Robotics 1

Trajectory planning in Cartesian space

Prof. Alessandro De Luca

Dipartimento di Ingegneria Informatica
automatica e Gestionale Antonio Ruberti

Università di Roma

Trajectories in Cartesian space

- in general, the trajectory planning methods proposed in the joint space can be applied also in the Cartesian space
- consider independently each component of the task vector (i.e., a position or an angle of a minimal representation of orientation)
- however, when planning a trajectory for the three orientation angles, the resulting global motion cannot be intuitively visualized in advance
- if possible, we still prefer to plan Cartesian trajectories separately for position and orientation
- the number of knots to be interpolated in the Cartesian space is typically low (e.g., 2 knots for a PTP motion, 3 if a "via point" is added) \Rightarrow use simple interpolating paths, such as straight lines, arc of circles, ...

Planning a linear Cartesian path (position only)

$$
\begin{aligned}
\dot{p}(s)=\frac{d p}{d s} \dot{s} & =\left(p_{f}-p_{i}\right) \dot{s} \\
& =\frac{p_{f}-p_{i}}{L} \dot{\sigma}
\end{aligned}
$$

$$
\begin{aligned}
\ddot{p}(s)=\frac{d^{2} p}{d s^{2}} \dot{s}^{2}+\frac{d p}{d s} \ddot{s}= & \left(p_{f}-p_{i}\right) \ddot{s} \\
& =\frac{p_{f}-p_{i}}{L} \ddot{\sigma}
\end{aligned}
$$

Timing law with trapezoidal speed - 1

$$
\begin{aligned}
& \text { given*: } L, v_{\max }, a_{\max } \\
& \text { find: } T_{S}, T
\end{aligned}
$$

$$
v_{\max }\left(T-T_{S}\right)=L \lessdot \quad \begin{aligned}
& \text { = area of the } \\
& \text { speed profile }
\end{aligned}
$$

$$
T_{s}=\frac{v_{\max }}{a_{\max }}
$$

$$
T=\frac{L a_{\max }+v_{\max }^{2}}{a_{\max } v_{\max }}
$$

a "coast" phase exists iff $L>v_{\max }^{2} / a_{\max }$

> * = other input data combinations are possible (see textbook)

Timing law with trapezoidal speed - 2

$$
\sigma(t)=\left\{\begin{array}{cl}
\frac{a_{\max } t^{2}}{2}, & t \in\left[0, T_{S}\right] \\
v_{\max } t-\frac{v_{\max }^{2}}{2 a_{\max }}, & t \in\left[T_{S}, T-T_{S}\right] \\
-\frac{a_{\max }(t-T)^{2}}{2}+ & v_{\max } T-\frac{v_{\max }^{2}}{a_{\max }} \\
& t \in\left[T-T_{S}, T\right]
\end{array}\right.
$$

discontinuous acceleration profile! if needed, use for instance a a rest-to-rest quintic polynomial timing
can be used also in the joint space!

Concatenation of linear paths

note: during over-fly, the path remains always in the plane specified by the two lines intersecting at B (in essence, it is a planar problem)

Time profiles on components

Timing law during transition

$\ddot{p}(t)=\left(v_{2} K_{B C}-v_{1} K_{A B}\right) / \Delta T-\int \rightarrow \dot{p}(t)=v_{1} K_{A B}+\left(v_{2} K_{B C}-v_{1} K_{A B}\right) t / \Delta T$

$$
p(t)=A^{\prime}+v_{1} K_{A B} t+\left(v_{2} K_{B C}-v_{1} K_{A B}\right) t^{2} /(2 \Delta T)
$$

thus, we obtain a parabolic blending
(see textbook for this same approach in the joint space)

Solution

(various options)

$$
\begin{gathered}
\text { by choosing, e.g., } \\
\text { (namely } A^{\prime} \text {) }
\end{gathered} \longrightarrow \Delta T=2 d_{1} / v_{1} \longrightarrow d_{2}=d_{1} v_{2} / v_{1}
$$

A numerical example

- transition: $A=(3,3)$ to $C=(8,9)$ via $B=(1,9)$, with speed from $v_{1}=1$ to $v_{2}=2$
- exploiting two options for solution (resulting in different paths!)
- assign transition time: $\Delta T=4$ (we re-center it here for $t \in[-\Delta T / 2, \Delta T / 2]$)
- assign distance from B for departing: $d_{1}=3$ (assign d_{2} for landing is handled similarly)

$\Delta T=4$

$d_{1}=3$

A numerical example (cont'd)

first option: $\Delta T=4$ (resulting in $d_{1}=2, d_{2}=4$)

$$
\Rightarrow\|\ddot{p}\|=0.39 \mathrm{~m} / \mathrm{s}^{2}
$$

second option: $d_{1}=3$ (resulting in $\Delta T=6, d_{2}=6$)

actually: similar velocity/acceleration profiles, but with a different time scale!!

Alternative solution (imposing acceleration)

$$
\ddot{p}(t)=\left(v_{2} K_{B C}-v_{1} K_{A B}\right) / \Delta T
$$

$v_{1}=v_{2}=v_{\max }$ (for simplicity)
$\|\ddot{p}(t)\|=a_{\max }$

$$
\begin{aligned}
\Delta T & =\left(v_{\max } / a_{\max }\right)\left\|K_{B C}-K_{A B}\right\| \\
& =\left(v_{\max } / a_{\max }\right) \sqrt{2\left(1-K_{B C, x} K_{A B, x}-K_{B C, y} K_{A B, y}-K_{B C, z} K_{A B, z}\right)}
\end{aligned}
$$

then, $d_{1}=d_{2}=v_{\max } \Delta T / 2$

Application example

plan a Cartesian trajectory from A to C (rest-to-rest) that avoids the obstacle O, with $a \leq a_{\max }$ and $v \leq v_{\text {max }}$

$$
\begin{aligned}
& \text { on } \overline{A A^{\prime}} \rightarrow a_{\max } ; \text { on } \overline{A^{\prime} B} \text { and } \overline{B C^{\prime}} \rightarrow v_{\max } ; \text { on } \overline{C^{\prime} C} \rightarrow-a_{\max } ; \\
& \left.\quad+\text { over-fly between } A^{\prime \prime} \text { e } C^{\prime \prime} \text { (e.g., with } a_{\max } \text { in norm }\right)
\end{aligned}
$$

Other Cartesian paths

- circular path through 3 points in 3D (often built-in feature)
- linear path for the end-effector with constant orientation
- in robots with spherical wrist: planning may be decomposed into a path for wrist center and one for $\mathrm{E}-\mathrm{E}$ orientation, with a common timing law
- though more complex in general, it is often convenient to parameterize the Cartesian geometric path $p(s)$ in terms of its arc length (e.g., with $s=R \theta$ for circular paths), so that the following hold:
- velocity $\dot{p}=d p / d t=(d p / d s)(d s / d t)=p^{\prime} \dot{s}$
- $p^{\prime}=$ unit vector $(\|\cdot\|=1)$ tangent to the path \Rightarrow tangent direction $t(s)$
- $\dot{s} \geq 0$ is the absolute value of the tangential velocity ($=$ speed)
- acceleration $\ddot{p}=\left(d^{2} p / d s^{2}\right)(d s / d t)^{2}+(d p / d s)\left(d^{2} s / d t^{2}\right)=p^{\prime \prime} \dot{s}^{2}+p^{\prime} \dot{s}$
- \|p $p^{\prime \prime} \|=$ curvature $\kappa(s)$ (= $1 /$ radius of curvature)
- $p^{\prime \prime} \dot{s}^{2}=$ centripetal acceleration \Rightarrow normal direction $n(s) \perp$ to the path, on the osculating plane; the binormal direction is $b(s)=t(s) \times n(s)$
- $\ddot{s}=$ scalar value (with any sign) of the tangential acceleration

Definition of Frenet frame

- for a smooth and non-degenerate curve $p(s) \in \mathbb{R}^{3}$, parameterized by s (not necessarily its arc length), one can define a reference frame as shown

$$
p^{\prime}=d p / d s \quad p^{\prime \prime}=d^{2} p / d s^{2}
$$

derivatives w.r.t. the parameter s

unit tangent vector

$$
t(s)=p^{\prime}(s) /\left\|p^{\prime}(s)\right\|
$$

unit normal vector (\in osculating plane)

$$
\begin{aligned}
& n(s)=t^{\prime}(s) /\left\|t^{\prime}(s)\right\| \\
& =p^{\prime}(s) \times\left(p^{\prime \prime}(s) \times p^{\prime}(s)\right) /\left(\left\|p^{\prime}(s)\right\| \cdot\left\|p^{\prime \prime}(s) \times p^{\prime}(s)\right\|\right) \\
& \text { unit binormal vector } \\
& b(s)=t(s) \times n(s) \\
& =p^{\prime}(s) \times p^{\prime \prime}(s) /\left\|p^{\prime}(s) \times p^{\prime \prime}(s)\right\|
\end{aligned}
$$

- general expressions of path curvature and torsion (at a path point $p(s)$)

$$
\begin{aligned}
\kappa(s) & =\left\|p^{\prime}(s) \times p^{\prime \prime}(s)\right\| /\left\|p^{\prime}(s)\right\|^{3} \\
\tau(s) & \left.=\left[p^{\prime}(s) \cdot\left(p^{\prime \prime}(s) \times p^{\prime \prime \prime}(s)\right)\right] / \| p^{\prime}(s) \times p^{\prime \prime}(s)\right) \|^{2}
\end{aligned}
$$

Examples of paths with Frenet frame

Viviani curve

= intersection of a sphere with a tangent cylinder

By Ag2gaeh - https://commons.wikimedia.org/w/index.php?curid=81698760

By Gonfer https://commons.wikimedia.org/w/index.php?curid=18558097
Helix curve (right handed)

$$
\begin{aligned}
& x=r \cos s \\
& y=r \sin s \\
& z=h s \\
& s \in[0,2 \pi]
\end{aligned}
$$

$$
\begin{aligned}
\kappa & =\frac{r}{r^{2}+h^{2}} \\
\tau & =\frac{h}{r^{2}+h^{2}}
\end{aligned}
$$

By Goldencako - https://commons.wikimedia.org/w/index.php?curid=7519084

Exercise

given the path $p(s)=\left(\begin{array}{c}6 s+2 \\ 5 s^{2} \\ -8 s\end{array}\right), \quad s \in[0,1]$
a) define the Frenet frame $\{t(s), n(s), b(s)\}$

Robotics 1

Optimal trajectories

- for Cartesian robots (e.g., PPP joints)

1. the straight line joining two position points in the Cartesian space is one path that can be executed in minimum time under velocity/acceleration constraints (but other such paths exist, if (joint) motion is not coordinated)
2. the optimal timing law is of the bang-coast-bang type in acceleration (in this special case, also in terms of motor torques)

- for articulated robots (with at least one R joint)
- 1. e 2. are no longer true in general in the Cartesian space, but time-optimality still holds in the joint space when assuming bounds on joint velocity/acceleration
- straight line paths in the joint space do not correspond to straight line paths in the Cartesian space, and vice-versa
- bounds on joint acceleration are conservative (though kinematically tractable) w.r.t. actual bounds on motor torques, which involve the full robot dynamics
- when changing robot configuration/state, different torque values are needed to impose the same joint accelerations ...

Planning orientation trajectories

- using minimal representations of orientation (e.g., ZXZ Euler angles ϕ, θ, ψ), we can plan a trajectory for each component independently
- e.g., a linear path in space ϕ, θ, ψ, with a cubic timing law
\Rightarrow but poor prediction/understanding of the resulting intermediate orientations
- alternative method based on the axis/angle representation
- determine the (neutral) axis r and the angle $\theta_{A B}: R\left(r, \theta_{A B}\right)=R_{A}^{T} R_{B}$ (rotation matrix changing the orientation from A to $B \Rightarrow$ inverse axis-angle problem)
- plan a timing law $\theta(t)$ for the (scalar) angle interpolating $\theta=0$ with $\theta=\theta_{A B}$ in time T (with possible constraints/boundary conditions on its time derivatives)
- $\forall t \in[0, T], R_{A} R(r, \theta(t))$ specifies the actual end-effector orientation at time t

A complete position/orientation Cartesian trajectory

- initial given configuration $q(0)=\left(\begin{array}{llllll}0 & \pi / 2 & 0 & 0 & 0 & 0\end{array}\right)^{T}$
- initial end-effector position $p(0)=\left(\begin{array}{lll}0.540 & 0 & 1.515\end{array}\right)^{T}$
- initial orientation

$$
R(0)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

linear path for position

axis-angle method

 for orientation- final end-effector position $p(T)=\left(\begin{array}{lll}0 & 0.540 & 1.515\end{array}\right)^{T}$
- final orientation

$$
R(T)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)
$$

- the final configuration is NOT specified a priori

Axis-angle orientation trajectory

$$
p(s)=p_{\text {init }}+s\left(p_{\text {final }}-p_{\text {init }}\right)
$$

$$
=\left(\begin{array}{lll}
0.540 & 0 & 1.515
\end{array}\right)^{T}+s(-0.540 \quad 0.540 \quad 0)^{T},
$$

$s \in[0,1] \quad$ on linear motion)

Axis-angle orientation trajectory

triangular profile for linear speed $T=5.52 \mathrm{~s}$

Comparison of orientation trajectories
 Euler angles vs. axis-angle method

- initial configuration $q(0)=\left(\begin{array}{llllll}0 & \pi / 2 & \pi / 2 & 0 & -\pi / 2 & 0\end{array}\right)^{T}$
- initial end-effector position $p(0)=\left(\begin{array}{lll}0.115 & 0 & 1.720\end{array}\right)^{T}$
- initial orientation

$$
R(0)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

- initial Euler ZYZ (α, β, γ) angles $\phi_{Z Y Z}(0)=\left(\begin{array}{lll}0 & \pi / 2 & \pi\end{array}\right)^{T}$
- via a linear path (for position)
- final end-effector position $p(T)=\left(\begin{array}{lll}-0.172 & 0 & 1.720\end{array}\right)^{T}$
- final orientation

$$
R(T)=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & -1 & 0 \\
-1 & 0 & 0
\end{array}\right)
$$

- final Euler ZYZ angles $\phi_{Z Y Z}(T)=\left(\begin{array}{lll}-\pi & \pi / 2 & 0\end{array}\right)^{T}$

Comparison of orientation trajectories

Euler angles vs. axis-angle method

$$
\begin{aligned}
& R_{\text {init }}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
& \Rightarrow \phi_{Z Y Z, \text { init }}=\left(\begin{array}{c}
0 \\
\pi / 2 \\
\pi
\end{array}\right) \\
& R_{\text {final }}=-\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
& \quad \phi_{Z Y Z, \text { final }}=\left(\begin{array}{c}
-\pi \\
\pi / 2 \\
0
\end{array}\right) \\
& \quad(\text { singularity at } \\
& =0 \text { avoided!) } \\
& \text { video }
\end{aligned}
$$

Comparison of orientation trajectories

Euler angles vs. axis-angle method

Comparison of orientation trajectories

Euler angles vs. axis-angle method

Uniform time scaling

- for a given path $p(s)$ (in joint or Cartesian space) and timing law $s(\tau)$ ($\tau=t / T, T=$ "motion time"), we need to check if existing bounds $v_{\max }$ on (joint) velocity and/or $a_{\max }$ on (joint) acceleration are violated or not
- ... unless such constraints have already been taken into account during the trajectory planning, e.g., by using a bang-coast-bang acceleration timing law
- velocity scales linearly with motion time
- $d p / d t=(d p / d s)(d s / d \tau) \cdot 1 / T$
- acceleration scales quadratically with motion time

$$
\text { - } d^{2} p / d t^{2}=\left(\left(d^{2} p / d s^{2}\right)(d s / d \tau)^{2}+(d p / d s)\left(d^{2} s / d \tau^{2}\right)\right) \cdot 1 / T^{2}
$$

- if motion is unfeasible, scale (increase) time $T \rightarrow k T(k>1)$, based on the "most violated" constraint (max of the ratios $|v| / v_{\max }$ and $|a| / a_{\max }$)
- if motion is "too slow" w.r.t. the robot capabilities, decrease $T(k<1)$
- in both cases, after scaling, there will be (at least) one instant of saturation (for at least one variable)
- no need to re-compute motion profiles from scratch!

Numerical example - 1

- $2 R$ planar robot with links of unitary length ($1[\mathrm{~m}]$)
- linear Cartesian path $p(s): q_{0}=\left(110^{\circ}, 140^{\circ}\right) \Rightarrow p_{0}=f\left(q_{0}\right)=(-0.684,0)$ $\Rightarrow p_{1}=(0.816,1.4)[\mathrm{m}]$, with rest-to-rest cubic timing law $s(t), T=1[\mathrm{~s}]$
- joint space bounds: \max (absolute) velocity $v_{\max , 1}=2, v_{\max , 2}=2.5[\mathrm{rad} / \mathrm{s}]$, \max (absolute) acceleration $a_{\max , 1}=5, a_{\max , 2}=7\left[\mathrm{rad} / \mathrm{s}^{2}\right]$

Numerical example - 2

- violation of both joint velocity and acceleration bounds with $T=1$ [s]
- max relative violation of joint velocities: $k_{v e l}=2.898=\max \left\{1,\left|\dot{q}_{1}\right| / v_{\max , 1},\left|\dot{q}_{2}\right| / v_{\max , 2}\right\}$
- and of joint accelerations: $k_{\text {acc }}=6.2567=\max \left\{1,\left|\ddot{q}_{1}\right| / a_{\max , 1},\left|\ddot{q}_{2}\right| / a_{\max , 2}\right\}$
- minimum uniform time scaling of Cartesian trajectory to recover feasibility

$$
k=\max \left\{1, k_{\text {vel }}, \sqrt{k_{\text {acc }}}\right\}=2.898 \Rightarrow T_{\text {scaled }}=k T=2.898>T
$$

$$
==\text { joint } 1 \quad==\text { joint } 2
$$

Numerical example - 3

- scaled trajectory with $T_{\text {scaled }}=2.898$ [s]
- speed [acceleration] on path and joint velocities [accelerations] scale linearly [quadratically]

 remain the same!

Robotics 1
$=$ joint $1 \quad=$ joint 2

