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Trajectory planner interfaces

external sensors

task planner* trajectory planner* control*

internal sensors

robot

environment
functional robot units

* = programming “points”

TRAJECTORY
PLANNER

robot action described
as a sequence of poses 

or configurations 
(with possible exchange 

of contact forces)

reference profile/values 
(continuous or discrete) 
for the robot controller
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Trajectory definition
a standard procedure for industrial robots

1. define Cartesian pose points (position+orientation) using the teach-box
2. program an (average) velocity between these points, as a 0-100% of a 

maximum system value (different for Cartesian- and joint-space motion)
3. linear interpolation in the joint space between points sampled from the 

built trajectory
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examples of additional features
a) over-fly                    b) sensor-driven STOP    c) circular path 

through 3 points
A B

CD

. .
..

main drawbacks
n semi-manual programming (as in “first generation” robot languages)
n limited visualization of motion

a mathematical formalization of trajectories is useful/needed



Some typical trajectories
§ Point-to-point Cartesian motion with an intermediate point
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Straight lines as Cartesian path Interpolation with Bezier curves
video video



Some typical trajectories
§ Timing laws: Cartesian path with (dis-)continuous tangent
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Square path at constant speed Square path with
trapezoidal speed profile

video video



Joint and Cartesian trajectories
§ assigned task: arm reconfiguration between two inverse 

kinematic solutions associated to a given end-effector pose 
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for “simple” manipulators (e.g., all industrial robots) and ! = #, the execution
of these tasks will require the passage through a singular configuration

§ initial and final configuration
§ same Cartesian pose (no change!):  the 

motion cannot be fully specified in the 
Cartesian space

§ to perform this task, the robot should 
leave the given end-effector pose and 
then return to it 

§ a self-motion could be sufficient
− if there is (task) redundancy (! < #)
− if the robot starts in a singularity

here # = ! = 6

(8 IK solutions)



Joint and Cartesian trajectories
§ a reconfiguration task (or…              passing through singularity)
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three-phase trajectory: 
circular path + self-motion + linear path

single-phase trajectory
in the joint space (no stops)

video video



From task to trajectory

TRAJECTORY
of motion &'()) (or +'())) 

of interaction ,'())

=

GEOMETRIC PATH+

TIMING LAW

parameterized by -: & = &(-)

(e.g., - is the arc length)
describes the time evolution of - = -())
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example: TASK planner provides ., /
TRAJECTORY planner generates &())
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§ TASK planning

§ interpolation in Cartesian space

§ path sampling and kinematic inversion

§ interpolation in joint space

Trajectory planning
operative sequence
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additional issues to be considered in the planning process
§ obstacle avoidance
§ on-line/off-line computational load
§ sequence  2  is more “dense” than  1
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n sequence of pose points (“knots”) in Cartesian space

n Cartesian geometric path (position + orientation):  & = &(-)

n sequence of “knots” in joint space

n geometric path in joint space: + = +(8)
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Path and timing law
n after choosing a path, the trajectory definition is completed by 

the choice of a timing law
p = p(s) ⇒ s = s(t) (Cartesian space)
q = q(l) ⇒ l = l(t) (joint space)

n if s(t) = t, path parameterization is the natural one given by time
n the timing law

n is chosen based on task specifications (stop in a point, move at 
constant velocity, and so on)

n may consider optimality criteria (min transfer time, min energy,…)
n constraints are imposed by actuator capabilities (max torque, max 

velocity,…) and/or by the task (e.g., max acceleration on payload)
note: on parameterized paths, a space-time decomposition takes place

dp
ds

dp
ds

d2p
ds2p(t) =        s       p(t) =        s +         s2

. . .. .. .e.g., in Cartesian
space
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Trajectory classification
n space of definition

n Cartesian, joint
n task type

n point-to-point (PTP), multiple points (knots), continuous, 
concatenated

n path geometry
n rectilinear, polynomial, exponential, cycloid, …

n timing law
n bang-bang in acceleration, trapezoidal in velocity, polynomial, …

n coordinated or independent
n motion of all joints (or of all Cartesian components) starts and ends 

at the same instants (say, ) = 0 and ) = 1) = single timing law
or 
n motions are timed independently (according to the requested 

displacement and robot capabilities) – mostly only in the joint space
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Cartesian vs. joint trajectory planning
n planning in Cartesian space

n allows a more direct visualization of the generated path 
n obstacle avoidance, lack of “wandering”

n planning in joint space
n does not need on-line kinematic inversion

n issues in kinematic inversion
n +̇ and +̈ (or higher-order derivatives) may also be needed

n Cartesian task specifications involve the geometric path, 
but also bounds on the associated timing law

n for redundant robots, choice among ∞ABC inverse solutions, 
based on optimality criteria or additional auxiliary tasks

n off-line planning in advance is not always feasible
n e.g., when environment interaction occurs or when sensor-

based motion is needed
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Relevant characteristics

n computational efficiency and memory space
n e.g., store only the coefficients of a polynomial function

n predictability and accuracy
n vs. “wandering” out of the knots
n vs. “overshoot” on final position

n flexibility
n allowing concatenation of primitive segments
n over-fly
n …

n continuity 
n in space and/or in time
n at least <1, but also up to jerk = third derivative in time 
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A robot trajectory with bounded jerk

Robotics 1 15

video



Trajectory planning in joint space
n + = +()) in time or + = +(8) in space (then with 8 = 8()))
n it is sufficient to work component-wise (+D in vector +)
n an implicit definition of the trajectory, by solving a problem with 

specified boundary conditions in a given class of functions
n typical classes: polynomials (cubic, quintic,…), trigonometric 

(cosine, sines, combined, …), clothoids, …
n imposed conditions

n passage through points = interpolation
n initial, final, intermediate velocity (or geometric tangent for paths)
n initial, final acceleration (or geometric curvature)
n continuity of time-(or space-)derivative up to the E-th order: class <F

many of the following methods and remarks can be
directly applied also to Cartesian trajectory planning (and vice versa)!
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Cubic polynomial in space

+(8) = +G + D+ 28I + J8K + L8 + M
D+ = +N–+G

8 ∈ [0,1]

“doubly normalized” polynomial +S(8)4 coefficients
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+(0) = +G +T(0) = UG 4 conditions+T(1) = UN+(1) = +N

+S(0) = 0 Û +S(1) = 1 Û 2 + J + L = 1

+S
T (0) = M+S/M8|XYG = +S

T 1 = ⁄M+S M8|XYN = 32 + 2J + L = UN/D+

M = 0

L = UG/D+

special case: UG = UN = 0 (zero tangent)
+S
T (0) = 0 Û

+S(1) = 1 Û 2 + J = 1

+S
T 1 = 0 Û 32 + 2J = 0

Û 2 = −2

J = 3

L = 0



Cubic polynomial in time

+(\) = +DA + D+ 2\I + J\K + L\ + M
D+ = +]DA– +DA

\ = ⁄) 1 ∈ [0,1]

“doubly normalized” polynomial +S(\)4 coefficients
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+(0) = +DA +̇(0) = UDA 4 conditions+̇(1) = U]DA+(1) = +]DA

+S(0) = 0 Û +S(1) = 1 Û 2 + J + L = 1

+S
T (0) = M+S/M\|^YG = +S

T 1 = ⁄M+S M\|^YN = 32 + 2J + L =
U]DA1

D+

M = 0

L =
UDA1

D+

special case: UDA = U]DA = 0 (rest-to-rest)
+S
T (0) = 0 Û

+S(1) = 1 Û 2 + J = 1

+S
T 1 = 0 Û 32 + 2J = 0

Û
2 = −2

J = 3

L = 0



A trigonometric alternative

+ \ = +DA + D+
1 − cosb\

2

D+ = +]DA– +DA

\ = ⁄) 1 ∈ [0,1]
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+(0) = +DA +̇(0) = 0
boundary conditions

(rest-to-rest)+̇(1) = 0+(1) = +]DA

+̇(\) =
D+
1

b

2
sin b\ +̈(\) =

D+
1K

bK

2
cos b\
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Quintic polynomial

+(0) = +G +T(0) = UG1

+(\) = 2\j + J\k + L\I + M\K + l\ + m

D+ = +N − +G

6 coefficients

special case: UG = UN = 2G = 2N = 0

allows to satisfy 6 conditions, for example (in normalized time \ = )/1)
\ ∈ [0, 1]

+TT(0) = 2G1
K

+(\) = 1 − \ I +G + (3+G + UG1)\ + 2G1
K + 6UG1 + 12+G \

K/2

+ \I +N + (3+N − UN1)(1 − \) + (2N1
K − 6UN1 + 12+N) 1 − \

K/2

+(\) = +G + D+ 6\j − 15\k + 10\I
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+(1) = +N +T(1) = UN1 +TT(1) = 2N1
K



Higher-order polynomials

n a suitable solution class for satisfying symmetric boundary 
conditions (in a PTP motion) that impose zero values on 
higher-order derivatives

n the interpolating polynomial is always of odd degree
n the coefficients of such (doubly normalized) polynomial are always 

integers, alternate in sign, sum up to unity, and are zero for all 
terms up to the power = (degree-1)/2

n in all other cases (e.g., for interpolating a large number n
of points), their use is not recommended

n there is a unique polynomial of degree n − 1 interpolating n points
n E-th degree polynomials have E − 1 maximum and minimum points
n oscillations arise out of the interpolation points (wandering) 
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29th 
degree

no
overshoot

nor
wandering

14 derivatives 
are zero!

Interpolating n = 2 knots
with high-order polynomials and zero boundary conditions

9th 
degree

normalized
first derivative

(velocity
in time)

4 derivatives 
are zero

2.5 4.5!!

peaking
at midpoint
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Interpolating n knots +N …+S
with a unique polynomial of degree n − 1
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n = 2 ⇒ a line
+ \ = 2G + 2N\

= +N + +K − +N \

n = 3 ⇒ a quadric
+ \ = 2G + 2N\ + 2K\

K

2G = +N

2N =
+I − +N \C

K − +K − +N

\C \C − 1

2K =
+K − +N − +I − +N \C

\C \C − 1

\C ∈ 0,1 , + \C = +K

n = 4 ⇒ a cubic
+ \ = 2G + 2N\ + 2K\

K + 2I\
I

n ⇒ a polynomial of degree n − 1
+ \ = 2G + 2N\ + ⋯+ 2SBN\

SBN
\ =

)

1
∈ 0,1

n = 11 ⇒ (dashed)
polynomial of degree 10

better solution: a “patch” of
low-order polynomial tracts

interpolates … but wanders!!

1 = 2

)



4-3-4 polynomials
three phases (Lift off, Travel, Set down) in a pick-and-place operation in time

+r()) = 4th order polynomial
+s()) = 3rd order polynomial
+t()) = 4th order polynomial

14 coefficients
. .

. .

)G )N )K )]

+G

+N

+K

+]

initial depart approach final

+ )G = +G + )N
B = + )N

u = +N + )K
B = + )K

u = +K +()]) = +]

boundary conditions

+̇ )G = +̇ )] = 0 +̈ )G = +̈ )] = 0

+̇ )D
B = +̇ )D

u +̈()D
B) = +̈()D

u) v = 1,2

6 
passages

4 initial/final
velocity/acceleration

4 continuity up
to acceleration
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Interpolation using splines
n problem

interpolate n knots, with continuity up to the second derivative
n solution

spline: n − 1 cubic polynomials, concatenated so to pass through n knots, 
and continuous up to the second derivative at the n − 2 internal knots

n 4(n − 1) coefficients
n 4(n − 1) − 2 conditions, or

n 2(n − 1) of passage (for each cubic, in the two knots at its ends)
n n − 2 of continuity for first derivative (at the internal knots)
n n − 2 of continuity for second derivative (at the internal knots)

n 2 free parameters are still left over
n can be used, e.g., to assign initial and final derivatives, UN and US

n presented next in terms of time ), but similar in terms of space 8
n then: first derivative = velocity, second derivative = acceleration
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Building a cubic spline
+ = w()) = wF()), ) ∈ [)F, )F + ℎF]

. . . .
. .+())

+N +K

+F

+FuN

+SBN

+n

US

UN

)N(= 0) )K )F )FuN )SBN )S

time interval ℎF

wF(\) = 2FG + 2FN\ + 2FK\
K + 2FI\

I \ = ) − )F ∈ [0, ℎF]

(E = 1,⋯ ,n − 1)
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ẇF(ℎF) = ẇFuN(0)continuity conditions 
for velocity and acceleration

E = 1,⋯ , n − 2
ẅF(ℎF) = ẅFuN(0)



An efficient algorithm
1. if all velocities UF at internal knots were known, then each cubic in the spline 

would be uniquely determined by

2. impose the continuity for accelerations (n − 2 conditions)

3. expressing the coefficients 2FK, 2FI, 2FuN,K in terms of the still unknown knot 
velocities (see step 1.) yields a linear system of equations that is always solvable

tri-diagonal matrix
always invertible

unknown known vector

ẅF ℎF = 22FK + 62FIℎF = 22FuN,K = ẅFuN(0)

1

to be substituted then back in 1
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wF(0) = +F = 2FG

ẇF 0 = UF = 2FN

ℎF
K ℎF

I

2ℎF 3ℎF
K

2FK
2FI

=
+FuN − +F − UFℎF

UFuN − UF

y(ℎN,⋯ , ℎSBN)

UK
UI
⋮

⋮
USBN

=

⋮

{ ℎN,⋯ , ℎSBN, +N ⋯ , +S, UN, US
⋮



Structure of .(|)

diagonally dominant matrix (for ℎF > 0)
[the same tridiagonal matrix for all joints]
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2(ℎN + ℎK) ℎN
ℎI 2(ℎK + ℎI) ℎK

⋯

⋯

⋯

ℎSBK 2(ℎSBI + ℎSBK) ℎSBI

ℎSBN 2(ℎSBK + ℎSBN)



Structure of J(|, ~, U1, US)
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3

ℎNℎK
ℎN
K +I − +K + ℎK

K(+K − +N) − ℎKUN

3

ℎKℎI
ℎK
K +k − +I + ℎI

K(+I − +K)

⋮

⋮
3

ℎSBIℎSBK
ℎSBI
K +SBN − +SBK + ℎSBK

K (+SBK − +SBI)

3

ℎSBKℎSBN
ℎSBK
K +S − +SBN + ℎSBN

K (+SBN − +SBK) − ℎSBKUS



Properties of splines
n a spline (in space) is the solution with minimum curvature among all 

interpolating functions having continuous second derivative
n for cyclic tasks (+N = +S), it is preferable to simply impose continuity of 

first and second derivatives (i.e., velocity and acceleration in time) at the 
first/last knot as “squaring” conditions
n choosing UN = US = U (for a given U) doesn’t guarantee in general the 

continuity up to the second derivative (when in time, the acceleration)
n in this way, the first = last knot will be handled as all other internal knots

n a spline is uniquely determined from the set of data +N,⋯ , +S,

ℎN,⋯ , ℎSBN, UN, US

n in time, the total motion occurs in 1 = ∑FℎF = )S − )N

n the time intervals hk can be chosen so as to minimize 1 (linear objective 
function) under (nonlinear) bounds on velocity and acceleration in [0, 1]

n spline construction can be suitably modified when the second derivative 
(in time, the acceleration) is also assigned at the initial and final knots
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A modification
handling assigned initial and final accelerations

n two more parameters are needed in order to impose also the 
initial acceleration ÄN and final acceleration ÄS

n two “fictitious knots” are inserted in the first and the last 
original intervals, increasing the number of cubic polynomials 
from n − 1 to n + 1

n in these two knots only continuity conditions on position, 
velocity and acceleration are imposed 
Þ two free parameters are left over (one in the first cubic and 
the other in the last cubic), which are used to satisfy the 
boundary conditions on acceleration

n depending on the (time) placement of the two additional knots, 
the resulting spline changes …
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A numerical example
n n = 4 knots (o) ⇒ 3 cubic polynomials

n joint values +N = 0, +K = 2b, +I = ⁄b 2 , +k = b

n at )N = 0, )K = 2, )I = 3, )k = 5 ⇒ ℎN = 2, ℎK = 1, ℎI = 2

n boundary velocities UN = Uk = 0

n 2 added knots to impose accelerations at both ends (5 cubic polynomials)
n boundary accelerations ÄN = Äk = 0

n two placements: at )NT = 0.5 and )IT = 4.5 (×); or at )NTT = 1.5 and )kTT = 3.5 (∗)
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= placement (×) = placement (∗)
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