Robotics 1

Robotics 1

Trajectory planning
In Cartesian space

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA
AUTOMATICA E GESTIONALE ANTONIO RUBERTI

SAPIENZA

QS UNIVERSITA DI ROMA

Trajectories in Cartesian space

= in general, the trajectory planning methods proposed in the

joint space can

be applied also in the Cartesian space

= consider independently each component of the task vector (i.e., a
position or an angle of a minimal representation of orientation)

= however, when

planning a trajectory for the three

orientation angles, the resulting global motion cannot be
intuitively visualized in advance

= if possible, we still prefer to plan Cartesian trajectories
separately for position and orientation

= the number of knots to be interpolated in the Cartesian

space is typical

y low (e.g., 2 knots for a PTP motion, 3 if a

“via point” is ad

ded) = use simple interpolating paths, such

as straight lines, arc of circles, ...

Robotics 1

Planning a linear Cartesian path
(position only)

| GIVEN
Pi L pi, br € R3; v;, v¢ € R (typically = 0);
\ bounds Vingx, Amax € RT
Py
L= ps —nil
path parameterization Pr —Pi _ unit vector of directional
p(s) =pi +s(r—p) } |ps—oill cosines of the line

may also use s = g /L, where ¢ € [0, L] is the
arc length (gives the current length of the path)

- dp . e d’p ., , dp.)
p(s) =—3=(pr—pi)$ P(S)=@SZ+§S=(Pf—Pi)S
Pr—Pi . _br—bi .

L o — I o

Robotics 1 3

Timing law with trapezoidal speed - 1

. | I
o(t) | Amax |
!
|

Q.
N\
~
\—r

\S\ .

l

bang-coast-bang

"g-coast-bang |

given*: L, Vimax» Cmax
find: T, T

= area of the

Umax (T —T5) =L speed profile

_ Umax

T, =

Amax

2
_ Lamax + Vinax

AmaxVmax

a “coast” phase exists iff L > v%4x/Umax

* = other input data combinations are possible (see textbook)

Robotics 1

Timing law with trapezoidal speed - 2

)

| Amaxt® t € [0, T,]
max) » L's

2

Viax
o(t) = Umaxt 2 s’ t € [T, T = T§]

Q-
N\
~+
| —

\S\ .

ax

_ Amax(t=T)* + T — Vihax
2 max a)
max

te[T—T,T]

I \

TYOT

discontinuous acceleration profile!
if needed, use for instance a
T r—-T, T a rest-to-rest quintic polynomial timing

can be used also in the joint space! l

Robotics 1 5

Concatenation of linear paths

B ="via point” no need to pass B—A

(and stop!) —
C’' there B—A Kus
| | -
unit vectors of
C C—B directional cosines

=K
ic—B| ~ P

given: constant speeds v, on linear path AB
v, on linear path BC

desired transition: with constant acceleration for a time AT

x(t)
p(t) = | y() t € |0,AT] (transition starts at t = 0)
z(t)

note: during over-fly, the path remains always in the plane specified
by the two lines intersecting at B (in essence, it is a planar problem)

Robotics 1 6

Time profiles on components

#(6) %(t
®) . V2Kpc
V1Kap x /_
ATt t
y(t) E y(t) i
! /— U3 KBC,y
— V1KaBy t
10 4(t)
5 V1K4B,z
¢ __ v, Kpc 2
AT t

Robotics 1 V4

Timing law during transition

B—A K
— — Bap
”B A” unit vectors of
C—B directional cosines
Ic—By B
x(t)
p(t) = | y(t) t € [0,AT] (transition starts at t = 0)
z(t)
p(t) = (voKpc — v1Kap)/AT p(t) = v1Kpp + (V;Kpc — v1Kpp)t/AT
T
/ thus, we obtain a

parabolic blending
p(t) = A’ + leABt ~+ (UZKBC — leAB)tz/(ZAT) (see textbook

for this same approach
in the joint space)

Robotics 1 8

Solution
(various options)

B_A,=d1KAB @
C,_B —_ dZKBC

p(t) = A" + v, Kupt + (VK — v1Kap)t*/ (2AT)

p(AT) — A’ + (AT/Z)(vl KAB + UZKBC) — C’
— B+ A+ (AT/2) (VK5 + v,Kp) =C' —B

@ d1K 45 + dyKpe = (AT /2) (V1K 45 + V2K ()

‘ dl — leT/Z I ‘ dz — UZAT/Z I
by choosing, e.g., d; — _
(namely 4) |_>|AT 2d,/v, == d, = d1v2/v1l

Robotics 1 9

A numerical example

= transition: A = (3,3) to € = (8,9) via B = (1,9), with speed from v, = 1to v, = 2
= exploiting two options for solution (resulting in different paths!)

= assign transition time: AT = 4 (we re-center it here for t € [—AT /2,AT /2])

= assign distance from B for departing: d; = 3 (assign d, for landing is handled similarly)

" | C‘artesian patlh | " Clartesian patlh |
ot B C] ol C
8r ; 1 8 1
7r s
6f 6l

> 5 > 5
oo oo
N W N W T T
N N e R
1 - 1
00 2 4 6 8 10 00 2 4 6 8 10

, ,
AT = 4 dy =3

Robotics 1 10

A numerical example (contd)

first option: AT = 4 (resultlng ind, =2,d, = 4) = ||p|| = 0.39 m/s?

posmon profiles dunng transition velocny profiles dunng transition acceleration prof|les during transition
‘ 5) T T T T T T T 2 T
4 1.5 N 1.5
R R
— F & + .
g, 0.5791
x T 05 =, 05 :
> ©
2l
or or
1 i i i i i i i _05 i i i i i i i 05 i i i i i i i
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
t (sec) t (sec) t (sec)
depart at A’ = (1.6325,7.1026) and land at C’ = (5,9) speed: before transition = 1 m/sec, after transition = 2 m/sec transition time = 4 sec
T T T T T T 1 T T T T 1 T T
0.8+ 0.5
) o
z 8 os6r g o -0.2372
£ € 2
> S 0.4 :> -0.5
0.2F -1r
0 i i i i i i i 15 i i i i i i i
2 -2 -1.5 -0.5 0 0.5 1 2 .
t (sec)

(sec)

. t (sec)
second option: d; = 3 (resulting in AT = 6 d, = 6) = |5l = 0.17 m/52
@ r po?ition profiles 'during transitlion . velocny profiles durlng transmon

acceleration profiles during transition
2 T T 15 T T T
150 1 1F 1
s ol |5 o 0.3860.
£ £
=, 05r . £ ot i
>)< Nx
of -0.5
0 i i i i i 05 i i i o i i i i
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
t (sec) t (sec) t (sec)
depart at A’ = (1.9487,6.154) and land at C’ = (7,9) speed: before transition = 1 m/sec, after transition = 2 m/sec transition time = 6 sec
T T T T 1 T T T 1
0.8 0.5 .
= RN
3 06 8 of -0.1581.
£ £
—.. 04 = 05 4
4 >>‘ m>'
0.2+ 1t
‘ 6 i i i i i 0 i i i i i 15 i i i i i
-2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
t (sec) t (sec)

t (sec)

actually: similar velocity/acceleration profiles, but with a different time scale!!
Robotics 1 11

Alternative solution
(imposing acceleration)

p(t) = (voKpc — v1Kyp) /AT

V1 = Uy = Uy (fOr simplicity)

1P = amax

AT = (Umax/amax) ”KBC — Kyl

— (vmax/amax)\/z(1 _ KBC,xKAB,x _ KBC,yKAB,y T KBC,ZKAB,Z)

then, d; = dy, = vy AT /2

Robotics 1 12

Application example

plan a Cartesian trajectory from A to C (rest-to-rest)
that avoids the obstacle O, with a < amgr aNd Vv < Vigx

add a via p-oint B

B “sufficiently far” from O
CH

on AA' - a,4,; On A'B and BC' — vy, ON C'C— — Qg
+ over-fly between A" e C" (e.g., with a4, in norm)

Robotics 1 13

Other Cartesian paths

= circular path through 3 points in 3D (often built-in feature)
= linear path for the end-effector with constant orientation

= in robots with spherical wrist: planning may be decomposed into a path for
wrist center and one for E-E orientation, with a common timing law

= though more complex in general, it is often convenient to parameterize the
Cartesian geometric path p(s) in terms of its arc length (e.g., with s = RO
for circular paths), so that the following hold:
= velocity p = dp/dt = (dp/ds)(ds/dt) =p’'s
= p’ = unit vector (||:|| = 1) tangent to the path = tangent direction t(s)
= s > 0 is the absolute value of the tangential velocity (= speed)
= acceleration g = (d?p/ds?)(ds/dt)? + (dp/ds)(d?s/dt?) = p''s? + p'§
= ||p"|| = curvature k(s) (= 1/radius of curvature)

= p''$? = centripetal acceleration = normal direction n(s) L to the path, on the
osculating plane; the binormal direction is b(s) = t(s) X n(s)

= § = scalar value (with any sign) of the tangential acceleration
Robotics 1 14

Definition of Frenet frame

= for a smooth and non-degenerate curve p(s) € R3, parameterized by s
(not necessarily its arc length), one can define a reference frame as shown

p'=dp/ds p" =d’p/ds*

derivatives w.r.t. the parameter s
b(s) unit tangent vector

t(s) =p'(s)/llp" ()l

unit normal vector (€ osculating plane)
n(s) =t (s)/lit" ()l

= p' ()% ()xp' (/' Il - Ip" ()xp' ()1
unit binormal vector

s — b(s) = t(s) X n(s)
=p'(s)xp" (s)/lp"(s)xp" ()l

= general expressions of path curvature and torsion (at a path point p(s))

k(s) = lp'(s) x p" I/ llp" (HII°
t(s) = [p'(s) - @"(s) x p"" (sNI/lp' (s) x p" (SN2

Robotics 1 15

Examples of paths with Frenet frame

Viviani curve
= intersection of a sphere with a tangent cylinder _

X =1 cos?s
Yy =rcosssins
Z=rsins

s€|[-n/2,r/2]

~ X =71 C0S’s

y = —rcosssins ;

Z = —rsins "o

By Ag2gaeh - https://commons.wikimedia.org/w/index.php?curid=81698760 By Gonfer https://commons.wikimedia.org/w/index.php?curid=18558097

Helix curve (right handed)

o x=reoss T

P y =rsins r2 + h?

g — f;:\f;:;. Z="hs ‘ h < /
fe— T=—— |

\\(-)//t s € [0,2n] 2 + h? -

By Goldencako - https://commons.wikimedia.org/w/index.php?curid=7519084

Exercise

6s + 2 :
a) define the Frenet frame {t(s),n(s), b(s)}
given the path p(s) = | 5s2) sefo1] mmp (.15, 55)
_8s b) compute the curvature «(s) and the torsion 7(s)

Robotics 1 16

Optimal trajectories

= for Cartesian robots (e.g., PPP joints)

1. the straight line joining two position points in the Cartesian space is one path
that can be executed in minimum time under velocity/acceleration constraints
(but other such paths exist, if (joint) motion is not coordinated)

2. the optimal timing law is of the bang-coast-bang type in acceleration (in this
special case, also in terms of motor torques)
» for articulated robots (with at least one R joint)

= 1. e 2. are no longer true in general in the Cartesian space, but time-optimality
still holds in the joint space when assuming bounds on joint velocity/acceleration

= straight line paths in the joint space do not correspond to straight line paths
in the Cartesian space, and vice-versa

= bounds on joint acceleration are conservative (though kinematically tractable)
w.r.t. actual bounds on motor torques, which involve the full robot dynamics

= when changing robot configuration/state, different torque values are needed
to impose the same joint accelerations ...

Robotics 1 17

Planning orientation trajectories

using minimal representations of orientation (e.g., ZXZ Euler angles ¢, 6, Y),
we can plan a trajectory for each component independently
= e.g., alinear path in space ¢, 8,1y, with a cubic timing law
= but poor prediction/understanding of the resulting intermediate orientations
alternative method based on the axis/angle representation
= determine the (neutral) axis r and the angle 6,5: R(7,0,5) = RZRB (rotation
matrix changing the orientation from A to B = inverse axis-angle problem)
= plan a timing law 6(t) for the (scalar) angle interpolating 6 = 0 with 8 = 0,45
in time T (with possible constraints/boundary conditions on its time derivatives)

s Vt €[0,T],R4R(r,0(t)) specifies the actual end-effector orientation at time t
Robotics 1

A Q)

18

A complete position/orientation
Cartesian trajectory

= initial given configuration q(0) =(0 =/2 0 0 0 0)7
= initial end-effector position p(0) = (0.540 0 1.515)7
= initial orientation
0 0 1
R(0) = (0 -1 o)
1 0 O

.....

linear path ' axis-angle method
for position for orientation

= final end-effector position p(T) = (0 0.540 1.515)7
= final orientation

1 0 O

R(T) = (O 0 1)

0O -1 0

= the final configuration is NOT specified a priori

Robotics 1

coordinated
Cartesian motion
with bounds

Umax = 0.4 [m/s]

video

L= ”pfinal - pinit”

= 0.763 [m] Ay = 0.1 [m/s?]
W gy = /4 [rad/s]
. — 2
w=16 - lloll =6 Wmax 7r‘/8 [rad/s?]
b=rd > ol =|§] = triangular
o speed profile s(t)
with minimum
~ e | time T =5.525s
p(S) = Dinit + S(Pfinal = Pinit) ('mlgonsﬁ:e2¥ mgt:?)%u)nds
= (0540 0 15157 +s(-0.540 0.540 0)7, s€[0,1]
0 0 1 . (0 -1 0 s =s(t), te[0,T]
R.=l0o =1 o)|=RT. RinitRfina =10 0 -1
it (1 0 O) it 1 0 0 R(s) = RyyicRot(r,0(s))
1 0 0 » = Rot(r, 0r) » o’ -
L= 1 2T S) = sBi¢, s €101
Rfinan (0 0 1) r=—|-1),6; =— [rad](= 120°) :
0 -1 0 V3\ 4 3

Robotics 1 20

Axis-angle orientation trajectory

end-effector position end-effector velocity
T T

x = 1.4 0.15
y=—" |l
7 = — .

i | el] triangular
planned _ profile for
motion of =*| | 1€ ° | |linear speed
Cartesian ¢ 1 oo 1 T =5525s
position .. I]

and velocity |

1 Il Il Il 1 Il 1
8 0 1 2 3 4 5 6 7 8
time [s]

T =55

= the robot joint velocity was commanded

Joint 2 \:)/\ | by inversion of the geometric Jacobian
actual | f(| = a user program, via KUKA RSI interface
joint ¥ | | atT, =12 ms sampling time (two-way
motion - / communication)
: V ~ | = robot motion execution is = what was
| planned, but only thanks to an external
e . i o) ~ kinematic control loop (at task level)

Robotics 1 21

Comparison of orientation trajectories
Euler angles vs. axis-angle method

= initial configuration q(0) = (0 n/2 =/2 0 -—m/2 0)T
= initial end-effector position p(0) = (0.115 0 1.720)"

= initial orientation
z(

0 0 1
R(O)=<O —1 0) ciic
1 0 0 x(T)
= initial Euler ZYZ (a, 8,y) angles ¢zy;(0) = (0 w/2 m)T

- via a linear path (for position)
= final end-effector position p(T) = (-0.172 0 1.720)7
= final orientation
0 0 -1
R(T) = (0O -1 ©0)
-1 0 0
= final Euler ZYZ angles ¢,v,(T) = (-7 =w/2 0)T

Robotics 1 22

Comparison of orientation trajectories
Euler angles vs. axis-angle method

= ¢ZYZ,final = (

(singularity at
S = 0 avoided!)

video

using ZYZ Euler angles using axis-angle method

Robotics 1

T
RinitRfinal

-1 0
=<o 1
| 0 0

0
O)
-1

23

Comparison of orientation trajectories
Euler angles vs. axis-angle method

end-effector position end-effector position
T T T T T

x - 1.6 16

y== 12 12

Z =— 1

E oo | | linear motion E 08

oo only along the] 06|

0] / x-direction] 04l

planned
Cartesian - 8
components

Of p O Sitl On ‘ ‘ ‘ ‘ ‘ . . . end—effectlor velocity .
and velocity 7| | f

faster motion
time with the
7 axis-angle method
005} . (imposed by the
previous bounds

-0.03- ~ -0.04 -

-0.04

[m/s]
[m/s]

- | > on angular motion)
using ZYZ Euler angles using axis-angle method

Robotics 1 24

Comparison of orientation trajectories
Euler angles vs. axis-angle method

end-effector orientation with ZYZ Euler angles 4 end-effector orientation with ZYZ Euler angles
T T T T T T T

o =— o , o B=0 (singulérity of
g =— \ | | / the ZYZ representation)
y — | L i

by post-
processing
< of planned

orientation -
in terms of ZYZ -

Euler angles .| pre-planned L axis-angle
offline motion
™ T=x=72s “ ™ T=6s
actual | |
joint T | |] \\

motion ~ | \ |) only three
—— e joints move
- (#2,#3,#5)

using ZYZ Euler angles using axis-angle method

Robotics 1 25

Uniform time scaling

= for a given path p(s) (in joint or Cartesian space) and timing law s(7)
(t =t/T, T="motion time”), we need to check if existing bounds v,,,,
on (joint) velocity and/or a,,,, on (joint) acceleration are violated or not

= ... unless such constraints have already been taken into account during the
trajectory planning, e.g., by using a bang-coast-bang acceleration timing law

= velocity scales linearly with motion time
= dp/dt = (dp/ds) (ds/dt) - 1/T
= acceleration scales quadratically with motion time
= d’p/dt? = ((d*p/ds?)(ds/dt)? + (dp/ds)(d*s/dt?)) - 1/T*?
= if motion is unfeasible, scale (increase) time T — kT (k > 1), based on
the "most violated” constraint (max of the ratios |v|/v,,,, and |a|/a,,,,)

= if motion is “too slow” w.r.t. the robot capabilities, decrease T (k < 1)

= in both cases, after scaling, there will be (at least) one instant of saturation
(for at least one variable)

= No need to re-compute motion profiles from scratch!

Robotics 1 26

Numerical example - 1

= 2R planar robot with links of unitary length (1 [m])

= linear Cartesian path p(s): = po = f(qp) = (—0.684,0)
= p; = (0.816, 1.4) [m], with rest-to-rest cubic timing law s(t), T = 1 [s]

= joint space bounds: max (absolute) velocity v,,,qx1 = 2, Vinax 2 = 2.5 [rad/s],

aaaaaaaaaaaaaaaaaaaaaa

¢ Smax
~ 3 [m/s]

2 . . . - G

15} : : :
, ; ; 5 P1

| | | \ | path length L = 2.0518 [m] ;'
| M SN "/ zero initial and
| % 1.8 N \ ‘

0.5+

lllllll

E O ‘ :
o8 s =s(t) <€———_ non-zero
(symmetric)
-1 | - B B acceleration
L | T=1 \
_2 L 1 L 1 i 1 1 J
-2 -1.5 -1 -0.5 0 0.5 1 15 2 ‘

m

Robotics 1 27

Numerical example - 2

= violation of both joint velocity and acceleration bounds with T = 1 [s]
= max relative violation of joint velocities: k,.; = 2.898 = max {1, |¢1|/Vmax1, 92|/ Vmax2}
= and of joint : = 6.2567 = max {1, |§1|/amax1, G2/ Cmax.2}

= minimum uniform time scaling of Cartesian trajectory to recover feasibility

k = max {1, kper, /Kace } = 2.898 = Tycqreq = kT = 2.898 > T

evolution of joint variables evolution of joint velocities (total time T = 1) evolution of joint accelerations
T T

Robotics 1 28

Numerical example -3

= scaled trajectory with Tscqieq = 2.898 [S]
= speed [acceleration] on path and joint velocities [accelerations] scale linearly [quadratically]

cubic timing law on path (scaled total time T = 2.898) speed on path (quadratic), scaled by k = 2.898 acceleration on path (linear), scaled by squared k = 8.3982
T T T T

e, . “scaled by 1/k = 1/2.898 scaled by
2} 1 1

k2 (2.898)32

1k

=0.1191 |

0.5

ok

traced Cartesian path = — f
. ‘ and associated joint paths ,

I I 1 I 1 _ L I I I 1
0 0.5 3 0 05 1 1.5 2 25 3 0 0.5 1 15 2 25 3

[m]
[m/s]
[m/s?]

remaln the same! e il
3 evolution of joint variables (caled total Itme T =2.898) / o5 evolution of joint velocities, scaled by k = 2.898 s evolution of joint accelerations, scaled by squared k = 8.3982
T . : T T T T r T T T T
B O N N ettt et e B S
6
15} e [
at least 1 instant of ‘saturation!
1+ 1
s
w <
-2
4l
8}
00 015 ‘1 1‘5 ‘2 215 3 _2'50 0.‘5 ; 1?5 ‘2 2.‘5 3 780 0_‘5 ; 115 I2 2!5 3
time [s] time [s] time [s]

Robotics 1 —— =joint 1 —— =joint 2 29

