
Robotics 1 1

Robotics 1

Trajectory planning
Prof. Alessandro De Luca

Trajectory planner interfaces

external sensors

task planner* trajectory planner* control*

internal sensors

robot

environment
functional robot units

* = programming “points”

TRAJECTORY
PLANNER

robot action described
as a sequence of poses

or configurations
(with possible exchange

of contact forces)

reference profile/values
(continuous or discrete)
for the robot controller

Robotics 1 2

Trajectory definition
a standard procedure for industrial robots

1. define Cartesian pose points (position+orientation) using the teach-box
2. program an (average) velocity between these points, as a 0-100% of a

maximum system value (different for Cartesian- and joint-space motion)
3. linear interpolation in the joint space between points sampled from the

built trajectory

Robotics 1 3

examples of additional features
a) over-fly b) sensor-driven STOP c) circular path

through 3 points
A B

CD

. .
..

main drawbacks
n semi-manual programming (as in “first generation” robot languages)
n limited visualization of motion

a mathematical formalization of trajectories is useful/needed

Some typical trajectories
§ Point-to-point Cartesian motion with an intermediate point

Robotics 1 4

Straight lines as Cartesian path Interpolation with Bezier curves
video video

Some typical trajectories
§ Timing laws: Cartesian path with (dis-)continuous tangent

Robotics 1 5

Square path at constant speed Square path with
trapezoidal speed profile

video video

Joint and Cartesian trajectories
§ assigned task: arm reconfiguration between two inverse

kinematic solutions associated to a given end-effector pose

Robotics 1 6

for “simple” manipulators (e.g., all industrial robots) and ! = #, the execution
of these tasks will require the passage through a singular configuration

§ initial and final configuration
§ same Cartesian pose (no change!): the

motion cannot be fully specified in the
Cartesian space

§ to perform this task, the robot should
leave the given end-effector pose and
then return to it

§ a self-motion could be sufficient
− if there is (task) redundancy (! < #)
− if the robot starts in a singularity

here # = ! = 6

(8 IK solutions)

Joint and Cartesian trajectories
§ a reconfiguration task (or… passing through singularity)

Robotics 1 7

three-phase trajectory:
circular path + self-motion + linear path

single-phase trajectory
in the joint space (no stops)

video video

From task to trajectory

TRAJECTORY
of motion &'()) (or +'()))

of interaction ,'())

=

GEOMETRIC PATH+

TIMING LAW

parameterized by -: & = &(-)

(e.g., - is the arc length)
describes the time evolution of - = -())

.
.

/

0 1

0 -!23

.
.

)

-

TIME

PARAMETER

PATH

example: TASK planner provides ., /
TRAJECTORY planner generates &())

&(-()))

Robotics 1 8

& - =

&5(-)

&6(-)

&7(-)

§ TASK planning

§ interpolation in Cartesian space

§ path sampling and kinematic inversion

§ interpolation in joint space

Trajectory planning
operative sequence

an
al

yt
ic

in
ve

rs
io

n

1

2

additional issues to be considered in the planning process
§ obstacle avoidance
§ on-line/off-line computational load
§ sequence 2 is more “dense” than 1

Robotics 1 9

n sequence of pose points (“knots”) in Cartesian space

n Cartesian geometric path (position + orientation): & = &(-)

n sequence of “knots” in joint space

n geometric path in joint space: + = +(8)

Example

.
...........

..
..

.......

+1

+2

+3

8

+3(8)

...
.

.

.
.
.

.

</.

.

.

.
&(-)

.. /.

<.

Cartesian space joint space

+2(8)

+1(8)

Robotics 1 10

Path and timing law
n after choosing a path, the trajectory definition is completed by

the choice of a timing law
p = p(s) ⇒ s = s(t) (Cartesian space)
q = q(l) ⇒ l = l(t) (joint space)

n if s(t) = t, path parameterization is the natural one given by time
n the timing law

n is chosen based on task specifications (stop in a point, move at
constant velocity, and so on)

n may consider optimality criteria (min transfer time, min energy,…)
n constraints are imposed by actuator capabilities (max torque, max

velocity,…) and/or by the task (e.g., max acceleration on payload)
note: on parameterized paths, a space-time decomposition takes place

dp
ds

dp
ds

d2p
ds2p(t) = s p(t) = s + s2

.e.g., in Cartesian
space

Robotics 1 11

Trajectory classification
n space of definition

n Cartesian, joint
n task type

n point-to-point (PTP), multiple points (knots), continuous,
concatenated

n path geometry
n rectilinear, polynomial, exponential, cycloid, …

n timing law
n bang-bang in acceleration, trapezoidal in velocity, polynomial, …

n coordinated or independent
n motion of all joints (or of all Cartesian components) starts and ends

at the same instants (say,) = 0 and) = 1) = single timing law
or
n motions are timed independently (according to the requested

displacement and robot capabilities) – mostly only in the joint space

Robotics 1 12

Cartesian vs. joint trajectory planning
n planning in Cartesian space

n allows a more direct visualization of the generated path
n obstacle avoidance, lack of “wandering”

n planning in joint space
n does not need on-line kinematic inversion

n issues in kinematic inversion
n +̇ and +̈ (or higher-order derivatives) may also be needed

n Cartesian task specifications involve the geometric path,
but also bounds on the associated timing law

n for redundant robots, choice among ∞ABC inverse solutions,
based on optimality criteria or additional auxiliary tasks

n off-line planning in advance is not always feasible
n e.g., when environment interaction occurs or when sensor-

based motion is needed
Robotics 1 13

Relevant characteristics

n computational efficiency and memory space
n e.g., store only the coefficients of a polynomial function

n predictability and accuracy
n vs. “wandering” out of the knots
n vs. “overshoot” on final position

n flexibility
n allowing concatenation of primitive segments
n over-fly
n …

n continuity
n in space and/or in time
n at least <1, but also up to jerk = third derivative in time

Robotics 1 14

A robot trajectory with bounded jerk

Robotics 1 15

video

Trajectory planning in joint space
n + = +()) in time or + = +(8) in space (then with 8 = 8()))
n it is sufficient to work component-wise (+D in vector +)
n an implicit definition of the trajectory, by solving a problem with

specified boundary conditions in a given class of functions
n typical classes: polynomials (cubic, quintic,…), trigonometric

(cosine, sines, combined, …), clothoids, …
n imposed conditions

n passage through points = interpolation
n initial, final, intermediate velocity (or geometric tangent for paths)
n initial, final acceleration (or geometric curvature)
n continuity of time-(or space-)derivative up to the E-th order: class <F

many of the following methods and remarks can be
directly applied also to Cartesian trajectory planning (and vice versa)!

Robotics 1 16

Cubic polynomial in space

+(8) = +G + D+ 28I + J8K + L8 + M
D+ = +N–+G

8 ∈ [0,1]

“doubly normalized” polynomial +S(8)4 coefficients

Robotics 1 17

+(0) = +G +T(0) = UG 4 conditions+T(1) = UN+(1) = +N

+S(0) = 0 Û +S(1) = 1 Û 2 + J + L = 1

+S
T (0) = M+S/M8|XYG = +S

T 1 = ⁄M+S M8|XYN = 32 + 2J + L = UN/D+

M = 0

L = UG/D+

special case: UG = UN = 0 (zero tangent)
+S
T (0) = 0 Û

+S(1) = 1 Û 2 + J = 1

+S
T 1 = 0 Û 32 + 2J = 0

Û 2 = −2

J = 3

L = 0

Cubic polynomial in time

+(\) = +DA + D+ 2\I + J\K + L\ + M
D+ = +]DA– +DA

\ = ⁄) 1 ∈ [0,1]

“doubly normalized” polynomial +S(\)4 coefficients

Robotics 1 18

+(0) = +DA +̇(0) = UDA 4 conditions+̇(1) = U]DA+(1) = +]DA

+S(0) = 0 Û +S(1) = 1 Û 2 + J + L = 1

+S
T (0) = M+S/M\|^YG = +S

T 1 = ⁄M+S M\|^YN = 32 + 2J + L =
U]DA1

D+

M = 0

L =
UDA1

D+

special case: UDA = U]DA = 0 (rest-to-rest)
+S
T (0) = 0 Û

+S(1) = 1 Û 2 + J = 1

+S
T 1 = 0 Û 32 + 2J = 0

Û
2 = −2

J = 3

L = 0

A trigonometric alternative

+ \ = +DA + D+
1 − cosb\

2

D+ = +]DA– +DA

\ = ⁄) 1 ∈ [0,1]

Robotics 1 19

+(0) = +DA +̇(0) = 0
boundary conditions

(rest-to-rest)+̇(1) = 0+(1) = +]DA

+̇(\) =
D+
1

b

2
sin b\ +̈(\) =

D+
1K

bK

2
cos b\

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
normalized time tau

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
position

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
normalized time tau

-5

-4

-3

-2

-1

0

1

2

3

4

5
acceleration

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
normalized time tau

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
velocity

max +̇ \ = +̇ 0.5 =
D+
1

b

2
max +̈ \ = +̈ 0 = −+̈ 1 =

D+
1K

bK

2

doubly
normalized

Quintic polynomial

+(0) = +G +T(0) = UG1

+(\) = 2\j + J\k + L\I + M\K + l\ + m

D+ = +N − +G

6 coefficients

special case: UG = UN = 2G = 2N = 0

allows to satisfy 6 conditions, for example (in normalized time \ =)/1)
\ ∈ [0, 1]

+TT(0) = 2G1
K

+(\) = 1 − \ I +G + (3+G + UG1)\ + 2G1
K + 6UG1 + 12+G \

K/2

+ \I +N + (3+N − UN1)(1 − \) + (2N1
K − 6UN1 + 12+N) 1 − \

K/2

+(\) = +G + D+ 6\j − 15\k + 10\I

Robotics 1 20

+(1) = +N +T(1) = UN1 +TT(1) = 2N1
K

Higher-order polynomials

n a suitable solution class for satisfying symmetric boundary
conditions (in a PTP motion) that impose zero values on
higher-order derivatives

n the interpolating polynomial is always of odd degree
n the coefficients of such (doubly normalized) polynomial are always

integers, alternate in sign, sum up to unity, and are zero for all
terms up to the power = (degree-1)/2

n in all other cases (e.g., for interpolating a large number n
of points), their use is not recommended

n there is a unique polynomial of degree n − 1 interpolating n points
n E-th degree polynomials have E − 1 maximum and minimum points
n oscillations arise out of the interpolation points (wandering)

Robotics 1 21

29th
degree

no
overshoot

nor
wandering

14 derivatives
are zero!

Interpolating n = 2 knots
with high-order polynomials and zero boundary conditions

9th
degree

normalized
first derivative

(velocity
in time)

4 derivatives
are zero

2.5 4.5!!

peaking
at midpoint

Robotics 1 22

Interpolating n knots +N …+S
with a unique polynomial of degree n − 1

Robotics 1 23

n = 2 ⇒ a line
+ \ = 2G + 2N\

= +N + +K − +N \

n = 3 ⇒ a quadric
+ \ = 2G + 2N\ + 2K\

K

2G = +N

2N =
+I − +N \C

K − +K − +N

\C \C − 1

2K =
+K − +N − +I − +N \C

\C \C − 1

\C ∈ 0,1 , + \C = +K

n = 4 ⇒ a cubic
+ \ = 2G + 2N\ + 2K\

K + 2I\
I

n ⇒ a polynomial of degree n − 1
+ \ = 2G + 2N\ + ⋯+ 2SBN\

SBN
\ =

)

1
∈ 0,1

n = 11 ⇒ (dashed)
polynomial of degree 10

better solution: a “patch” of
low-order polynomial tracts

interpolates … but wanders!!

1 = 2

)

4-3-4 polynomials
three phases (Lift off, Travel, Set down) in a pick-and-place operation in time

+r()) = 4th order polynomial
+s()) = 3rd order polynomial
+t()) = 4th order polynomial

14 coefficients
. .

. .

)G)N)K)]

+G

+N

+K

+]

initial depart approach final

+)G = +G +)N
B = +)N

u = +N +)K
B = +)K

u = +K +()]) = +]

boundary conditions

+̇)G = +̇)] = 0 +̈)G = +̈)] = 0

+̇)D
B = +̇)D

u +̈()D
B) = +̈()D

u) v = 1,2

6
passages

4 initial/final
velocity/acceleration

4 continuity up
to acceleration

Robotics 1 24

Interpolation using splines
n problem

interpolate n knots, with continuity up to the second derivative
n solution

spline: n − 1 cubic polynomials, concatenated so to pass through n knots,
and continuous up to the second derivative at the n − 2 internal knots

n 4(n − 1) coefficients
n 4(n − 1) − 2 conditions, or

n 2(n − 1) of passage (for each cubic, in the two knots at its ends)
n n − 2 of continuity for first derivative (at the internal knots)
n n − 2 of continuity for second derivative (at the internal knots)

n 2 free parameters are still left over
n can be used, e.g., to assign initial and final derivatives, UN and US

n presented next in terms of time), but similar in terms of space 8
n then: first derivative = velocity, second derivative = acceleration

Robotics 1 25

Building a cubic spline
+ = w()) = wF()),) ∈ [)F,)F + ℎF]

. . . .
. .+())

+N +K

+F

+FuN

+SBN

+n

US

UN

)N(= 0))K)F)FuN)SBN)S

time interval ℎF

wF(\) = 2FG + 2FN\ + 2FK\
K + 2FI\

I \ =) −)F ∈ [0, ℎF]

(E = 1,⋯ ,n − 1)

Robotics 1 26

ẇF(ℎF) = ẇFuN(0)continuity conditions
for velocity and acceleration

E = 1,⋯ , n − 2
ẅF(ℎF) = ẅFuN(0)

An efficient algorithm
1. if all velocities UF at internal knots were known, then each cubic in the spline

would be uniquely determined by

2. impose the continuity for accelerations (n − 2 conditions)

3. expressing the coefficients 2FK, 2FI, 2FuN,K in terms of the still unknown knot
velocities (see step 1.) yields a linear system of equations that is always solvable

tri-diagonal matrix
always invertible

unknown known vector

ẅF ℎF = 22FK + 62FIℎF = 22FuN,K = ẅFuN(0)

1

to be substituted then back in 1
Robotics 1 27

wF(0) = +F = 2FG

ẇF 0 = UF = 2FN

ℎF
K ℎF

I

2ℎF 3ℎF
K

2FK
2FI

=
+FuN − +F − UFℎF

UFuN − UF

y(ℎN,⋯ , ℎSBN)

UK
UI
⋮

⋮
USBN

=

⋮

{ ℎN,⋯ , ℎSBN, +N ⋯ , +S, UN, US
⋮

Structure of .(|)

diagonally dominant matrix (for ℎF > 0)
[the same tridiagonal matrix for all joints]

Robotics 1 28

2(ℎN + ℎK) ℎN
ℎI 2(ℎK + ℎI) ℎK

⋯

⋯

⋯

ℎSBK 2(ℎSBI + ℎSBK) ℎSBI

ℎSBN 2(ℎSBK + ℎSBN)

Structure of J(|, ~, U1, US)

Robotics 1 29

3

ℎNℎK
ℎN
K +I − +K + ℎK

K(+K − +N) − ℎKUN

3

ℎKℎI
ℎK
K +k − +I + ℎI

K(+I − +K)

⋮

⋮
3

ℎSBIℎSBK
ℎSBI
K +SBN − +SBK + ℎSBK

K (+SBK − +SBI)

3

ℎSBKℎSBN
ℎSBK
K +S − +SBN + ℎSBN

K (+SBN − +SBK) − ℎSBKUS

Properties of splines
n a spline (in space) is the solution with minimum curvature among all

interpolating functions having continuous second derivative
n for cyclic tasks (+N = +S), it is preferable to simply impose continuity of

first and second derivatives (i.e., velocity and acceleration in time) at the
first/last knot as “squaring” conditions
n choosing UN = US = U (for a given U) doesn’t guarantee in general the

continuity up to the second derivative (when in time, the acceleration)
n in this way, the first = last knot will be handled as all other internal knots

n a spline is uniquely determined from the set of data +N,⋯ , +S,

ℎN,⋯ , ℎSBN, UN, US

n in time, the total motion occurs in 1 = ∑FℎF =)S −)N

n the time intervals hk can be chosen so as to minimize 1 (linear objective
function) under (nonlinear) bounds on velocity and acceleration in [0, 1]

n spline construction can be suitably modified when the second derivative
(in time, the acceleration) is also assigned at the initial and final knots

Robotics 1 30

A modification
handling assigned initial and final accelerations

n two more parameters are needed in order to impose also the
initial acceleration ÄN and final acceleration ÄS

n two “fictitious knots” are inserted in the first and the last
original intervals, increasing the number of cubic polynomials
from n − 1 to n + 1

n in these two knots only continuity conditions on position,
velocity and acceleration are imposed
Þ two free parameters are left over (one in the first cubic and
the other in the last cubic), which are used to satisfy the
boundary conditions on acceleration

n depending on the (time) placement of the two additional knots,
the resulting spline changes …

Robotics 1 31

A numerical example
n n = 4 knots (o) ⇒ 3 cubic polynomials

n joint values +N = 0, +K = 2b, +I = ⁄b 2 , +k = b

n at)N = 0,)K = 2,)I = 3,)k = 5 ⇒ ℎN = 2, ℎK = 1, ℎI = 2

n boundary velocities UN = Uk = 0

n 2 added knots to impose accelerations at both ends (5 cubic polynomials)
n boundary accelerations ÄN = Äk = 0

n two placements: at)NT = 0.5 and)IT = 4.5 (×); or at)NTT = 1.5 and)kTT = 3.5 (∗)

Robotics 1 32
= placement (×) = placement (∗)

×× ∗ ∗o

o

o

o

