_{1}\left(q_{1}\right)^{1} A_{2}\left(q_{2}\right)^{2} A_{3}\left(q_{3}\right)^{3} A_{4}\left(q_{4}\right)^{4} A_{5}\left(q_{5}\right)^{5} A_{6}\left(q_{6}\right)\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$

Comau Smart5 NJ4 170

mapping numerical values for the DH parameters

	[mm]
a_{1}	350
a_{2}	1050
a_{3}	250
$\mathrm{~d}_{1}$	830
$\mathrm{~d}_{4}$	1097
$\mathrm{~d}_{5}$	150
$\mathrm{~d}_{6}$	198
α	60°

Comau Smart5 NJ4 170

DH zero configuration

Comau Smart5 NJ4 170

DH homogenous transformation matrices

from Matlab (symbolic) program

Comau Smart5 NJ4 170

on its direct kinematics

the symbolic output for the whole

$$
{ }^{0} T_{6}(\boldsymbol{q})={ }^{0} A_{1}\left(q_{1}\right)^{1} A_{2}\left(q_{2}\right)^{2} A_{3}\left(q_{3}\right)^{3} A_{4}\left(q_{4}\right)^{4} A_{5}\left(q_{5}\right)^{5} A_{6}\left(q_{6}\right)
$$

is quite long...
for instance, the symbolic output for the first component of ${ }^{0} p_{6}(q)$ is

```
cos(q1)*(a1 + a3*}\operatorname{cos(q2 + q3) + a2*}\operatorname{cos(q2))
- sin(alf)*sin(q1)*(d5*cos(q4) + d6*cos(alf)*cos(q4)
+ d6*sin(q4)*sin(q5) - d6*\operatorname{cos(alf)*cos(q4)*}\operatorname{cos}(q5)
+ sin(q2 + q3)*\operatorname{cos(q1)*(d4 + d5*cos(alf)}
+ d6*(cos(alf)^2 - cos(q5)*(cos(alf)^2 - 1)))
+ cos(q2 + q3)* cos(q1)*sin(alf)*(d5*sin(q4) + d6*\operatorname{cos(alf)*sin(q4)}
- d6*}\operatorname{cos(q4)*sin(q5) - d6*}\operatorname{cos(alf)*}\operatorname{cos(q5)*sin(q4))
+ cos(q2 + q3)*\operatorname{cos(q1)*sin(alf)*(d5*sin(q4) + d6*cos(alf)*sin(q4)}
- d6*cos(q4)*sin(q5) - d6*cos(alf)*\operatorname{cos(q5)*sin(q4))}
```


Comau Smart5 NJ4 170

on its direct kinematics
the symbolic output for the position of point H is still manageable
evaluating then the position of point O_{6} at the zero configuration

```
P=subs(p,{q1,q2,q3,q4,q5,q6},{0,0,0,0,0,0})
P =
    a1 + a2 + a3
    d5*sin(alf)
d1 - d4 - d6 - d5*cos(alf)
```

similarly, at the zero configuration, the position of point H is

```
H =
    a1+a2+a3
    d1 - d4
```

