Robotics 1

Trajectory planning

Prof. Alessandro De Luca

Dipartimento di ingegneria Informatica
Automatica e gestionale antonio Ruberti
SAPIENZA
Università di roma

Trajectory planner interfaces

robot action described as a sequence of poses or configurations
(with possible exchange of contact forces)

TRAJECTORY PLANNER
reference profile/values
(continuous or discrete) for the robot controller

Trajectory definition

 a standard procedure for industrial robots1. define Cartesian pose points (position+orientation) using the teach-box
2. program an (average) velocity between these points, as a $0-100 \%$ of a maximum system value (different for Cartesian- and joint-space motion)
3. linear interpolation in the joint space between points sampled from the built trajectory
examples of additional features
a) over-fly

b) sensor-driven STOP
c) circular path through 3 points
main drawbacks
■ semi-manual programming (as in "first generation" robot languages)

- limited visualization of motion

> a mathematical formalization of trajectories is useful/needed

Some typical trajectories

- Point-to-point Cartesian motion with an intermediate point

Straight lines as Cartesian path

video
Interpolation with Bezier curves

Some typical trajectories

- Timing laws: Cartesian path with (dis-)continuous tangent

Joint and Cartesian trajectories

- assigned task: arm reconfiguration between two inverse kinematic solutions associated to a given end-effector pose

- initial and finall configuration
- same Cartesian pose (no change!): the motion cannot be fully specified in the Cartesian space
- to perform this task, the robot should leave the given end-effector pose and then return to it
- a self-motion could be sufficient
- if there is (task) redundancy ($m<n$)
- if the robot starts in a singularity
for "simple" manipulators (e.g., all industrial robots) and $m=n$, the execution of these tasks will require the passage through a singular configuration

Joint and Cartesian trajectories

- a reconfiguration task (or...
video

three-phase trajectory: circular path + self-motion + linear path
passing through singularity)

From task to trajectory

$\left.\begin{array}{cc}\begin{array}{cc}\text { TRAJECTORY } \\ \text { II }\end{array} & \begin{array}{l}\text { of motion } p_{d}(t)\left(\text { or } q_{d}(t)\right) \\ \text { of interaction } F_{d}(t)\end{array} \\ \begin{array}{c}\text { GEOMETRIC PATH } \\ \text { + }\end{array} & \begin{array}{c}\text { parameterized by } s: p=p(s) \\ \text { (e.g., } s \text { is the arc length })\end{array} \\ \text { TIMING LAW } & \text { describes the time evolution of } s=s(t)\end{array}\right\} p(s(t))$
$\left.\begin{array}{cc}\begin{array}{cc}\text { TRAJECTORY } \\ \text { II }\end{array} & \begin{array}{l}\text { of motion } p_{d}(t)\left(\text { or } q_{d}(t)\right) \\ \text { of interaction } F_{d}(t)\end{array} \\ \begin{array}{c}\text { GEOMETRIC PATH } \\ \text { + }\end{array} & \begin{array}{c}\text { parameterized by } s: p=p(s) \\ \text { (e.g., } s \text { is the arc length })\end{array} \\ \text { TIMING LAW } & \text { describes the time evolution of } s=s(t)\end{array}\right\} p(s(t))$
$\begin{array}{cc}\text { TRAJECTORY } & \left\{\begin{array}{l}\text { of motion } p_{d}(t)\left(\text { or } q_{d}(t)\right) \\ \text { II interaction } F_{d}(t)\end{array}\right. \\ \left.\begin{array}{cc}\text { GEOMETRIC PATH } & \begin{array}{c}\text { parameterized by } s: p=p(s) \\ \text { (e.g., } s \text { is the arc length) }\end{array} \\ \mathbf{+} & \begin{array}{l}\text { IMING LAW } \\ \text { describes the time evolution of } s=s(t)\end{array}\end{array}\right\} p(s(t))\end{array}$
$\left.\begin{array}{cc}\begin{array}{cc}\text { TRAJECTORY } \\ \text { II }\end{array} & \begin{array}{l}\text { of motion } p_{d}(t)\left(\text { or } q_{d}(t)\right) \\ \text { of interaction } F_{d}(t)\end{array} \\ \begin{array}{c}\text { GEOMETRIC PATH } \\ \text { + }\end{array} & \begin{array}{c}\text { parameterized by } s: p=p(s) \\ \text { (e.g., } s \text { is the arc length })\end{array} \\ \text { TIMING LAW } & \text { describes the time evolution of } s=s(t)\end{array}\right\} p(s(t))$
$\left.\begin{array}{cc}\begin{array}{cc}\text { TRAJECTORY } \\ \text { II }\end{array} & \begin{array}{l}\text { of motion } p_{d}(t)\left(\text { or } q_{d}(t)\right) \\ \text { of interaction } F_{d}(t)\end{array} \\ \begin{array}{c}\text { GEOMETRIC PATH } \\ \text { + }\end{array} & \begin{array}{c}\text { parameterized by } s: p=p(s) \\ \text { (e.g., } s \text { is the arc length })\end{array} \\ \text { TIMING LAW } & \text { describes the time evolution of } s=s(t)\end{array}\right\} p(s(t))$

example: TASK planner provides A, B
TRAJECTORY planner generates $p(t)$

Trajectory planning operative sequence

(1)

TASK planning

- sequence of pose points ("knots") in Cartesian space \downarrow - interpolation in Cartesian space

- Cartesian geometric path (position + orientation): $p=p(s) \beth$
(2)
- path sampling and kinematic inversion
- sequence of "knots" in joint space ᄀ
- interpolation in joint space
geometric path in joint space: $q=q(\lambda)$
additional issues to be considered in the planning process
- obstacle avoidance
- on-line/off-line computational load
- sequence (2) is more "dense" than (1)

Example

Path and timing law

- after choosing a path, the trajectory definition is completed by the choice of a timing law

$$
\begin{array}{lll}
\mathrm{p}=\mathrm{p}(\mathrm{~s}) & \Rightarrow \mathrm{s}=\mathrm{s}(\mathrm{t}) & \text { (Cartesian space) } \\
\mathrm{q}=\mathrm{q}(\lambda) & \Rightarrow \lambda=\lambda(\mathrm{t}) & \text { (joint space) }
\end{array}
$$

- if $s(t)=t$, path parameterization is the natural one given by time
- the timing law
- is chosen based on task specifications (stop in a point, move at constant velocity, and so on)
- may consider optimality criteria (min transfer time, min energy,...)
- constraints are imposed by actuator capabilities (max torque, max velocity,...) and/or by the task (e.g., max acceleration on payload)
note: on parameterized paths, a space-time decomposition takes place

$$
\begin{aligned}
& \text { e.g., in Cartesian } \\
& \text { space }
\end{aligned} \dot{p}(\mathrm{t})=\frac{\mathrm{dp}}{\mathrm{ds}} \dot{\mathrm{~s}} \quad \ddot{\mathrm{p}}(\mathrm{t})=\frac{\mathrm{dp}}{\mathrm{ds}} \ddot{\mathrm{~s}}+\frac{\mathrm{d}^{2} \mathrm{p}}{\mathrm{ds}} \dot{s}^{2}
$$

Trajectory classification

- space of definition
- Cartesian, joint
- task type
- point-to-point (PTP), multiple points (knots), continuous, concatenated
- path geometry
- rectilinear, polynomial, exponential, cycloid, ...
- timing law
- bang-bang in acceleration, trapezoidal in velocity, polynomial, ...
- coordinated or independent
- motion of all joints (or of all Cartesian components) starts and ends at the same instants (say, $t=0$ and $t=T$) $=$ single timing law or
- motions are timed independently (according to the requested displacement and robot capabilities) - mostly only in the joint space

Cartesian vs. joint trajectory planning

- planning in Cartesian space
- allows a more direct visualization of the generated path
- obstacle avoidance, lack of "wandering"
- planning in joint space
- does not need on-line kinematic inversion
- issues in kinematic inversion
- \dot{q} and \ddot{q} (or higher-order derivatives) may also be needed
- Cartesian task specifications involve the geometric path, but also bounds on the associated timing law
- for redundant robots, choice among ∞^{n-m} inverse solutions, based on optimality criteria or additional auxiliary tasks
- off-line planning in advance is not always feasible
- e.g., when environment interaction occurs or when sensorbased motion is needed

Relevant characteristics

- computational efficiency and memory space
- e.g., store only the coefficients of a polynomial function
- predictability and accuracy
- vs. "wandering" out of the knots
- vs. "overshoot" on final position
- flexibility
- allowing concatenation of primitive segments
- over-fly
- continuity
- in space and/or in time
- at least C^{1}, but also up to jerk = third derivative in time

A robot trajectory with bounded jerk

Trajectory planning in joint space

- $q=q(t)$ in time or $q=q(\lambda)$ in space (then with $\lambda=\lambda(t)$)
- it is sufficient to work component-wise (q_{i} in vector q)
- an implicit definition of the trajectory, by solving a problem with specified boundary conditions in a given class of functions
- typical classes: polynomials (cubic, quintic,...), trigonometric (cosine, sines, combined, ...), clothoids, ...
- imposed conditions
- passage through points = interpolation
- initial, final, intermediate velocity (or geometric tangent for paths)
- initial, final acceleration (or geometric curvature)
- continuity of time-(or space-)derivative up to the k-th order: class C^{k}
many of the following methods and remarks can be directly applied also to Cartesian trajectory planning (and vice versa)!

Cubic polynomial in space

$$
q(0)=q_{0} \quad q(1)=q_{1} \quad q^{\prime}(0)=v_{0} \quad q^{\prime}(1)=v_{1} \longleftarrow 4 \text { conditions }
$$

$$
q(\lambda)=q_{0}+\Delta q\left(a \lambda^{3}+b \lambda^{2}+c \lambda+d\right)
$$

$$
\begin{aligned}
& \Delta q=q_{1}-q_{0} \\
& \lambda \in[0,1]
\end{aligned}
$$

4 coefficients \longrightarrow "doubly normalized" polynomial $q_{N}(\lambda)$

$$
\begin{array}{ll}
q_{N}(0)=0 \Leftrightarrow d=0 & q_{N}(1)=1 \Leftrightarrow a+b+c=1 \\
q_{N}^{\prime}(0)=d q_{N} /\left.d \lambda\right|_{\lambda=0}=c=v_{0} / \Delta q & q_{N}^{\prime}(1)=d q_{N} /\left.d \lambda\right|_{\lambda=1}=3 a+2 b+c=v_{1} / \Delta q
\end{array}
$$

$$
\text { special case: } v_{0}=v_{1}=0 \text { (zero tangent) }
$$

$$
\left.\begin{array}{l}
q_{N}^{\prime}(0)=0 \Leftrightarrow c=0 \\
q_{N}(1)=1 \Leftrightarrow a+b=1 \\
q_{N}^{\prime}(1)=0 \Leftrightarrow 3 a+2 b=0
\end{array}\right\} \Leftrightarrow \begin{aligned}
& a=-2 \\
& b=3
\end{aligned}
$$

Cubic polynomial in time

$$
q(0)=q_{i n} q(T)=q_{\text {fin }} \quad \dot{q}(0)=v_{\text {in }} \quad \dot{q}(T)=v_{\text {fin }} \longleftarrow 4 \text { conditions }
$$

$$
q(\tau)=q_{i n}+\Delta q\left(a \tau^{3}+b \tau^{2}+c \tau+d\right)
$$

$$
\begin{aligned}
\Delta q & =q_{f i n}-q_{\text {in }} \\
\tau & =t / T \in[0,1]
\end{aligned}
$$

4 coefficients \longrightarrow "doubly normalized" polynomial $q_{N}(\tau)$

$$
\begin{array}{ll}
q_{N}(0)=0 \Leftrightarrow d=0 & q_{N}(1)=1 \Leftrightarrow a+b+c=1 \\
q_{N}^{\prime}(0)=d q_{N} /\left.d \tau\right|_{\tau=0}=c=\frac{v_{\text {in }} T}{\Delta q} & q_{N}^{\prime}(1)=d q_{N} /\left.d \tau\right|_{\tau=1}=3 a+2 b+c=\frac{v_{f i n} T}{\Delta q}
\end{array}
$$

$$
\text { special case: } v_{\text {in }}=v_{\text {fin }}=0 \text { (rest-to-rest) }
$$

$$
\left.\begin{array}{rl}
q_{N}^{\prime}(0)=0 & \Leftrightarrow c=0 \\
q_{N}(1)=1 & \Leftrightarrow a+b=1 \\
q_{N}^{\prime}(1)=0 & \Leftrightarrow 3 a+2 b=0
\end{array}\right\} \Leftrightarrow \begin{aligned}
& a=-2 \\
& b=3
\end{aligned}
$$

A trigonometric alternative

$$
\begin{aligned}
& \begin{array}{l|l|l|}
\hline q(0)=q_{\text {in }} & q(T)=q_{\text {fin }} & \dot{q}(0)=0 \\
& \dot{q}(T)=0 \\
\hline
\end{array} \\
& q(\tau)=q_{\text {in }}+\Delta q \frac{1-\cos \pi \tau}{2} \\
& \text { boundary conditions } \\
& \text { (rest-to-rest) } \\
& \Delta q=q_{f i n}-q_{\text {in }} \\
& \tau=t / T \in[0,1] \\
& \begin{array}{l}
\text { doubly } \\
\text { normalized } \\
T \\
2 \\
\sin \pi \tau \\
T^{2}
\end{array} \quad \ddot{q}(\tau)=\frac{\Delta q}{2} \cos \pi \tau
\end{aligned}
$$

Quintic polynomial

$$
\begin{aligned}
q(\tau) & =a \tau^{5}+b \tau^{4}+c \tau^{3}+d \tau^{2}+e \tau+f \quad 6 \text { coefficients } \\
\quad \tau & \in[0,1]
\end{aligned}
$$

allows to satisfy 6 conditions, for example (in normalized time $\tau=t / T$)

$$
\begin{aligned}
q(0)= & q_{0} \\
q(1)=q_{1} & q^{\prime}(0)=v_{0} T \quad q^{\prime}(1)=v_{1} T \text { q} q^{\prime \prime}(0)=a_{0} T^{2} q^{\prime \prime}(1)=a_{1} T^{2} \\
q(\tau)= & (1-\tau)^{3}\left(q_{0}+\left(3 q_{0}+v_{0} T\right) \tau+\left(a_{0} T^{2}+6 v_{0} T+12 q_{0}\right) \tau^{2} / 2\right) \\
& +\tau^{3}\left(q_{1}+\left(3 q_{1}-v_{1} T\right)(1-\tau)+\left(a_{1} T^{2}-6 v_{1} T+12 q_{1}\right)(1-\tau)^{2} / 2\right)
\end{aligned}
$$

special case: $v_{0}=v_{1}=a_{0}=a_{1}=0$

$$
q(\tau)=q_{0}+\Delta q\left(6 \tau^{5}-15 \tau^{4}+10 \tau^{3}\right) \quad \Delta q=q_{1}-q_{0}
$$

Higher-order polynomials

- a suitable solution class for satisfying symmetric boundary conditions (in a PTP motion) that impose zero values on higher-order derivatives
- the interpolating polynomial is always of odd degree
- the coefficients of such (doubly normalized) polynomial are always integers, alternate in sign, sum up to unity, and are zero for all terms up to the power $=($ degree -1$) / 2$
- in all other cases (e.g., for interpolating a large number N of points), their use is not recommended
- there is a unique polynomial of degree $N-1$ interpolating N points
- k-th degree polynomials have $k-1$ maximum and minimum points
- oscillations arise out of the interpolation points (wandering)

Interpolating $N=2$ knots

with high-order polynomials and zero boundary conditions

normalized first derivative (velocity in time)
$4.5!!$
peaking at midpoint

Interpolating N knots $q_{1} \ldots q_{N}$

with a unique polynomial of degree $N-1$

$$
\begin{aligned}
& N=2 \Rightarrow \text { a line } \\
& q(\tau)=a_{0}+a_{1} \tau \\
& =q_{1}+\left(q_{2}-q_{1}\right) \tau \\
& N \Rightarrow \text { a polynomial of degree } N-1 \\
& q(\tau)=a_{0}+a_{1} \tau+\cdots+a_{N-1} \tau^{N-1} \\
& \tau=\frac{t}{T} \in[0,1] \\
& N=3 \Rightarrow \text { a quadric } \\
& q(\tau)=a_{0}+a_{1} \tau+a_{2} \tau^{2} \\
& a_{0}=q_{1} \\
& a_{1}=\frac{\left(q_{3}-q_{1}\right) \tau_{m}{ }^{2}-\left(q_{2}-q_{1}\right)}{\tau_{m}\left(\tau_{m}-1\right)} \\
& a_{2}=\frac{\left(q_{2}-q_{1}\right)-\left(q_{3}-q_{1}\right) \tau_{m}}{\tau_{m}\left(\tau_{m}-1\right)} \\
& \tau_{m} \in(0,1), \quad q\left(\tau_{m}\right)=q_{2} \\
& N=4 \Rightarrow \text { a cubic } \\
& q(\tau)=a_{0}+a_{1} \tau+a_{2} \tau^{2}+a_{3} \tau^{3}
\end{aligned}
$$

4-3-4 polynomials

three phases (Lift off, Travel, Set down) in a pick-and-place operation in time

boundary conditions

$$
\begin{array}{ccc}
q\left(t_{0}\right)=q_{0} \quad q\left(t_{1}^{-}\right)=q\left(t_{1}^{+}\right)=q_{1} \quad q\left(t_{2}^{-}\right)=q\left(t_{2}^{+}\right)=q_{2} & \left.q\left(t_{f}\right)=q_{f}\right\} \text { passages } \\
\left.\dot{q}\left(t_{0}\right)=\dot{q}\left(t_{f}\right)=0 \quad \ddot{q}\left(t_{0}\right)=\ddot{q}\left(t_{f}\right)=0\right\} \quad \begin{array}{c}
4 \text { initial/final } \\
\text { velocity/acceleration }
\end{array} \\
\left.\dot{q}\left(t_{i}^{-}\right)=\dot{q}\left(t_{i}^{+}\right) \quad \ddot{q}\left(t_{i}^{-}\right)=\ddot{q}\left(t_{i}^{+}\right) \quad i=1,2\right\} \begin{array}{c}
4 \text { continuity up } \\
\text { to acceleration }
\end{array}
\end{array}
$$

Interpolation using splines

- problem
interpolate N knots, with continuity up to the second derivative
- solution
spline: $N-1$ cubic polynomials, concatenated so to pass through N knots, and continuous up to the second derivative at the $N-2$ internal knots
- $4(N-1)$ coefficients
- $4(N-1)-2$ conditions, or
- 2($N-1$) of passage (for each cubic, in the two knots at its ends)
- $N-2$ of continuity for first derivative (at the internal knots)
- $N-2$ of continuity for second derivative (at the internal knots)
- 2 free parameters are still left over
- can be used, e.g., to assign initial and final derivatives, v_{1} and v_{N}
- presented next in terms of time t, but similar in terms of space λ
- then: first derivative = velocity, second derivative = acceleration

Building a cubic spline

$$
\begin{aligned}
& \begin{array}{l}
\theta_{k}(\tau)=a_{k 0}+a_{k 1} \tau+a_{k 2} \tau^{2}+a_{k 3} \tau^{3} \quad \begin{array}{c}
\tau=t-t_{k} \in\left[0, h_{k}\right] \\
(k=1, \cdots, N-1)
\end{array} \\
\begin{array}{c}
\text { continuity conditions } \\
\text { for velocity and acceleration }
\end{array} \longrightarrow \begin{array}{l}
\dot{\theta}_{k}\left(h_{k}\right)=\dot{\theta}_{k+1}(0) \\
\ddot{\theta}_{k}\left(h_{k}\right)=\ddot{\theta}_{k+1}(0)
\end{array} \quad k=1, \cdots, N-2
\end{array}
\end{aligned}
$$

An efficient algorithm

1. if all velocities v_{k} at internal knots were known, then each cubic in the spline would be uniquely determined by

$$
\begin{gather*}
\theta_{k}(0)=q_{k}=a_{k 0} \tag{1}\\
\dot{\theta}_{k}(0)=v_{k}=a_{k 1}
\end{gather*} \quad\left(\begin{array}{cc}
h_{k}^{2} & h_{k}^{3} \\
2 h_{k} & 3 h_{k}^{2}
\end{array}\right)\binom{a_{k 2}}{a_{k 3}}=\binom{q_{k+1}-q_{k}-v_{k} h_{k}}{v_{k+1}-v_{k}}
$$

2. impose the continuity for accelerations ($N-2$ conditions)

$$
\ddot{\theta}_{k}\left(h_{k}\right)=2 a_{k 2}+6 a_{k 3} h_{k}=2 a_{k+1,2}=\ddot{\theta}_{k+1}(0)
$$

3. expressing the coefficients $a_{k 2}, a_{k 3}, a_{k+1,2}$ in terms of the still unknown knot velocities (see step 1.) yields a linear system of equations that is always solvable

Structure of $A(\boldsymbol{h})$

diagonally dominant matrix (for $h_{k}>0$)
[the same tridiagonal matrix for all joints]

Structure of $b\left(\boldsymbol{h}, \boldsymbol{q}, v_{1}, v_{N}\right)$

$$
\left(\begin{array}{c}
\frac{3}{h_{1} h_{2}}\left(h_{1}^{2}\left(q_{3}-q_{2}\right)+h_{2}^{2}\left(q_{2}-q_{1}\right)\right)-h_{2} v_{1} \\
\frac{3}{h_{2} h_{3}}\left(h_{2}^{2}\left(q_{4}-q_{3}\right)+h_{3}^{2}\left(q_{3}-q_{2}\right)\right) \\
\vdots \\
\vdots \\
\frac{3}{h_{N-2} h_{N-1}}\left(h_{N-2}^{2}\left(q_{N}-q_{N-1}\right)+h_{N-1}^{2}\left(q_{N-1}-q_{N-2}\right)\right)-h_{N-2} v_{N}
\end{array}\right)
$$

Properties of splines

- a spline (in space) is the solution with minimum curvature among all interpolating functions having continuous second derivative
- for cyclic tasks ($q_{1}=q_{N}$), it is preferable to simply impose continuity of first and second derivatives (i.e., velocity and acceleration in time) at the first/last knot as "squaring" conditions
- choosing $v_{1}=v_{N}=v$ (for a given v) doesn't guarantee in general the continuity up to the second derivative (when in time, the acceleration)
- in this way, the first = last knot will be handled as all other internal knots
- a spline is uniquely determined from the set of data q_{1}, \cdots, q_{N}, $h_{1}, \cdots, h_{N-1}, v_{1}, v_{N}$
- in time, the total motion occurs in $T=\sum_{k} h_{k}=t_{N}-t_{1}$
- the time intervals h_{k} can be chosen so as to minimize T (linear objective function) under (nonlinear) bounds on velocity and acceleration in $[0, T]$
- spline construction can be suitably modified when the second derivative (in time, the acceleration) is also assigned at the initial and final knots

A modification handling assigned initial and final accelerations

- two more parameters are needed in order to impose also the initial acceleration α_{1} and final acceleration α_{N}
- two "fictitious knots" are inserted in the first and the last original intervals, increasing the number of cubic polynomials from $N-1$ to $N+1$
- in these two knots only continuity conditions on position, velocity and acceleration are imposed
\Rightarrow two free parameters are left over (one in the first cubic and the other in the last cubic), which are used to satisfy the boundary conditions on acceleration
- depending on the (time) placement of the two additional knots, the resulting spline changes ...

A numerical example

- $N=4$ knots (o) $\Rightarrow 3$ cubic polynomials
- joint values $q_{1}=0, q_{2}=2 \pi, q_{3}=\pi / 2, q_{4}=\pi$
- at $t_{1}=0, t_{2}=2, t_{3}=3, t_{4}=5 \Rightarrow h_{1}=2, h_{2}=1, h_{3}=2$
- boundary velocities $v_{1}=v_{4}=0$
- 2 added knots to impose accelerations at both ends (5 cubic polynomials)
- boundary accelerations $\alpha_{1}=\alpha_{4}=0$
- two placements: at $t_{1}^{\prime}=0.5$ and $t_{3}^{\prime}=4.5(\times)$; or at $t_{1}^{\prime \prime}=1.5$ and $t_{4}^{\prime \prime}=3.5(*)$

