
Robotics 1

Trajectory planning
in Cartesian space

Prof. Alessandro De Luca

Robotics 1 1

Trajectories in Cartesian space

n in general, the trajectory planning methods proposed in the
joint space can be applied also in the Cartesian space
n consider independently each component of the task vector (i.e., a

position or an angle of a minimal representation of orientation)
n however, when planning a trajectory for the three

orientation angles, the resulting global motion cannot be
intuitively visualized in advance

n if possible, we still prefer to plan Cartesian trajectories
separately for position and orientation

n the number of knots to be interpolated in the Cartesian
space is typically low (e.g., 2 knots for a PTP motion, 3 if a
“via point” is added) ⇒ use simple interpolating paths, such
as straight lines, arc of circles, …

Robotics 1 2

Planning a linear Cartesian path
(position only)

𝑝#

𝑝$

GIVEN
𝑝#, 𝑝$ ∈ ℝ'; 𝑣#, 𝑣$ ∈ ℝ (typically = 0);

bounds 𝑣)*+, 𝑎)*+ ∈ ℝ-

path parameterization
𝑝(𝑠) = 𝑝# + 𝑠(𝑝$ − 𝑝#)

𝑠 ∈ [0,1]

𝐿

𝑝̇ 𝑠 =
𝑑𝑝
𝑑𝑠 𝑠̇ = 𝑝$ − 𝑝# 𝑠̇

=
𝑝$ − 𝑝#
𝐿 𝜎̇

𝑝̈ 𝑠 =
𝑑>𝑝
𝑑𝑠> 𝑠̇

> +
𝑑𝑝
𝑑𝑠 𝑠̈ = 𝑝$ − 𝑝# 𝑠̈

=
𝑝$ − 𝑝#
𝐿 𝜎̈

unit vector of directional
cosines of the line

𝑝$ − 𝑝#
𝑝$ − 𝑝#

=

𝐿 = 𝑝$ − 𝑝#

Robotics 1 3

may also use 𝑠 = 𝜎/𝐿, where 𝜎 ∈ [0, 𝐿] is the
arc length (gives the current length of the path)

Timing law with trapezoidal speed - 1

𝜎̇(𝑡)

𝜎̈(𝑡)

𝜎(𝑡)

.
𝑇B 𝑇 − 𝑇B 𝑇

𝑡

𝑡

𝑡

bang-coast-bang

𝑎)*+

𝑣)*+

𝐿

given*: 𝐿, 𝑣)*+, 𝑎)*+
find: 𝑇B, 𝑇

𝑣)*+ (𝑇 − 𝑇B) = 𝐿 = area of the
speed profile

a “coast” phase exists iff 𝐿 > 𝑣)*+> /𝑎)*+
* = other input data combinations are possible (see textbook)

Robotics 1 4

𝑇B =
𝑣)*+
𝑎)*+

𝑇 =
𝐿𝑎)*+ + 𝑣)*+>

𝑎)*+𝑣)*+

Timing law with trapezoidal speed - 2

𝜎 𝑡 =

*DEFGH

> , 𝑡 ∈ [0, 𝑇B]

𝑣)*+𝑡 −
IDEFH

> *DEF
, 𝑡 ∈ [𝑇B, 𝑇 − 𝑇B]

−*DEF GJK H

> + 𝑣)*+𝑇 −
IDEF
H

*DEF
,

𝑡 ∈ [𝑇 − 𝑇B, 𝑇]

can be used also in the joint space!

Robotics 1 5

discontinuous acceleration profile!
if needed, use for instance a

a rest-to-rest quintic polynomial timing

𝜎̇(𝑡)

𝜎̈(𝑡)

𝜎(𝑡)

.
𝑇B 𝑇 − 𝑇B 𝑇

𝑡

𝑡

𝑡

𝑎)*+

𝑣)*+

𝐿

Concatenation of linear paths

𝐴

𝐶

𝐵 =“via point”

𝐴′
𝐶′

unit vectors of
directional cosines

given: constant speeds 𝑣P on linear path 𝐴𝐵
𝑣> on linear path 𝐵𝐶

desired transition: with constant acceleration for a time D𝑇

𝑥

𝑧

𝑦

𝑡 ∈ [0, ∆𝑇] (transition starts at 𝑡 = 0)

over-fly

note: during over-fly, the path remains always in the plane specified
by the two lines intersecting at 𝐵 (in essence, it is a planar problem)

no need to pass
(and stop!)
there

Robotics 1 6

𝐵 − 𝐴
𝐵 − 𝐴 = 𝐾VW

𝐶 − 𝐵
𝐶 − 𝐵 = 𝐾WX

𝑝 𝑡 =
𝑥(𝑡)
𝑦(𝑡)
𝑧(𝑡)

Time profiles on components

𝑡

𝑡

𝑡

𝑡

𝑡

𝑡

𝑥̈(𝑡) 𝑥̇(𝑡)

𝑦̇(𝑡)

𝑧̇(𝑡)

𝑦̈(𝑡)

𝑣P𝐾VW,Y

D𝑇

D𝑇

Robotics 1 7

𝑧̈(𝑡)

𝑣P𝐾VW,Z

𝑣P𝐾VW,+

𝑣>𝐾WX,Y

𝑣>𝐾WX,Z

𝑣>𝐾WX,+

Timing law during transition

𝑝̈(𝑡) = (𝑣>𝐾WX − 𝑣P𝐾VW)/D𝑇 𝑝̇ 𝑡 = 𝑣P𝐾VW + 𝑣>𝐾WX − 𝑣P𝐾VW 𝑡/D𝑇

𝑝 𝑡 = 𝐴[+ 𝑣P𝐾VW𝑡 + 𝑣>𝐾WX − 𝑣P𝐾VW 𝑡>/(2D𝑇)

ó
õ

ó
õ thus, we obtain a

parabolic blending
(see textbook

for this same approach
in the joint space)

Robotics 1 8

𝐴

𝐶

𝐵

𝐴′
𝐶′

unit vectors of
directional cosines

𝑥

𝑧

𝑦

over-fly

𝐵 − 𝐴
𝐵 − 𝐴 = 𝐾VW

𝐶 − 𝐵
𝐶 − 𝐵 = 𝐾WX

𝑡 ∈ [0, ∆𝑇] (transition starts at 𝑡 = 0)𝑝 𝑡 =
𝑥(𝑡)
𝑦(𝑡)
𝑧(𝑡)

Solution
(various options)

𝐴

𝐵

𝐶
𝐴′

𝐶′
𝐵 − 𝐴′ = 𝑑1𝐾𝐴𝐵
𝐶′ − 𝐵 = 𝑑2𝐾𝐵𝐶

𝑑1
𝑑2

D𝑇 = 2𝑑1/𝑣1 𝑑2 = 𝑑1𝑣2/𝑣1by choosing, e.g., 𝑑P
(namely 𝐴′)

1

−𝐵 +𝐴′ + (∆𝑇/2) (𝑣1𝐾𝐴𝐵 + 𝑣2𝐾𝐵𝐶) = 𝐶′ − 𝐵

𝑝(∆𝑇) = 𝐴′ + (D𝑇/2)(𝑣1 𝐾𝐴𝐵 + 𝑣2𝐾𝐵𝐶) = 𝐶′

𝑑1𝐾𝐴𝐵 + 𝑑2𝐾𝐵𝐶 = (D𝑇/2)(𝑣1𝐾𝐴𝐵 + 𝑣2𝐾𝐵𝐶)

𝑑1 = 𝑣1D𝑇/2 𝑑2 = 𝑣2D𝑇/2

1

Robotics 1 9

𝑝 𝑡 = 𝐴[+ 𝑣P𝐾VW𝑡 + 𝑣>𝐾WX − 𝑣P𝐾VW 𝑡>/(2D𝑇)

A numerical example

∆𝑇 = 4

𝐴

𝐵 𝐶

𝑑P = 3

𝐴

𝐵 𝐶

𝐴′

Robotics 1 10

n transition: 𝐴 = (3,3) to 𝐶 = (8,9) via 𝐵 = (1,9), with speed from 𝑣P = 1 to 𝑣> = 2
n exploiting two options for solution (resulting in different paths!)

n assign transition time: ∆𝑇 = 4 (we re-center it here for 𝑡 ∈ [−∆𝑇/2, ∆𝑇/2])
n assign distance from 𝐵 for departing: 𝑑P = 3 (assign 𝑑> for landing is handled similarly)

A numerical example (cont’d)

actually: similar velocity/acceleration profiles, but with a different time scale!!

first option: ∆𝑇 = 4 (resulting in 𝑑P = 2, 𝑑> = 4)

second option: 𝑑P = 3 (resulting in ∆𝑇 = 6, 𝑑> = 6)

Robotics 1 11

0.3860

-0.1581

0.5791

-0.2372

⇒ 𝑝̈ = 0.39 m/s2

⇒ 𝑝̈ = 0.17 m/s2

Alternative solution
(imposing acceleration)

𝐴

𝐵

𝐶𝐴’
𝐶’

𝑣P = 𝑣> = 𝑣)*+ (for simplicity)

𝑝̈(𝑡) = 𝑎)*+

D𝑇 = ⁄𝑣)*+ 𝑎)*+ 𝐾WX − 𝐾VW

= (⁄𝑣)*+ 𝑎)*+) 2(1 − 𝐾WX,+𝐾VW,+ − 𝐾WX,Z𝐾VW,Z − 𝐾WX,Y𝐾VW,Y)

then, 𝑑P = 𝑑> = 𝑣)*+ D𝑇/2

Robotics 1 12

𝑝̈(𝑡) = (𝑣>𝐾WX − 𝑣P𝐾VW)/D𝑇

Application example
plan a Cartesian trajectory from 𝐴 to 𝐶 (rest-to-rest)

that avoids the obstacle 𝑂, with 𝑎 ≤ 𝑎)*+ and 𝑣 ≤ 𝑣)*+

on 𝐴𝐴′® 𝑎)*+; on 𝐴′𝐵 and 𝐵𝐶[® 𝑣)*+; on 𝐶′𝐶®− 𝑎)*+;
+ over-fly between 𝐴′′ e 𝐶′′ (e.g., with 𝑎)*+ in norm)

𝐴

𝐵

𝐶

𝐴′′
𝐶′′

𝑂𝐴′

𝐶′

add a via point 𝐵
“sufficiently far” from 𝑂

Robotics 1 13

Other Cartesian paths
n circular path through 3 points in 3D (often built-in feature)
n linear path for the end-effector with constant orientation
n in robots with spherical wrist: planning may be decomposed into a path for

wrist center and one for E-E orientation, with a common timing law
n though more complex in general, it is often convenient to parameterize the

Cartesian geometric path 𝑝(𝑠) in terms of its arc length (e.g., with 𝑠 = 𝑅𝜃
for circular paths), so that the following hold:
n velocity 𝑝̇ = ⁄𝑑𝑝 𝑑𝑡 = ⁄𝑑𝑝 𝑑𝑠 ⁄𝑑𝑠 𝑑𝑡 = 𝑝[𝑠̇

n 𝑝[= unit vector (k = 1) tangent to the path ⇒ tangent direction 𝑡(𝑠)
n 𝑠̇ ≥ 0 is the absolute value of the tangential velocity (= speed)

n acceleration 𝑝̈ = ⁄𝑑>𝑝 𝑑𝑠> ⁄𝑑𝑠 𝑑𝑡 > + ⁄𝑑𝑝 𝑑𝑠 ⁄𝑑>𝑠 𝑑𝑡> = 𝑝[[𝑠̇> + 𝑝[𝑠̈
n 𝑝[[= curvature 𝜅(𝑠) (= 1/radius of curvature)
n 𝑝[[𝑠̇> = centripetal acceleration ⇒ normal direction 𝑛(𝑠) ^ to the path, on the

osculating plane; the binormal direction is 𝑏 𝑠 = 𝑡 𝑠 × 𝑛(𝑠)
n 𝑠̈ = scalar value (with any sign) of the tangential acceleration

Robotics 1 14

Definition of Frenet frame
n for a smooth and non-degenerate curve 𝑝(𝑠) ∈ ℝ', parameterized by 𝑠

(not necessarily its arc length), one can define a reference frame as shown

𝑠

𝑡(𝑠)𝑛(𝑠)

𝑏(𝑠)

𝑝[= 𝑑𝑝/𝑑𝑠 𝑝[[= 𝑑>𝑝/𝑑𝑠>
derivatives w.r.t. the parameter 𝑠

𝑡(𝑠) = ⁄𝑝[(𝑠) 𝑝[(𝑠)

𝑛(𝑠) = ⁄𝑡[(𝑠) 𝑡[(𝑠)

𝑏(𝑠) = 𝑡(𝑠) × 𝑛(𝑠)

unit tangent vector

unit normal vector (∈ osculating plane)

unit binormal vector

n general expressions of path curvature and torsion (at a path point 𝑝(𝑠))
𝜅(𝑠) = ⁄𝑝[𝑠 × 𝑝[[(𝑠) 𝑝[(𝑠) '

𝜏(𝑠) = ⁄𝑝[𝑠 k 𝑝[[𝑠 × 𝑝[[[(𝑠) 𝑝[𝑠 × 𝑝[[(𝑠)) >

Robotics 1 15

= 𝑝[(𝑠)× 𝑝[[(𝑠)×𝑝[(𝑠) / 𝑝[(𝑠) k 𝑝[[(𝑠)×𝑝[(𝑠)

= 𝑝[(𝑠)×𝑝[[(𝑠)/ 𝑝[(𝑠)×𝑝[[(𝑠)

Examples of paths with Frenet frame

Robotics 1 16

By Gonfer https://commons.wikimedia.org/w/index.php?curid=18558097

Viviani curve
= intersection of a sphere with a tangent cylinder 𝑥 = 𝑟 cos>𝑠

𝑦 = 𝑟 cos 𝑠 sin 𝑠
𝑧 = 𝑟 sin 𝑠
𝑠 ∈ −𝜋/2, 𝜋/2

𝑥 = 𝑟 cos>𝑠
𝑦 = −𝑟 cos 𝑠 sin 𝑠
𝑧 = −𝑟 sin 𝑠

Helix curve (right handed)

𝑥 = 𝑟 cos 𝑠
𝑦 = 𝑟 sin 𝑠
𝑧 = ℎ 𝑠

𝑠 ∈ 0,2𝜋

By Goldencako - https://commons.wikimedia.org/w/index.php?curid=7519084

𝜅 =
𝑟

𝑟> + ℎ>

𝜏 =
ℎ

𝑟> + ℎ>

a) define the Frenet frame 𝑡(𝑠), 𝑛(𝑠), 𝑏(𝑠)
b) compute the curvature 𝜅(𝑠) and the torsion 𝜏(𝑠)

By Ag2gaeh - https://commons.wikimedia.org/w/index.php?curid=81698760

Exercise

𝑝 𝑠 =
6𝑠 + 2
5𝑠>
−8𝑠

,given the path 𝑠 ∈ 0,1

Optimal trajectories
n for Cartesian robots (e.g., PPP joints)

1. the straight line joining two position points in the Cartesian space is one path
that can be executed in minimum time under velocity/acceleration constraints
(but other such paths exist, if (joint) motion is not coordinated)

2. the optimal timing law is of the bang-coast-bang type in acceleration (in this
special case, also in terms of motor torques)

n for articulated robots (with at least one R joint)
n 1. e 2. are no longer true in general in the Cartesian space, but time-optimality

still holds in the joint space when assuming bounds on joint velocity/acceleration
n straight line paths in the joint space do not correspond to straight line paths

in the Cartesian space, and vice-versa
n bounds on joint acceleration are conservative (though kinematically tractable)

w.r.t. actual bounds on motor torques, which involve the full robot dynamics
n when changing robot configuration/state, different torque values are needed

to impose the same joint accelerations …

Robotics 1 17

Planning orientation trajectories

n using minimal representations of orientation (e.g., ZXZ Euler angles 𝜙, 𝜃, 𝜓),
we can plan a trajectory for each component independently
n e.g., a linear path in space 𝜙, 𝜃, 𝜓, with a cubic timing law

Þ but poor prediction/understanding of the resulting intermediate orientations
n alternative method based on the axis/angle representation

n determine the (neutral) axis 𝑟 and the angle 𝜃VW: 𝑅(𝑟, 𝜃VW) = 𝑅VK𝑅W (rotation
matrix changing the orientation from 𝐴 to 𝐵 Þ inverse axis-angle problem)

n plan a timing law 𝜃(𝑡) for the (scalar) angle interpolating 𝜃 = 0 with 𝜃 = 𝜃VW
in time 𝑇 (with possible constraints/boundary conditions on its time derivatives)

n "𝑡 ∈ [0, 𝑇], 𝑅V𝑅(𝑟, 𝜃(𝑡)) specifies the actual end-effector orientation at time 𝑡

𝐴 𝐵
𝑥V

𝑦V

𝑧V 𝑧W

𝑦W
𝑥W

Robotics 1 18

A complete position/orientation
Cartesian trajectory

Robotics 1 19

§ initial given configuration

§ initial end-effector position

§ initial orientation

𝑥(0)

𝑦(0)

linear path
for position

axis-angle method
for orientation

𝑧w

𝑦𝑤

𝑞 0 = 0 𝜋/2 0 0 0 0 𝑇

𝑝 0 = 0.540 0 1.515 𝑇

𝑅 0 =
0 0 1
0 −1 0
1 0 0

𝑧𝑤

𝑦𝑤

§ final end-effector position

§ final orientation

§ the final configuration is NOT specified a priori

𝑦(𝑇)

𝑧(𝑇)𝑝 𝑇 = 0 0.540 1.515 𝑇

𝑅 𝑇 =
1 0 0
0 0 1
0 −1 0

Axis-angle orientation trajectory

Robotics 1 20

coordinated
Cartesian motion

with bounds
video

triangular
speed profile 𝑠̇(𝑡)

with minimum
time 𝑇 = 5.52 s

(imposed by the bounds
on linear motion)

𝜔 = 𝑟𝜃̇ → 𝜔 = 𝜃̇

𝜔̇ = 𝑟𝜃̈ → 𝜔̇ = 𝜃̈

𝐿 = 𝑝����� − 𝑝����
= 0.763 [m]

𝑣)*+ = 0.4 [⁄m s]
𝑎)*+ = 0.1 [⁄m s2]
𝜔)*+ = 𝜋/4 [⁄rad s]
𝜔̇)*+ = 𝜋/8 [⁄rad s2]

𝑝 𝑠 = 𝑝���� + 𝑠 𝑝����� − 𝑝����
= 0.540 0 1.515 K + 𝑠 −0.540 0.540 0 K, 𝑠 ∈ 0,1

𝑅���� =
0 0 1
0 −1 0
1 0 0

= 𝑅����
K

𝑅����� =
1 0 0
0 0 1
0 −1 0

𝑅����K 𝑅����� =
0 −1 0
0 0 −1
1 0 0

= 𝑅𝑜𝑡 𝑟, 𝜃#�

𝑟 =
1
3

1
−1
1

, 𝜃�� =
2𝜋
3

rad (= 120°)

𝑅 𝑠 = 𝑅����𝑅𝑜𝑡(𝑟, 𝜃 𝑠)

𝜃 𝑠 = 𝑠𝜃�� , 𝑠 ∈ 0,1

𝒔 = 𝒔 𝒕 , 𝒕 ∈ [𝟎, 𝑻]

Axis-angle orientation trajectory

Robotics 1 21

actual
joint

motion

𝑧 =
𝑦 =
𝑥 =

planned
motion of
Cartesian
position

and velocity

§ the robot joint velocity was commanded
by inversion of the geometric Jacobian

§ a user program, via KUKA RSI interface
at 𝑇� = 12 ms sampling time (two-way
communication)

§ robot motion execution is ≈ what was
planned, but only thanks to an external
kinematic control loop (at task level)

triangular
profile for

linear speed
𝑇 = 5.52 s

joint 2

𝑇 = 5.52𝑇 = 5.52

𝑇 = 5.52

Comparison of orientation trajectories
Euler angles vs. axis-angle method

Robotics 1 22

§ final end-effector position

§ final orientation

§ final Euler ZYZ angles

§ initial configuration

§ initial end-effector position

§ initial orientation

§ initial Euler ZYZ 𝛼, 𝛽, 𝛾 angles
𝑥(𝑇)

𝑧(𝑇) 𝑥(0)

𝑧(0)

zw

xw

𝑝(𝑇). 𝑝(0).

via a linear path (for position)

𝑞 0 = 0 𝜋/2 𝜋/2 0 −𝜋/2 0 𝑇

𝑝 0 = 0.115 0 1.720 𝑇

𝑅 0 =
0 0 1
0 −1 0
1 0 0

𝜙��� 0 = 0 𝜋/2 𝜋 K

𝑝 𝑇 = −0.172 0 1.720 𝑇

𝑅 𝑇 =
0 0 −1
0 −1 0
−1 0 0

𝜙��� 𝑇 = −𝜋 𝜋/2 0 K

Comparison of orientation trajectories
Euler angles vs. axis-angle method

Robotics 1 23
using ZYZ Euler angles using axis-angle method

zw

xwyw

video video

𝑅���� =
0 0 1
0 −1 0
1 0 0

⟹ 𝜙���,���� =
0
𝜋/2
𝜋

𝑅����� = −
0 0 1
0 1 0
1 0 0

⟹ 𝜙���,����� =
−𝜋
𝜋/2
0

𝑅����K 𝑅�����

=
−1 0 0
0 1 0
0 0 −1

⟹ 𝑟 =
0
−1
0

,

𝜃 = 𝜋

(singularity at
𝛽 = 0 avoided!)

Robotics 1 24

𝑧 =
𝑦 =
𝑥 =

planned
Cartesian

components
of position

and velocity

Comparison of orientation trajectories
Euler angles vs. axis-angle method

using ZYZ Euler angles using axis-angle method

𝑇 ≈ 6 s𝑇 ≈ 7.2 s

faster motion
time with the

axis-angle method
(imposed by the
previous bounds

on angular motion)

linear motion
only along the

x-direction

Robotics 1 25

𝜸 =
𝜷 =
𝜶 =

orientation
in terms of ZYZ

Euler angles

Comparison of orientation trajectories
Euler angles vs. axis-angle method

𝑇 ≈ 7.2 s

using ZYZ Euler angles using axis-angle method

𝑇 ≈ 6 s

actual
joint

motion

pre-planned
offline

by post-
processing
of planned
axis-angle

motion

𝜷 = 0 (singularity of
the ZYZ representation)

only three
joints move
(#2,#3,#5)

Uniform time scaling
n for a given path 𝑝(𝑠) (in joint or Cartesian space) and timing law 𝑠(𝜏)

(𝜏 = 𝑡/𝑇, 𝑇=“motion time”), we need to check if existing bounds 𝑣𝑚𝑎𝑥
on (joint) velocity and/or 𝑎𝑚𝑎𝑥 on (joint) acceleration are violated or not
n … unless such constraints have already been taken into account during the

trajectory planning, e.g., by using a bang-coast-bang acceleration timing law
n velocity scales linearly with motion time

n ⁄𝑑𝑝 𝑑𝑡 = ⁄𝑑𝑝 𝑑𝑠 ⁄𝑑𝑠 𝑑𝜏 k ⁄1 𝑇
n acceleration scales quadratically with motion time

n ⁄𝑑>𝑝 𝑑𝑡> = ⁄𝑑>𝑝 𝑑𝑠> ⁄𝑑𝑠 𝑑𝜏 > + ⁄𝑑𝑝 𝑑𝑠 ⁄𝑑>𝑠 𝑑𝜏> k ⁄1 𝑇>

n if motion is unfeasible, scale (increase) time 𝑇 → 𝑘𝑇 (𝑘 > 1), based on
the “most violated” constraint (max of the ratios |𝑣|/𝑣𝑚𝑎𝑥 and |𝑎|/𝑎𝑚𝑎𝑥)

n if motion is “too slow” w.r.t. the robot capabilities, decrease 𝑇 (𝑘 < 1)
n in both cases, after scaling, there will be (at least) one instant of saturation

(for at least one variable)
n no need to re-compute motion profiles from scratch!

Robotics 1 26

Numerical example - 1

n 2R planar robot with links of unitary length (1 [m])
n linear Cartesian path 𝑝 𝑠 : 𝑞¢ = (110°, 140°) ⇒ 𝑝¢ = 𝑓(𝑞¢) = (−0.684, 0)
⇒ 𝑝P = (0.816, 1.4) [m], with rest-to-rest cubic timing law 𝑠(𝑡), 𝑇 = 1 [s]

n joint space bounds: max (absolute) velocity 𝑣)*+,P = 2, 𝑣)*+,> = 2.5 [rad/s],
max (absolute) acceleration 𝑎)*+,P = 5, 𝑎)*+,> = 7 [rad/s2]

Robotics 1 27

𝑝0

𝑝1

𝑞0
path length 𝐿 = 2.0518 [m]

zero initial and
final speed

𝑇 = 1

non-zero
(symmetric)
acceleration

𝑠 = 𝑠(𝑡)

𝑠̇)*+
≈ 3 [m/s]

Numerical example - 2

n violation of both joint velocity and acceleration bounds with 𝑇 = 1 [s]
n max relative violation of joint velocities: 𝑘I¤¥ = 2.898 = max 1, ⁄𝑞̇P 𝑣)*+,P , ⁄𝑞̇> 𝑣)*+,>
n …. and of joint accelerations: 𝑘*�� = 6.2567 = max 1, ⁄𝑞̈P 𝑎)*+,P , ⁄𝑞̈> 𝑎)*+,>

n minimum uniform time scaling of Cartesian trajectory to recover feasibility
𝑘 = max 1, 𝑘I¤¥, 𝑘*�� = 2.898 ⇒ 𝑇B�*¥¤§ = 𝑘𝑇 = 2.898 > 𝑇

Robotics 1 28

= joint 2= joint 1

𝑘𝑣𝑒𝑙

𝑘𝑎𝑐𝑐

Numerical example - 3

n scaled trajectory with 𝑇B�*¥¤§ = 2.898 [s]
n speed [acceleration] on path and joint velocities [accelerations] scale linearly [quadratically]

Robotics 1 29= joint 2= joint 1

at least 1 instant of saturation!

traced Cartesian path
and associated joint paths

remain the same!

scaled by 1/𝑘 = 1/2.898 scaled by
P
«H
= P

>.¬­¬ H = 0.1191

