

Robotics 1

Kinematic control

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA Automatica e Gestionale Antonio Ruberti

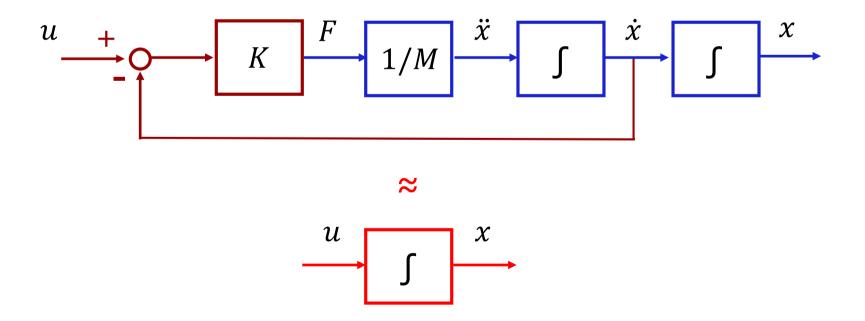
Robot motion control

- need to "actually" realize a desired robot motion task ...
 - regulation of pose/configuration (constant reference)
 - trajectory following/tracking (time-varying reference)
- ... despite the presence of
 - external disturbances and/or unmodeled dynamic effects
 - initial errors (or arising later due to disturbances) w.r.t. desired task
 - discrete-time implementation, uncertain robot parameters, ...
- we use a general control scheme based on
 - feedback (from robot state measures, to impose asymptotic stability)
 - feedforward (nominal commands generated in the planning phase)
- the error driving the feedback part of the control law can be defined either in Cartesian or in joint space
 - control action always occurs at the joint level (where actuators drive the robot), but performance has to be evaluated at the task level

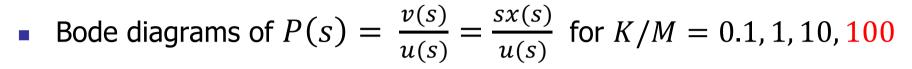
- a robot is an electro-mechanical system driven by actuating torques produced by the motors
- it is possible, however, to consider a kinematic command (most often, a velocity) as control input to the system...
- ...thanks to the presence of low-level feedback control at the robot joints that allows imposing commanded reference velocities (at least, in the "ideal case")
- these feedback loops are present in industrial robots within a "closed" control architecture, where users can only specify reference commands of the kinematic type
- in this way, performance can be very satisfactory, provided the desired motion is not too fast and/or does not require large accelerations

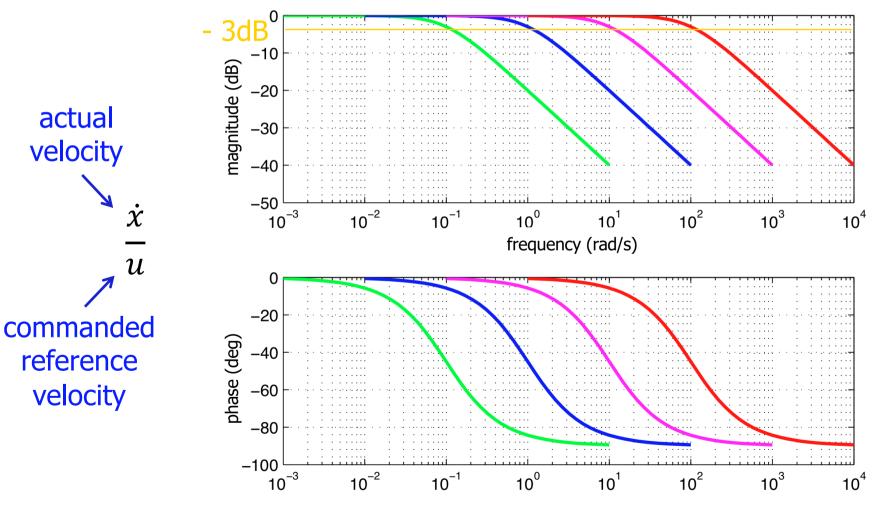
An introductory example

- a mass *M* in linear motion: $M\ddot{x} = F$
- low-level feedback: $F = K(u \dot{x})$, with u = reference velocity
- equivalent scheme for $K \to \infty$: $\dot{x} \approx u$
- in practice, valid in a limited frequency "bandwidth" $\omega \leq K/M$



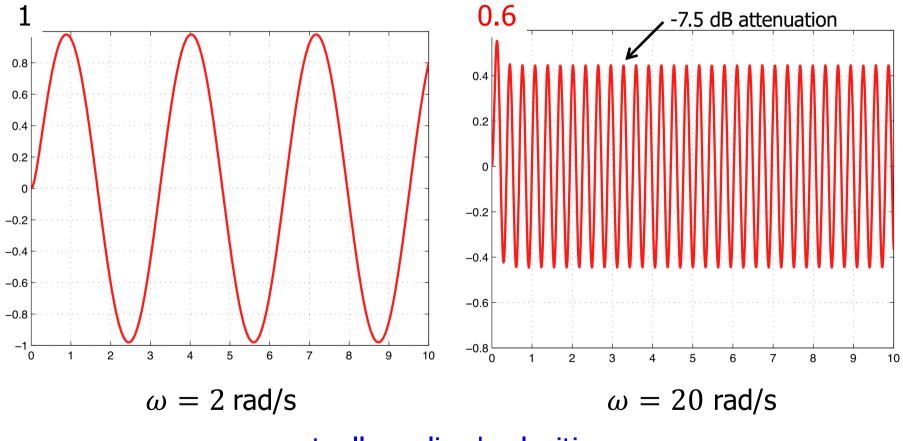
Frequency response of the closed-loop system





Time response

• setting K/M = 10 (bandwidth), we show two possible time responses to unit sinusoidal velocity reference commands at different ω

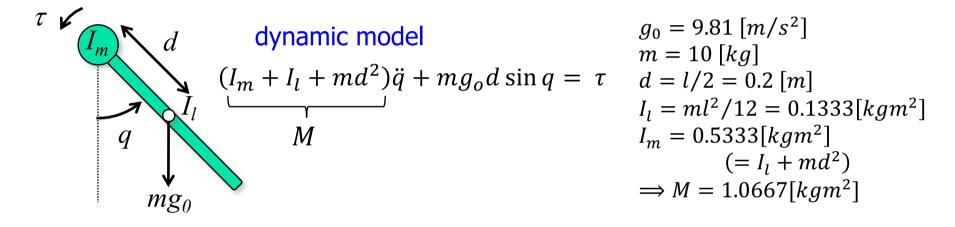


actually realized velocities

A more detailed example

including nonlinear dynamics

single link (a thin rod) of mass m, center of mass at d from joint axis, inertia M (motor + link) at the joint, rotating in a vertical plane (the gravity torque at the joint is configuration dependent)

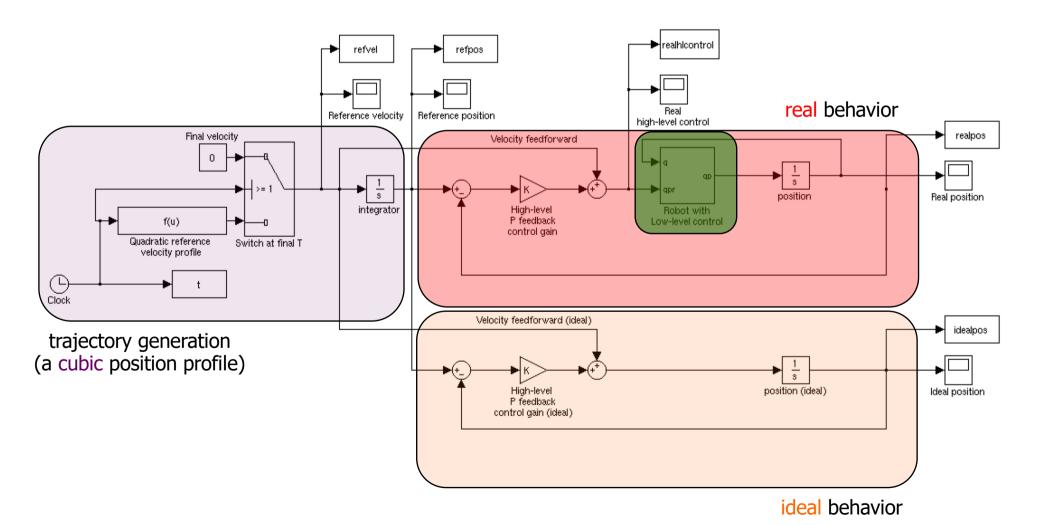


- fast low-level feedback control loop based on a PI action on the velocity error + an approximate acceleration feedforward
- kinematic control loop based on a P feedback action on the position error + feedforward of the velocity reference at the joint level
- evaluation of tracking performance for rest-to-rest motion tasks with "increasing dynamics" = higher accelerations

A more detailed example

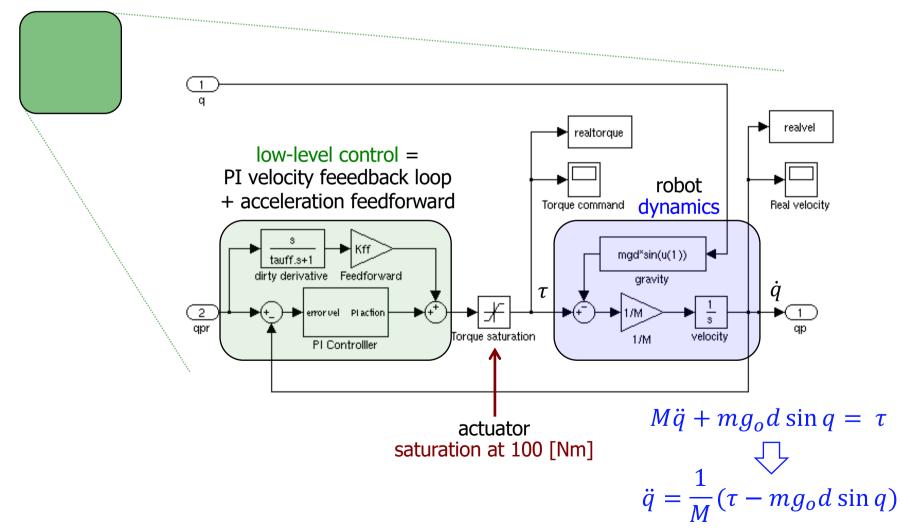
differences between the ideal and real case

Simulink scheme



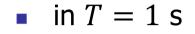
A more detailed example

robot with low-level control



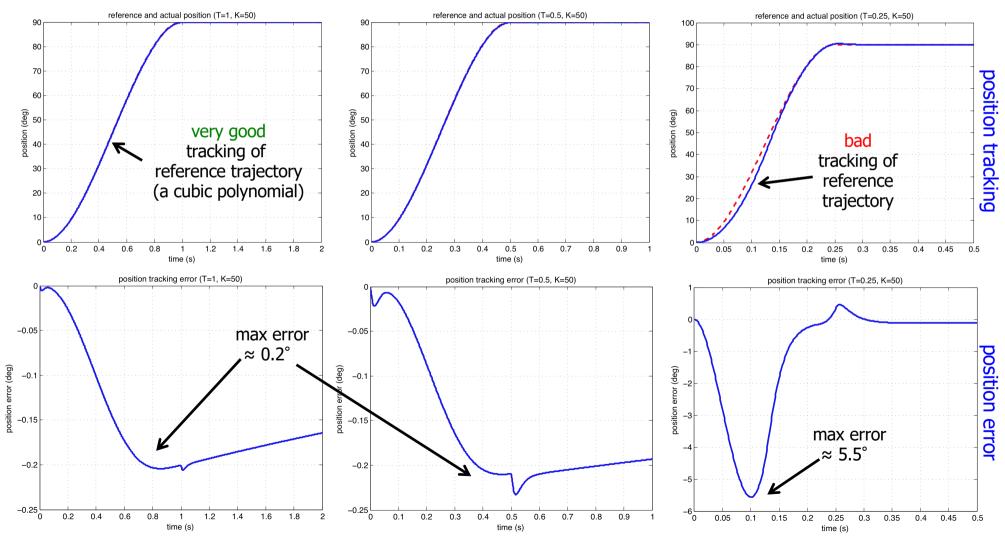
Simulation results

rest-to-rest motion from downward to horizontal position



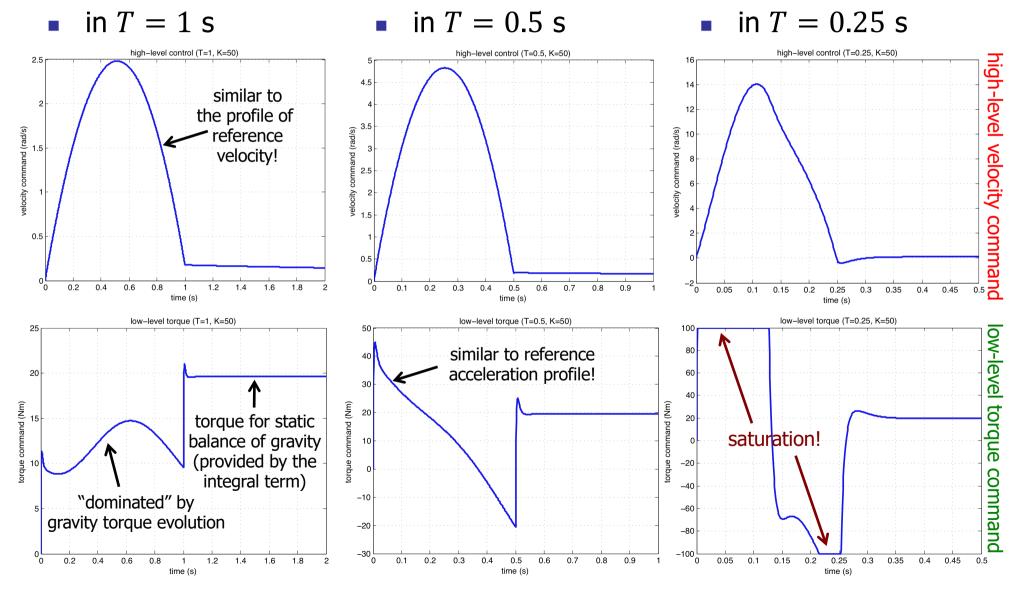
■ in *T* = 0.5 s

■ in *T* = 0,25 s



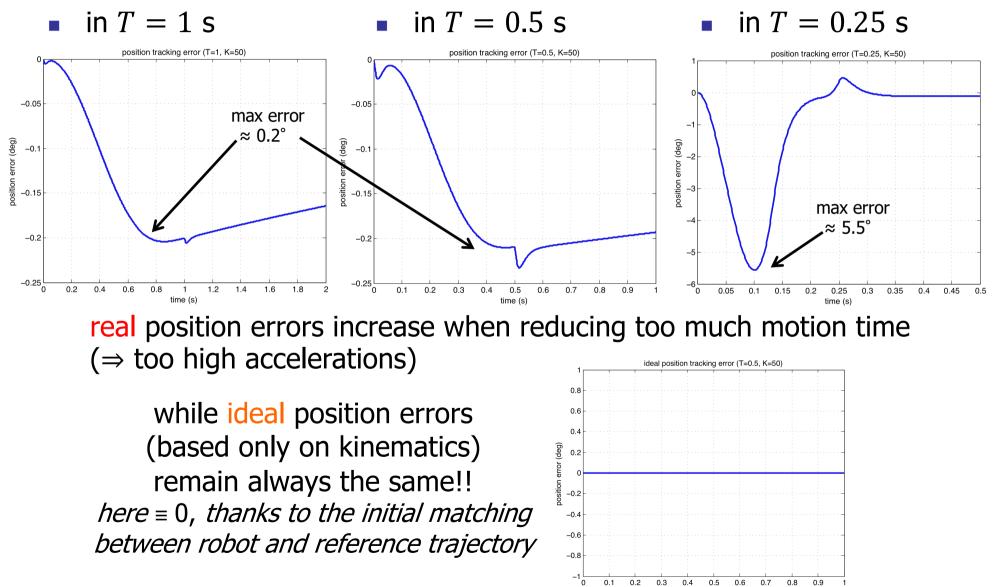
Simulation results

rest-to-rest motion from downward to horizontal position



Simulation results

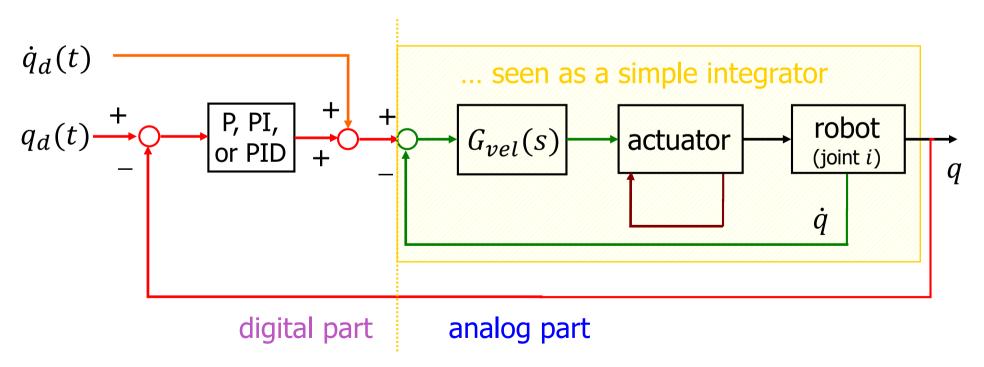
rest-to-rest motion from downward to horizontal position

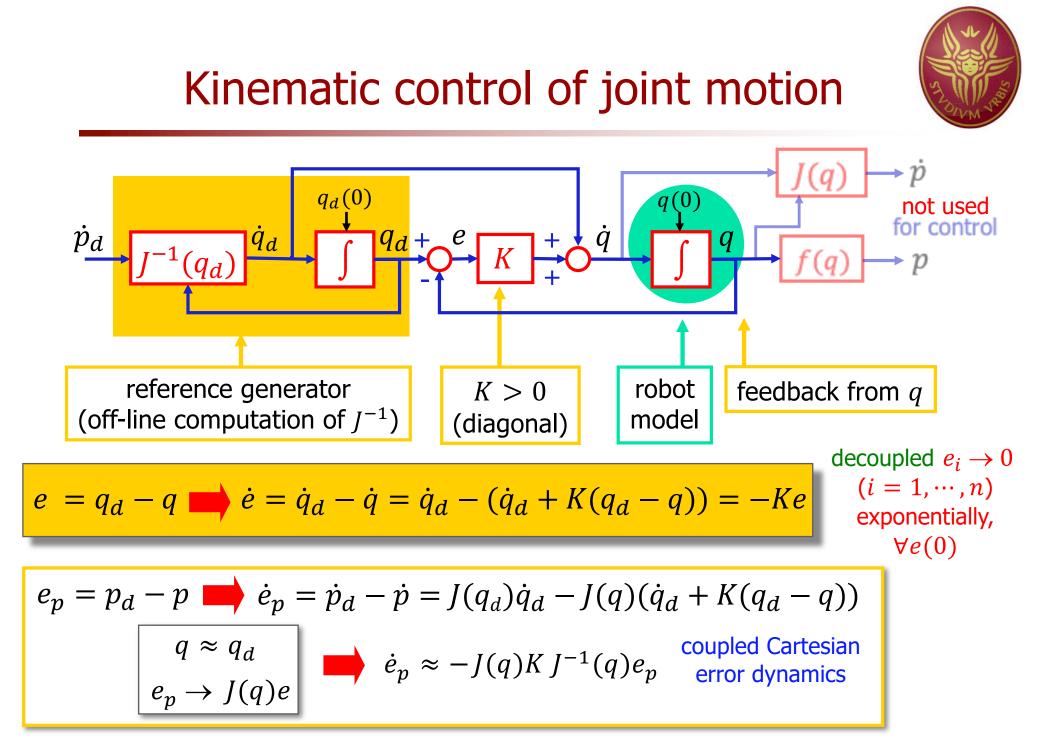


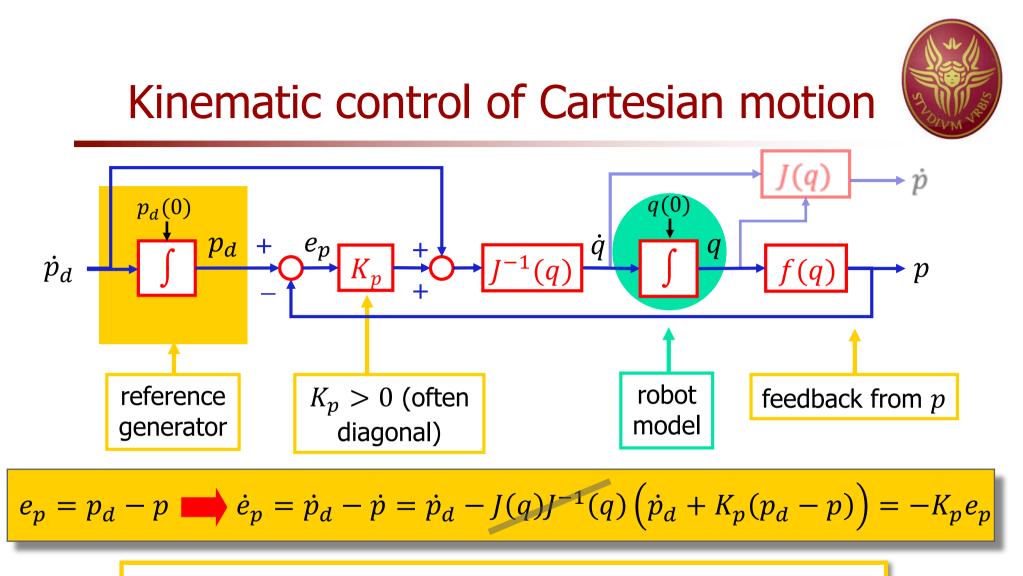
time (s)

Control loops in industrial robots

- analog loop of large bandwidth on motor current (\propto torque)
- analog loop on velocity $(G_{vel}(s), typically a PI)$
- digital feedback loop on position, with velocity feedforward
- this scheme is local to each joint (decentralized control)







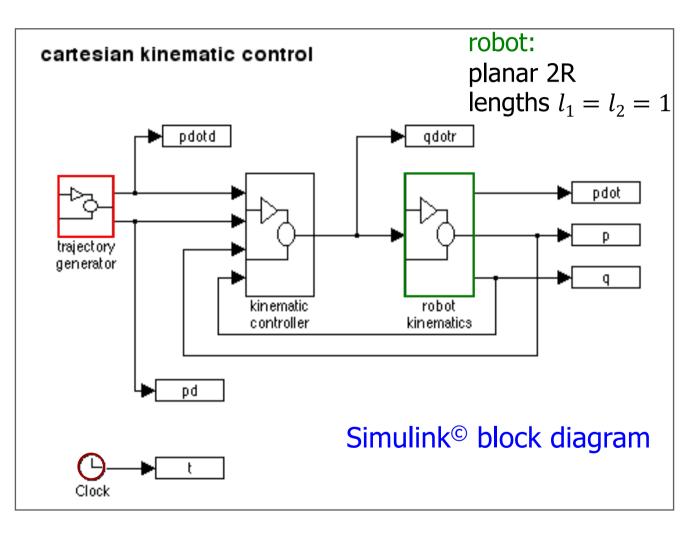
- decoupled $e_{p,i} \rightarrow 0$ ($i = 1, \dots, m$) exponentially, $\forall e_p(0)$
- needs on-line computation of the inverse^(*) $J^{-1}(q)$
- real-time + singularities issues

 $^{(\ast)}$ or pseudoinverse if m < n

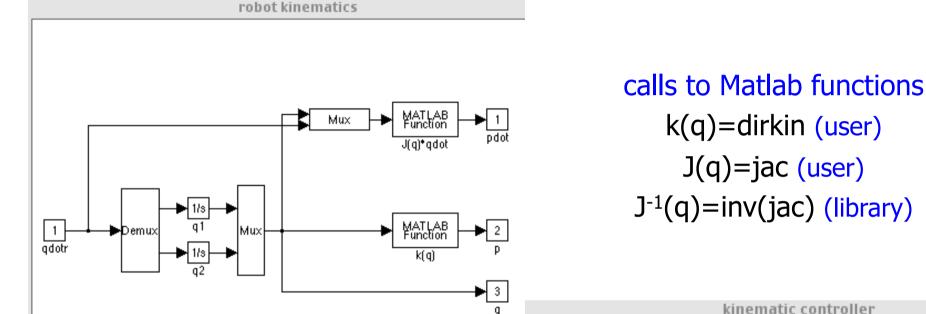
Simulation features of kinematic control laws

desired reference trajectory: two types of tasks 1. straight line 2. circular path both with constant speed

numerical integration method: fixed step Runge-Kutta at 1 msec

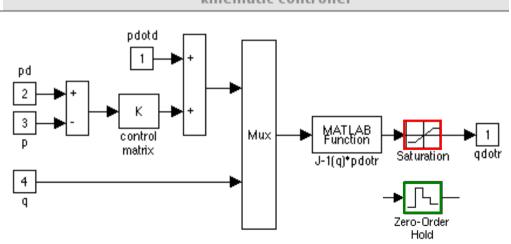


Simulink blocks



- a saturation (for task 1.) or a sample and hold (for task 2.) added on joint velocity commands
- system initialization of kinematics data, desired trajectory, initial state, and control parameters (in init.m file)

never put "numbers" inside the blocks !

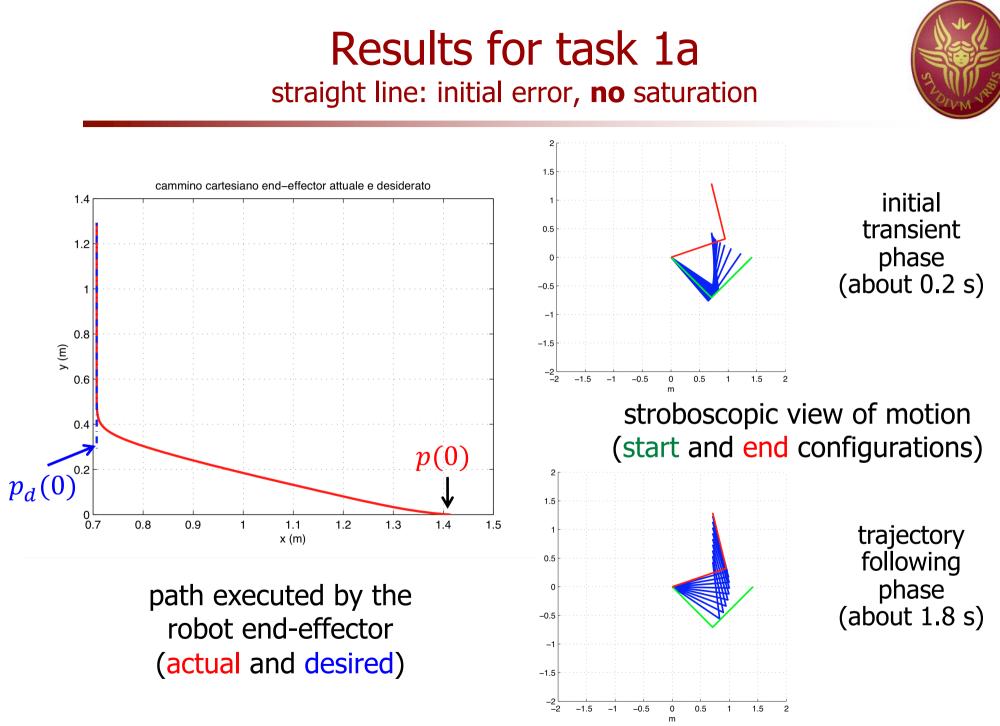


Matlab functions

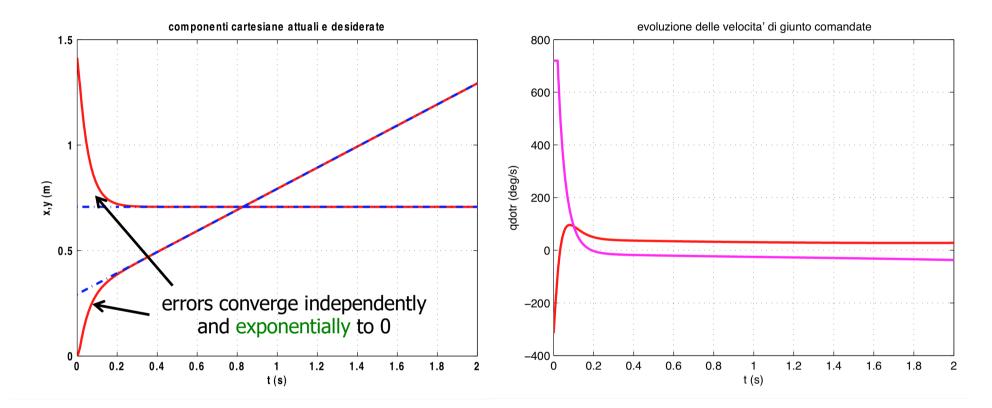
		init.m	
dirkin.m		ontrollo cartesiano di un robot 2R nitialization	
function [p] = dirkin(q)		ar all; close all bal l1 l2	
global l1 l2	% l	unghezze bracci robot 2R	
	11=1	1; 12=1;	
<pre>px=l1*cos(q(1))+l2*cos(q(1)+q(2)); px=l1*cos(q(1))+l2*cos(q(1)+q(2));</pre>	% vi	elocità cartesiana desiderata (costante)	
py=l1*sin(q(1))+l2*sin(q(1)+q(2));	vxd=	=0; vyd=0.5;	
	% t	empo totale	
	T=2	;	init.m
	% с	onfigurazione desiderata iniziale	script
jac.m	q1d	0=-45*pi/180; q2d0=135*pi/180;	(for task 1.)
function [J] = jac(q)		=dirkin([q1d0 q2d0]'); 0=pd0(1);	
global l1 l2	% с	onfigurazione attuale del robot	
<u></u>	q10=	=-45*pi/180; q20=90*pi/180;	
J(1,1)=-l1*sin(q(1))-l2*sin(q(1)+q(2))	p0=0	dirkin([q10 q20]');	
J(1,2)=-l2*sin(q(1)+q(2));	% m	atrice dei guadagni cartesiani	
J(2,1)=l1*cos(q(1))+l2*cos(q(1)+q(2)); J(2,2)=l2*cos(q(1)+q(2));		K=[20 20]; K=diag(K);	
		%saturazioni di velocità ai giunti (input in deg/sec, convertito in rad/sec)	
	vmax	x1=120*pi/180; vmax2=90*pi/180;	

- straight line path with constant velocity
 - $x_d(0) = 0.7 \text{ m}, y_d(0) = 0.3 \text{ m}; v_{d,y} = 0.5 \text{ m/s}, \text{ for } T = 2 \text{ s}$
- Iarge initial error on end-effector position
 - $q(0) = (-45^{\circ}, 90^{\circ}) \Rightarrow e_p(0) = (-0.7, 0.3) \text{ m}$
- Cartesian control gains
 - $K_p = \text{diag}\{20, 20\}$
- (a) without joint velocity command saturation
- (b) with saturation ...

• $v_{max,1} = 120^{\circ}/\text{s}$, $v_{max,2} = 90^{\circ}/\text{s}$

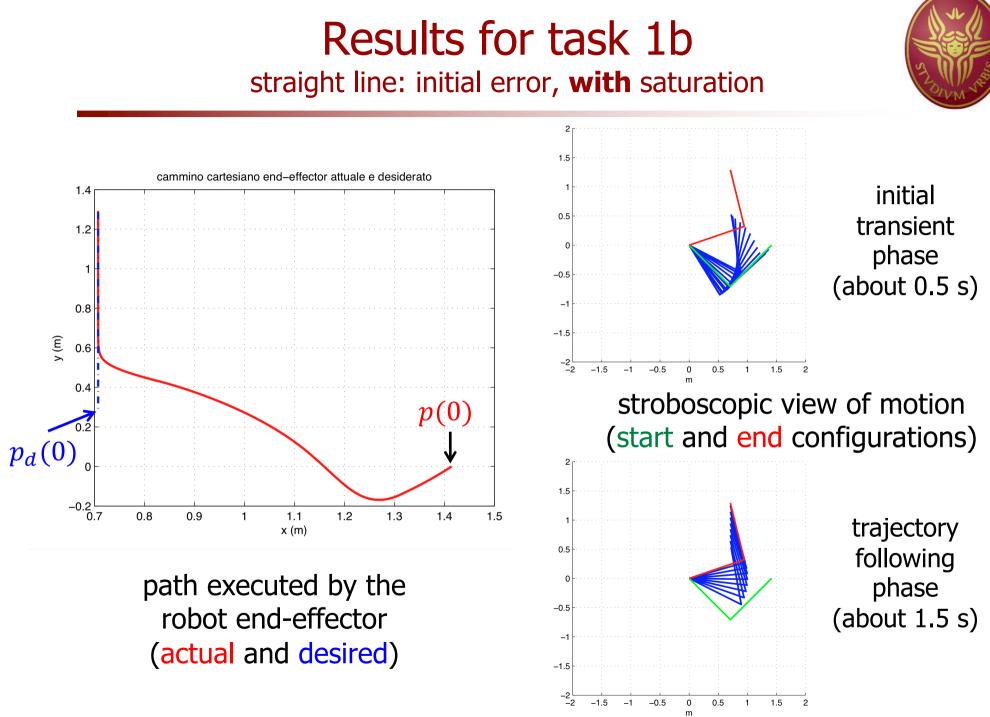


Results for task 1a (cont) straight line: initial error, **no** saturation

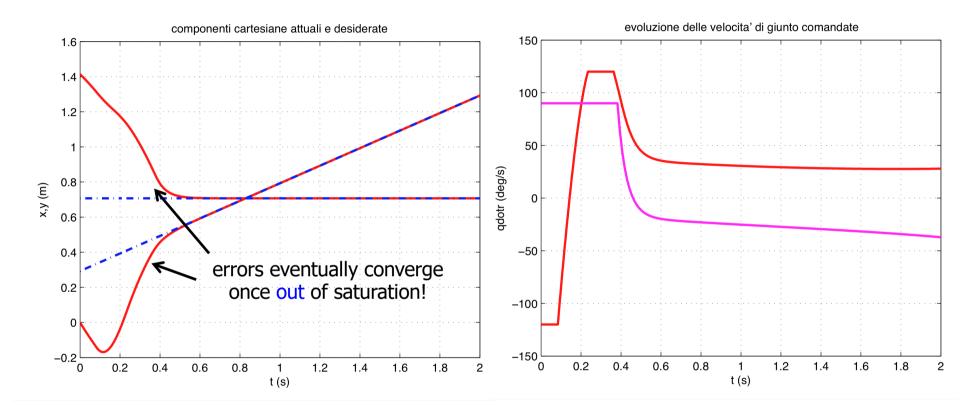


 p_x , p_y actual and desired

control inputs \dot{q}_{r1} , \dot{q}_{r2}



Results for task 1b (cont) straight line: initial error, with saturation

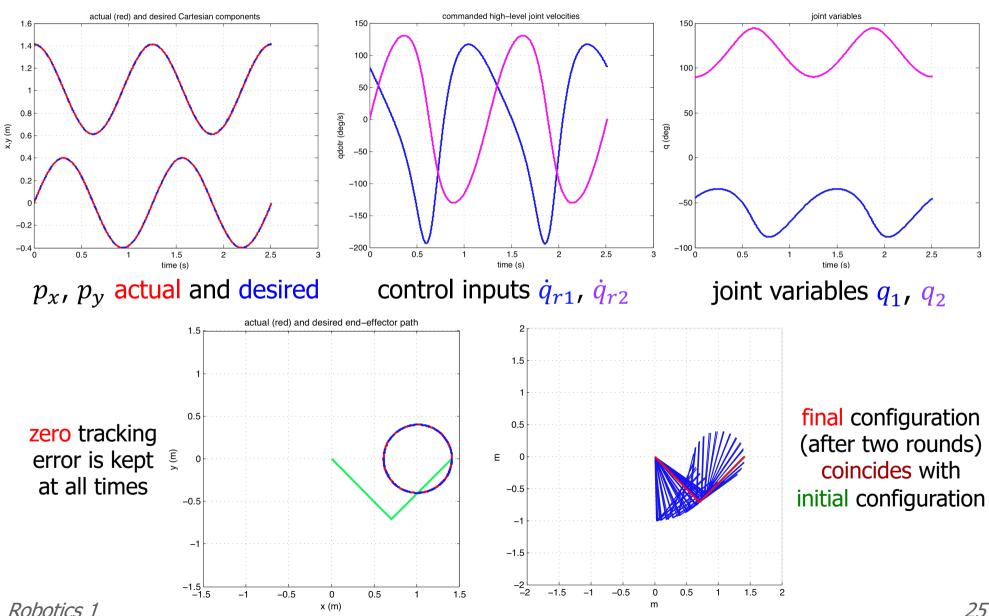


 p_x , p_y actual and desired

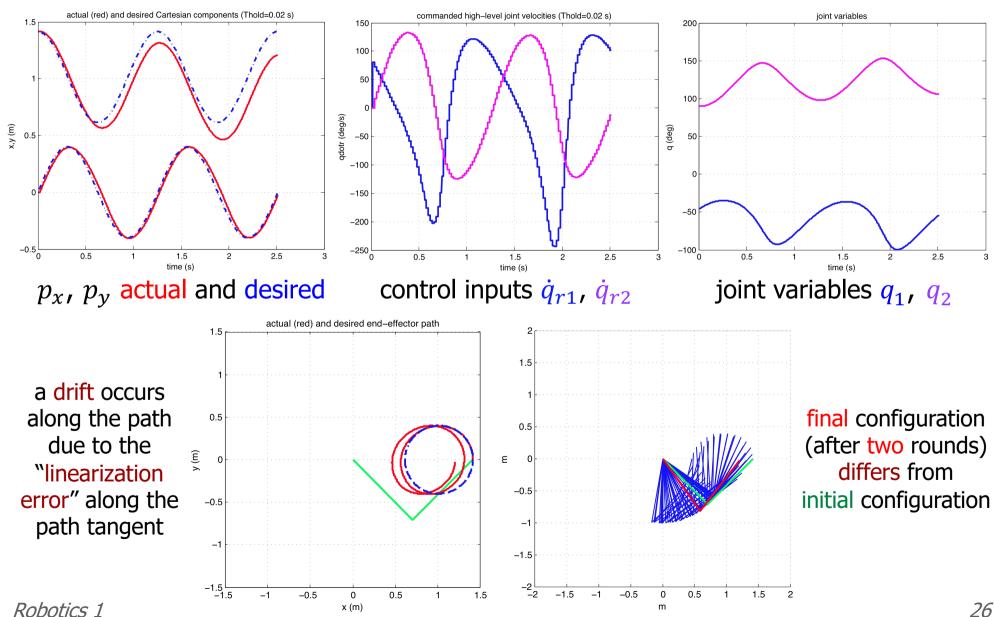
control inputs \dot{q}_{r1} , \dot{q}_{r2} (saturated at $\pm v_{max,1}$, $\pm v_{max,2}$)

- circular path with constant velocity
 - centered at (1.014, 0) with radius R = 0.4 m;
 - v = 2 m/s, performing two rounds $\Rightarrow T \approx 2.5$ s
- zero initial error on Cartesian position ("match")
 - $q(0) = (-45^{\circ}, 90^{\circ}) \Rightarrow e_p(0) = 0$
- (a) ideal continuous case (1 kHz), even without feedback
- (b) with sample and hold (ZOH) of $T_{hold} = 0.02$ s (joint velocity command updated at 50 Hz), but without feedback
- (c) as before, but with Cartesian feedback using the gains
 K_p = diag{25, 25}

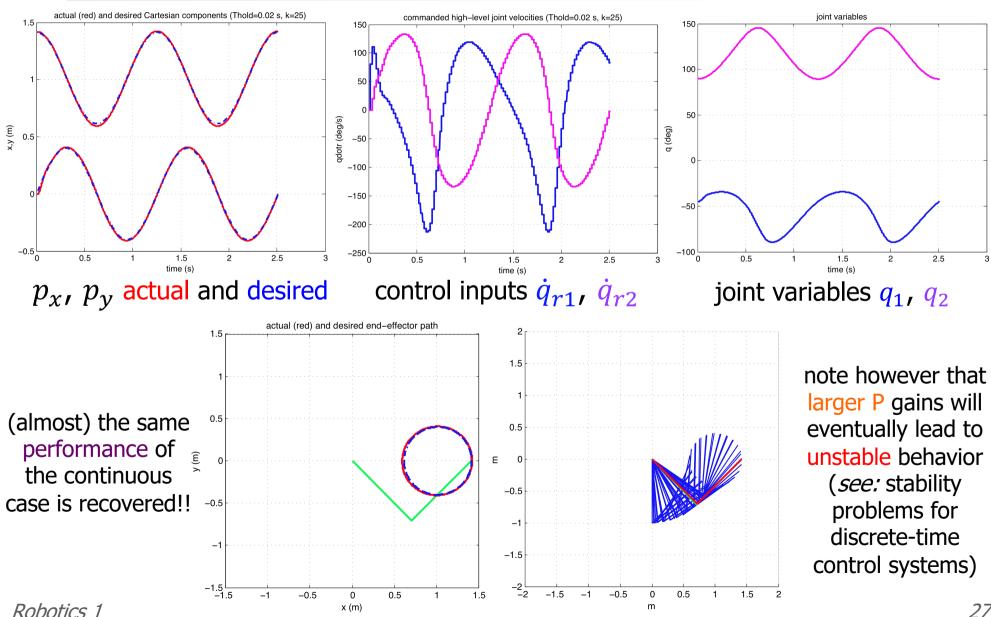
Results for task 2a circular path: no initial error, continuous control (ideal case)



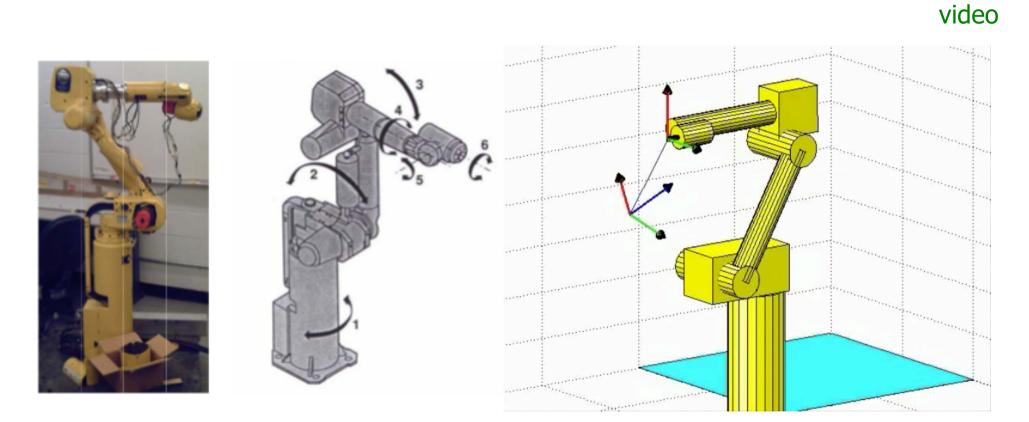
Results for task 2b circular path: no initial error, **ZOH** at 50 Hz, **no** feedback



Results for task 2c circular path: no initial error, **ZOH** at 50 Hz, with feedback



3D simulation



kinematic control of Cartesian motion of Fanuc 6R (Arc Mate S-5) robot simulation and visualization in Matlab

video

Kinematic control of KUKA LWR

A DIAM VIEW

Discrete-Time Redundancy Resolution at the Velocity Level with Acceleration/Torque Optimization Properties

Fabrizio Flacco Alessandro De luca

Robotics Lab, DIAG Sapienza University or Rome

September 2014

kinematic control of Cartesian motion with redundancy exploitation velocity vs. acceleration level