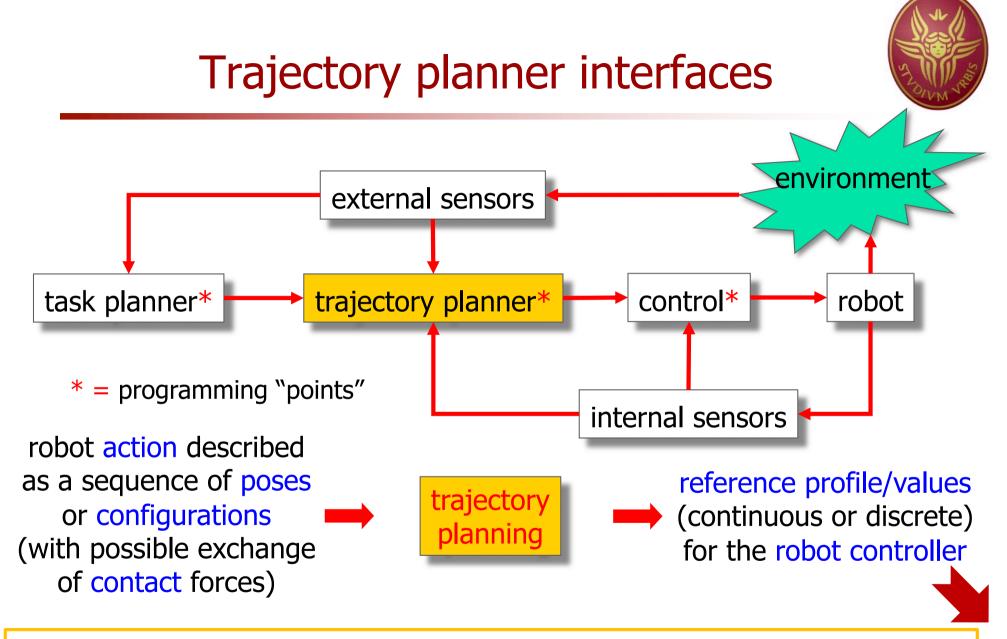


Robotics 1

Trajectory planning

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI



this is **not** motion planning (i.e., find a collision-free path among obstacles): obstacles are not considered here, except for very simple situations

Trajectory definition a standard procedure for industrial robots

- 1. define Cartesian pose points (position+orientation) using the teach-box
- 2. program an (average) velocity between these points, as a 0-100% of a maximum system value (different for Cartesian- and joint-space motion)
- linear interpolation in the joint space between points sampled from the built trajectory

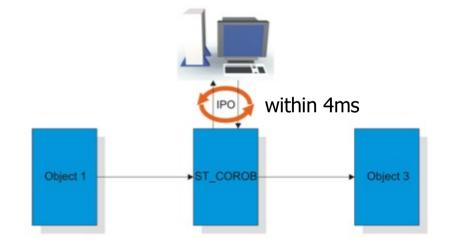
examples of additional features

a) over-fly A

- b) sensor-driven STOP c) circular path
 - c) circular path through 3 points

KUKA user interfaces

- Teach pendant
- KRL programming
- Ethernet RSI XML (12ms)



Fast Research Interface (1ms)

communication protocols for user-defined programs, also based on external sensors

Fig. 4-1: Front view of KCP

- 1 Mode selector switch
- 2 Drives ON
- 3 Drives OFF / SSB GUI
- 4 EMERGENCY STOP button
- 5 Space Mouse
- 6 Right-hand status keys
- 7 Enter key
- 8 Arrow keys
- 9 Keypad

- 10 Numeric keypad
- 11 Softkeys
- 12 Start backwards key
- 13 Start key
- 14 STOP key
- 15 Window selection key
- 16 ESC key
- 17 Left-hand status keys
- 18 Menu keys

basic instruction set:

Variables and declarations	
DECL	(>>> 10.4.1 "DECL" page 138)
ENUM	(>>> 10.4.2 "ENUM" page 140)
IMPORT IS	(>>> 10.4.3 "IMPORT IS" page 141)
STRUC	(>>> 10.4.4 "STRUC" page 141)
Motion programming	
CIRC	(>>> 10.5.1 "CIRC" page 143)
CIRC_REL	(>>> 10.5.2 "CIRC_REL" page 144)
LIN	(>>> 10.5.3 "LIN" page 146)
LIN_REL	(>>> 10.5.4 "LIN_REL" page 146)
PTP	(>>> 10.5.5 "PTP" page 148)
PTP_REL	(>>> 10.5.6 "PTP_REL" page 148)
Program execution control	
CONTINUE	(>>> 10.6.1 "CONTINUE" page 150)
EXIT	(>>> 10.6.2 "EXIT" page 150)
FOR TO ENDFOR	(>>> 10.6.3 "FOR TO ENDFOR" page 150)
GOTO	(>>> 10.6.4 "GOTO" page 151)
HALT	(>>> 10.6.5 "HALT" page 152)
IF THEN ENDIF	(>>> 10.6.6 "IF THEN ENDIF" page 152)
LOOP ENDLOOP	(>>> 10.6.7 "LOOP ENDLOOP" page 153)
REPEAT UNTIL	(>>> 10.6.8 "REPEAT UNTIL" page 153)
SWITCH CASE ENDSWITCH	(>>> 10.6.9 "SWITCH CASE ENDSWITCH"
	page 154)
WAIT FOR	(>>> 10.6.10 "WAIT FOR" page 155)
WAIT SEC	(>>> 10.6.11 "WAIT SEC" page 156)
WHILE ENDWHILE	(>>> 10.6.12 "WHILE ENDWHILE" page 156)

Inputs/outputs	
ANIN	(>>> 10.7.1 "ANIN" page 157)
ANOUT	(>>> 10.7.2 "ANOUT" page 158)
DIGIN	(>>> 10.7.3 "DIGIN" page 159)
PULSE	(>>> 10.7.4 "PULSE" page 160)
SIGNAL	(>>> 10.7.5 "SIGNAL" page 164)

Subprograms and functions	
RETURN	(>>> 10.8.1 "RETURN" page 165)

Interrupt programming	
BRAKE	(>>> 10.9.1 "BRAKE" page 166)
INTERRUPT	(>>> 10.9.2 "INTERRUPT" page 166)
INTERRUPT DECL WHEN D	(>>> 10.9.3 "INTERRUPT DECL WHEN DO"
0	page 167)
RESUME	(>>> 10.9.4 "RESUME" page 169)

Path-related switching actions (=Trigger)	
TRIGGER WHEN DISTANCE	(>>> 10.10.1 "TRIGGER WHEN DISTANCE" page 170)
TRIGGER WHEN PATH	(>>> 10.10.2 "TRIGGER WHEN PATH" page 173)

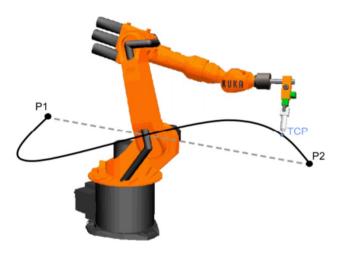
Communication
(>>> 10.11 "Communication" page 176)

System functions	
VARSTATE()	(>>> 10.12.1 "VARSTATE()" page 176)

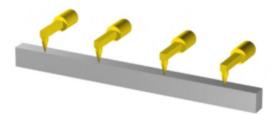
basic data set: frames, vectors + DECLaration

KRL language

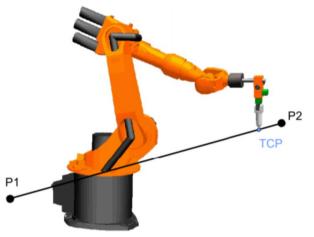
typical motion primitives



PTP motion (point-to-point, linear in joint space)

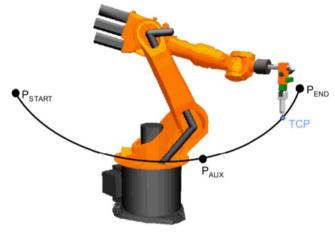


CONST orientation

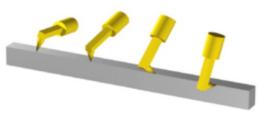


LIN motion (linear in Cartesian space)

end-effector orientation



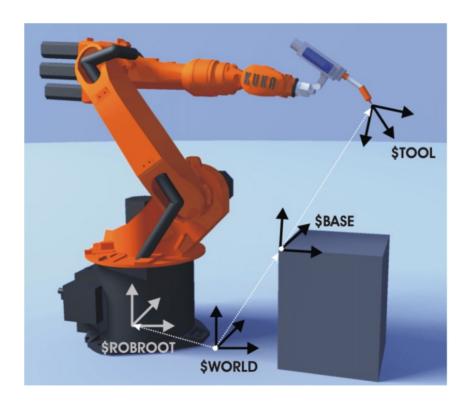
CIRC motion (circular in Cartesian space)



PTP motion (linear in RPY angles)

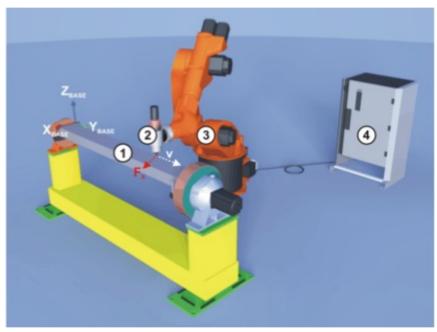
KRL language

 multiple coordinate frames (in Cartesian space) and jogging of robot joints



Example of RSI use - 1

deburring task with robot motion controlled by a force sensor



- - Z_{BASE} LIN REL YBASE

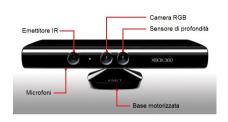
 X_{BASE}

- 1 workpiece to be deburred along the edge under force control
- (2) tool with force sensor
- ③ robot
- (4) robot controller
- F_X measured force in the X direction of the BASE coordinate system (perpendicular to the programmed path)
- v direction of motion

LIN REL = linear Cartesian path relative to an initial position (specified here by the force sensor signal)

Example of RSI use - 3

- human-robot interaction through vocal and gesture commands
- voice and human gestures acquired through a Kinect sensor



Kinect RGB-D sensor (with microphone)

simple vocabulary, e.g.:

- listen to me
- give me
- follow
- right/left hand
- the nearest hand
- thank you
- stop collaboration

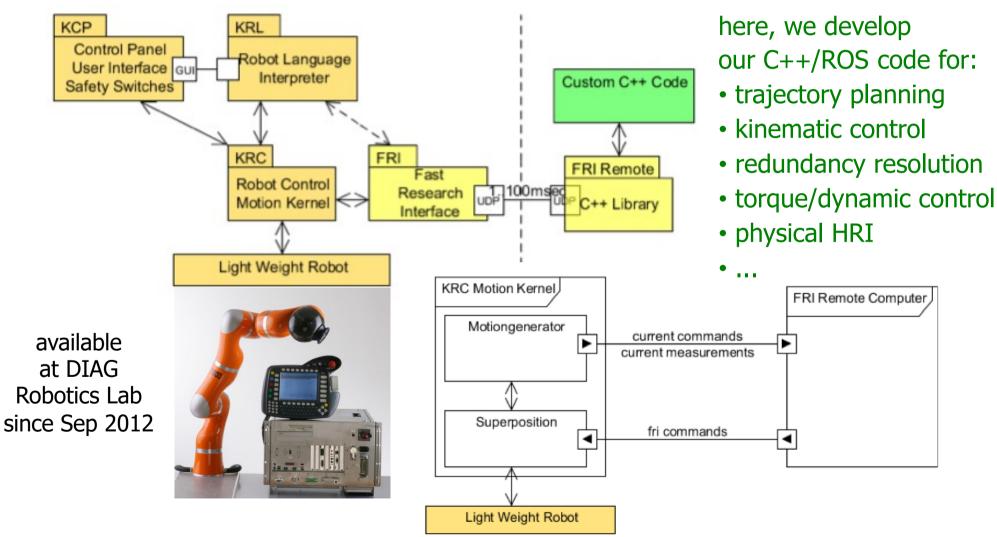
video

Fast Research Interface (FRI)

STATE OF THE PROPERTY OF THE P

for KUKA Light Weight Robot (LWR-IV)

• UDP socket communication up to 1 KHz $(1 \div 100 \text{ ms cycle time})$



Kinematic control using the FRI

KUKA Light Weight Robot (LWR-IV)

- joint velocity commands that mimic second-order control laws (defined in terms of acceleration or torques), exploiting task redundancy of the robot
- discrete-time implementation is simpler and still very accurate

Discrete-Time Redundancy Resolution at the Velocity Level with Acceleration/Torque Optimization Properties

Fabrizio Flacco Alessandro De luca

Robotics Lab, DIAG Sapienza University or Rome

September 2014

video

Trajectory definition a standard procedure for industrial robots

- 1. define Cartesian pose points (position+orientation) using the teach-box
- 2. program an (average) velocity between these points, as a 0-100% of a maximum system value (different for Cartesian- and joint-space motion)
- 3. linear interpolation in the joint space between points sampled from the built trajectory

examples of additional features

a) over-fly

- b) sensor-driven STOP c) circular path
 - c) circular path through 3 points

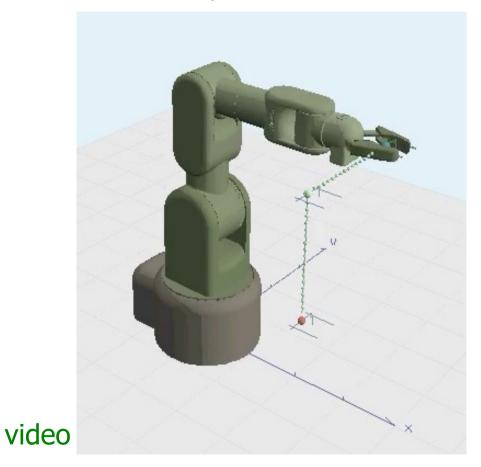
main drawbacks

- semi-manual programming (as in "first generation" robot languages)
- limited visualization of motion
 - a mathematical formalization of trajectories is useful/needed

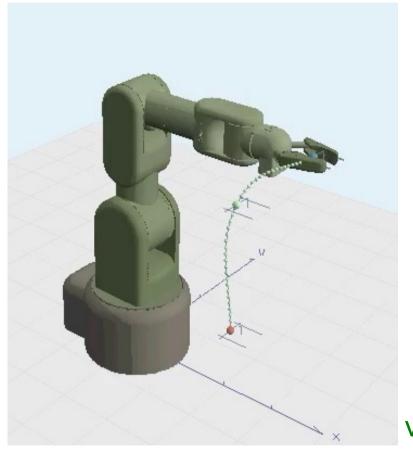
Robotics 1 12

Some typical trajectories

Point-to-point Cartesian motion with an intermediate point



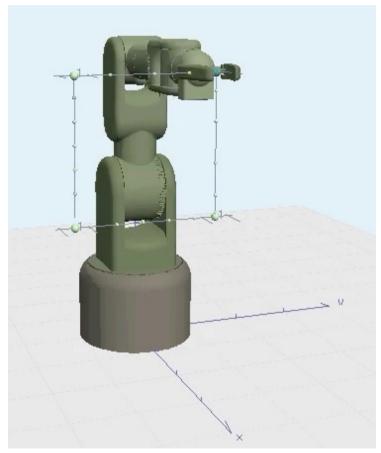
Straight lines as Cartesian path



video

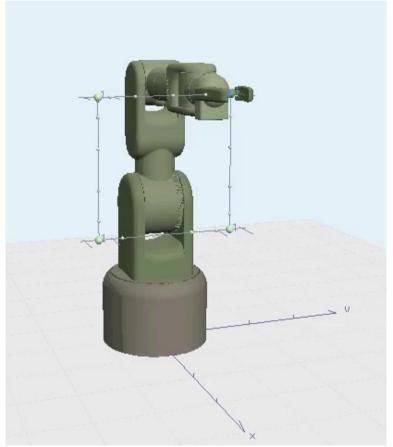
Interpolation with Bezier curves

Timing laws: Cartesian path with (dis-)continuous tangent



video

Square path at constant speed

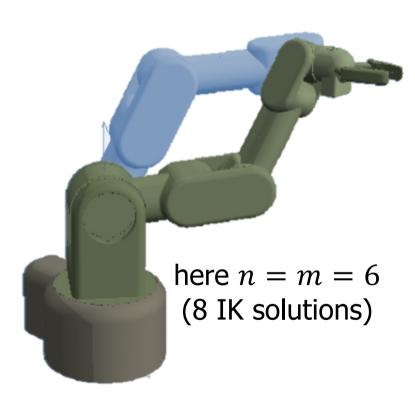


video

Square path with trapezoidal speed profile

Joint and Cartesian trajectories

 assigned task: arm reconfiguration between two inverse kinematic solutions associated to a given end-effector pose

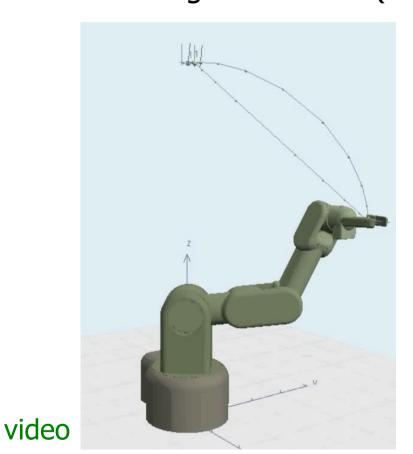


- initial and final configuration
- same Cartesian pose (no change!): the motion cannot be fully specified in the Cartesian space
- to perform this task, the robot should leave the given end-effector pose and then return to it
- a self-motion could be sufficient
 - if there is (task) redundancy (m < n)
 - if the robot starts in a singularity

for "simple" manipulators (e.g., all industrial robots) and m=n, the execution of these tasks will require the passage through a singular configuration

Joint and Cartesian trajectories

a reconfiguration task (or...



passing through singularity)

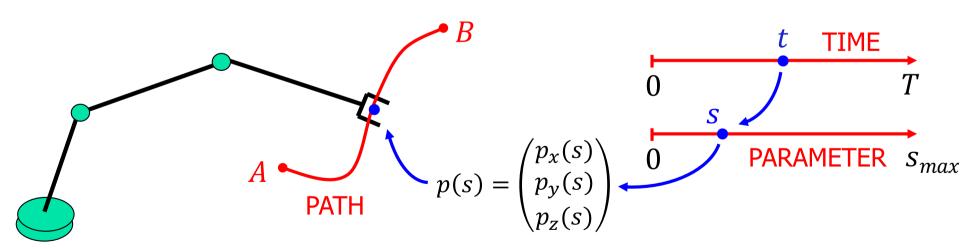


video

three-phase trajectory: circular arc + self-motion + linear path

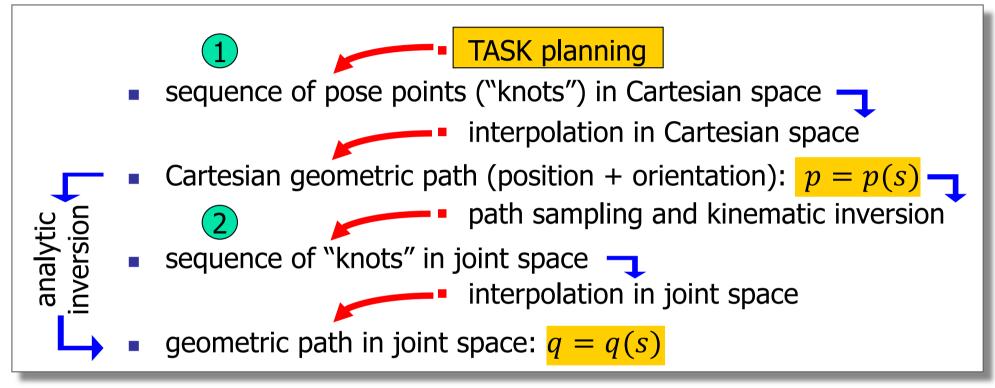
single-phase trajectory in the joint space (no stops)

From task to trajectory



example: TASK planner provides A, BTRAJECTORY planner generates p(t)

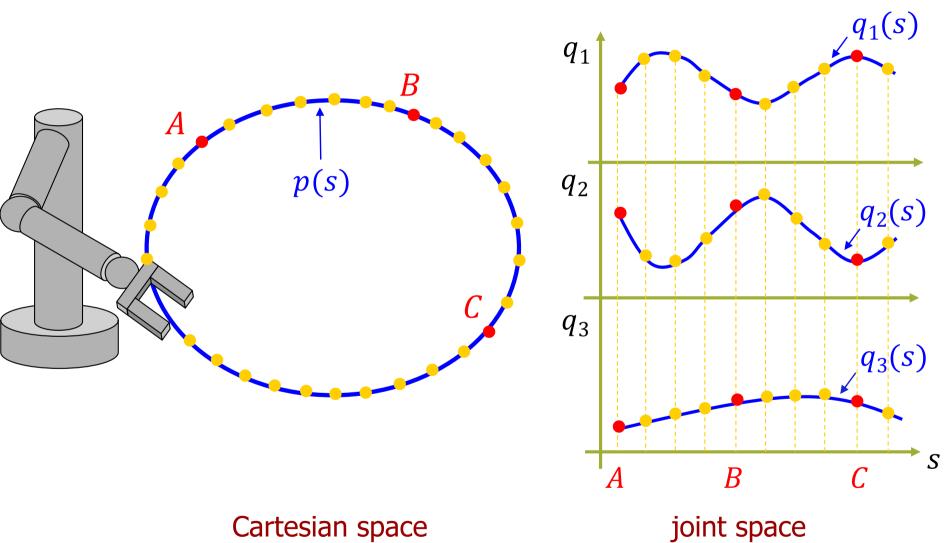
Trajectory planning



additional issues to be considered in the planning process

- obstacle avoidance
- on-line/off-line computational load
- sequence 2 is more "dense" than 1

Example



Path and timing law

 after choosing a geometric path, the trajectory definition is completed by the choice of a timing law

$$p = p(s)$$
 (Cartesian space)
 $\Rightarrow s = s(t)$
 $q = q(s)$ (joint space)

- if s(t) = t, path parameterization is given directly by time
- the timing law
 - is chosen based on task specifications (stop in a point, move at constant speed, and so on)
 - may consider optimality criteria (min transfer time, min jerk,...)
 - constraints are imposed by actuator capabilities (max torque, max velocity,...) and/or by the task (e.g., max acceleration on payload)
 - global optimum solutions typically require also to change the path (min PTP time ≤ min time on a given path between the two points!)

Robotics 1 20

Path + Timing law = Trajectory

cubic path from $q_i=0$ to $q_f=\pi$ [rad] with tangents $q_i'=q_f'=1$

$$q(s) = s + 3(\pi - 1)s^{2} - 2(\pi - 1)s^{3}$$
$$s \in [0,1]$$

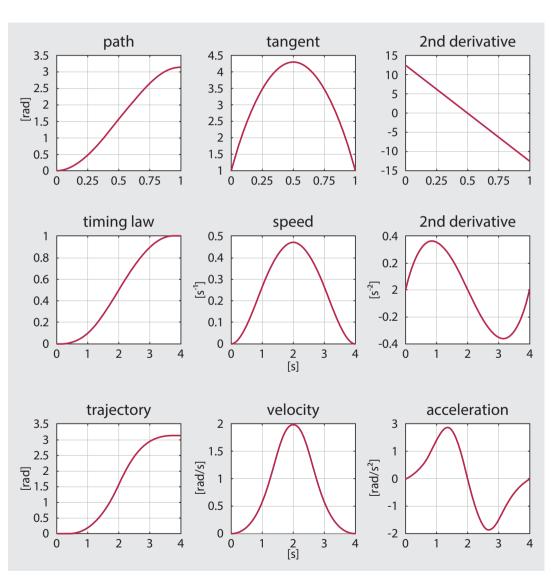
quintic timing law in
$$T = t_f - t_i = 4$$
 [s] rest-to-rest $(\dot{s}(t_i) = \dot{s}(t_f) = 0)$ and $\ddot{s}(t_i) = \ddot{s}(t_f) = 0$

$$s(t) = 10 \tau^{3} - 15\tau^{4} + 6\tau^{5}$$

$$\tau = \frac{t}{T} \in [0,1]$$

the trajectory is a polynomial in time of degree 15...

$$q(t) = q(s(t)) \qquad t \in [0,4]$$
$$(\dot{q}(t_i) = \dot{q}(t_f) = \ddot{q}(t_i) = \ddot{q}(t_f) = 0)$$



- planning space
 - Cartesian, joint
- motion task
 - point-to-point (PTP), multi-point (MP) with knots, concatenated
- geometric path
 - rectilinear, polynomial, harmonic, exponential, cycloid, ...
- timing law
 - bang-bang in acceleration, trapezoidal in velocity, polynomial, ...
- coordinated or independent
 - motion of all joints (or of all Cartesian components) starts and ends at the same instants (say, t=0 and t=T) = single timing law or
 - motions are timed independently (according to the requested displacement and robot capabilities) – mostly only in the joint space

Robotics 1 22

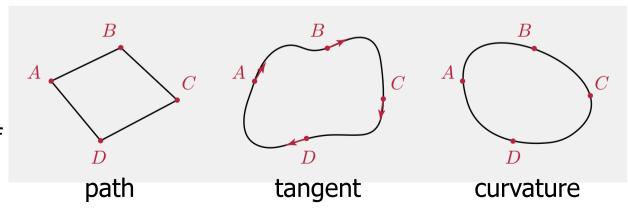
- planning in Cartesian space
 - allows a more direct visualization of the generated path
 - obstacle avoidance, lack of "wandering"
- planning in joint space
 - no need of (online) kinematic inversion, may cross singularities
- offline planning is easier but not always possible
- online (re-)planning needed when environment interaction occurs or when sensor-based motion is required
- task specification may involve also
 - boundary conditions / bounds on geometric path and timing law
 - conditions / inversion of higher-order derivatives (e.g., p'' or \ddot{q})
 - for redundant robots, choice among ∞^{n-m} inverse solutions, based on optimality criteria or additional auxiliary tasks

Robotics 1 23

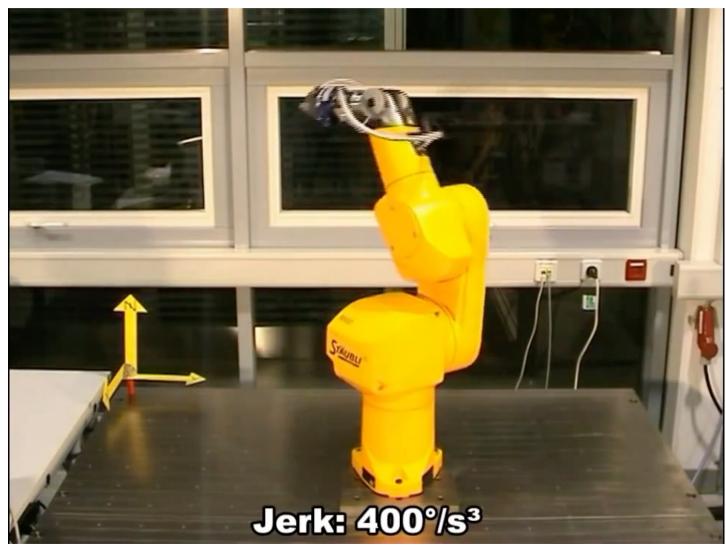
Relevant characteristics

- predictability and accuracy
 - no "wandering" out of the knots or "overshoot" on final position
- flexibility
 - allow concatenation of primitive segments, over-fly of knots
- computational efficiency and memory space for MP tasks
 - e.g., store only the coefficients of polynomial functions
- smoothness
 - in space and/or in time
 - at least C^1 in time, but also continuity up to jerk (\ddot{p} or \ddot{q} or \ddot{s})

spatial continuity of



A robot trajectory with bounded jerk



video

Robotics 1 25

Path planning

assume to work in the n-dimensional joint (configuration) space

$$q(s) = \begin{pmatrix} q_1(s) \\ q_2(s) \\ \vdots \\ q_n(s) \end{pmatrix} \qquad s \in [s_i, s_f] \qquad \text{generic parametrization}$$

path derivatives

tangent vector to the path
$$q'(s) = \frac{dq}{ds}$$
 $q''(s) = \frac{d^2q}{ds^2}$ "related" to the path curvature $\kappa(s)$

path curvature (for a generic parametrization)

$$\kappa(s) = \frac{\|q'(s) \times q''(s)\|}{\|q'(s)\|^3}$$
 if $q(s) \in \mathbb{R}$ (a scalar function)
$$\kappa(s) = \frac{|q''(s)|}{\sqrt{(1+s^2)^3}}$$

regularity condition for the path parametrization by s

$$q'(s) \neq 0$$
 $s \in [s_i, s_f]$ no cusps bounded curvature

STONYM VE

Path planning

• special parametrization by the arc length $\sigma = \sigma(s)$

$$\sigma(s) = \int_{s_i}^{s} ||q'(r)|| dr$$
 invariant w.r.t. the choice of s

• path parametrization using σ

$$q(\sigma)$$
 $\sigma \in \left[\sigma(s_i), \sigma(s_f)\right] = [0, L]$ L is the path length

path derivatives using σ

a space-time decomposition takes place on parameterized paths

$$\dot{q}(t) = \frac{dq}{ds}\dot{s}(t) = q'\dot{s}$$
 $\ddot{q}(t) = \frac{dq}{ds}\ddot{s}(t) + \frac{d^2q}{ds}\dot{s}^2(t) = q'\ddot{s} + q''\dot{s}^2$

or, equivalently, in Cartesian space
$$\dot{p}(t) = \frac{dp}{ds}\dot{s}(t) = p'\dot{s}$$
 $\ddot{p}(t) = \frac{dp}{ds}\ddot{s}(t) + \frac{d^2p}{ds^2}\dot{s}^2(t) = p'\ddot{s} + p''\dot{s}^2$

Trajectory bounds

from actuation limits to bounds on timing law

• for a given robot path q(s), consider velocity actuation limits

$$\left|\dot{q}_{j}(t)\right| \leq v_{j,\max} \qquad j = 1, ..., n \qquad \forall t \in [0, T]$$

$$\max_{s \in [s_i, s_f], t \in [0, T]} |q'_j(s)| |\dot{s}(t)| \le v_{j, \max} \qquad j = 1, ..., n$$

$$\max_{t \in [0,T]} |\dot{s}(t)| \le \min_{j=1,\dots,n} \frac{v_{j,\max}}{\max_{s \in [s_i,s_f]} |q_j'(s)|} \qquad \qquad |\dot{s}(t)| \le V \quad t \in [0,T]$$
 the higher are the q_i' , the smaller is

$$|\dot{s}(t)| \le V \quad t \in [0, T]$$

the higher are the q'_i , the smaller is V

similar but conservative handling of acceleration actuation limits

$$\left|\ddot{q}_{j}(t)\right| \leq a_{j,\max} \quad j = 1, ..., n \quad \forall t \in [0, T]$$

$$\max_{s \in [s_i, s_f], t \in [0, T]} |q'_j(s)\ddot{s}(t) + q''_j(s)\dot{s}^2(t)| \le a_{j, \max} \qquad j = 1, ..., n$$

$$\left| \ddot{q}_{j} \right| = \left| q_{j}' \, \ddot{s} + q_{j}'' \, \dot{s}^{2} \right| \le \left| q_{j}' \right| |\ddot{s}| + \left| q_{j}'' \right| \, \dot{s}^{2} \le \left| q_{j}' \right| |\ddot{s}| + \left| q_{j}'' \right| \, V^{2}$$

STONE STONE

Trajectory planning in joint space

- q = q(t) in time or q = q(s) in space (then, with timing s = s(t))
- in general, it is sufficient to work component-wise (q_i) in vector q)
- implicit definition of trajectory, by solving an interpolation problem with specified boundary conditions (b.c.) in a class of functions
- typical classes: polynomials (linear, cubic, quintic,...), trigonometric (cosines, sines, combined, ...), clothoids, exponentials, ...
- imposed conditions (in space and/or in time) [+ bounds/limits]
 - passage through points = interpolation (PTP or MP)
 - initial, final, intermediate velocity (or geometric tangent for paths)
 - initial, final acceleration (or curvature/second space derivative)
 - continuity of time-(or space-)derivative up to the k-th order: class C^k

many of the following methods and remarks can be directly applied component-wise also to Cartesian trajectory planning!

PTP cubic polynomial in space

$$q(0) = q_i$$
 $q(1) = q_f$ $q'(0) = v_i$ $q'(1) = v_f$ 4 conditions
$$\Delta q = q_f - q_i$$

$$s \in [0,1]$$

4 coefficients \longrightarrow "doubly normalized" polynomial $q_N(s)$

$$q_N(0) = 0 \Leftrightarrow d = 0$$
 $q_N(1) = 1 \Leftrightarrow a + b + c = 1$ $q'_N(0) = dq_N/ds|_{s=0} = c = v_i/\Delta q$ $q'_N(1) = dq_N/ds|_{s=1} = 3a + 2b + c = v_f/\Delta q$

special case: $v_i = v_f = 0$ (zero tangent)

$$q'_{N}(0) = 0 \Leftrightarrow c = 0$$

$$q_{N}(1) = 1 \Leftrightarrow a + b = 1$$

$$q'_{N}(1) = 0 \Leftrightarrow 3a + 2b = 0$$

$$\Rightarrow a = -2$$

$$b = 3$$

PTP path planning in joint space

from initial Cartesian data

- 2R planar arm with unitary link lengths
- from $p_i = (0.6, -0.4)$ to $p_f = (1, 1)$ [m]
- with $p'_i = (-2, 0)$ and $p'_f = (2, 2)$
- inverse kinematics (elbow-down solution)

$$q_i = (-1.790, 2.439)$$
 and $q_f = (0, \pi/2)$ [rad]

inverse differential kinematics (on tangents)

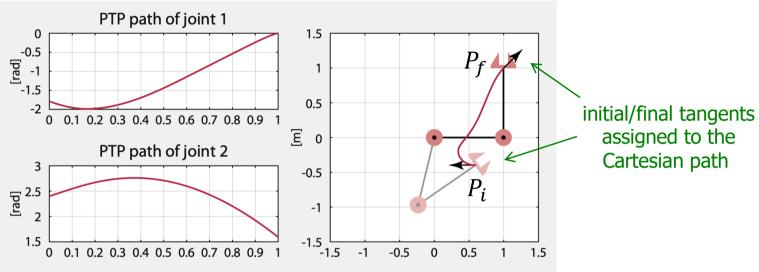
$$J(q) = \begin{pmatrix} -(s_1 + s_{12}) & -s_{12} \\ c_1 + c_{12} & c_{12} \end{pmatrix} \longrightarrow J(q_i) = \begin{pmatrix} 0.4 & -0.576 \\ 0.6 & 0.817 \end{pmatrix} \qquad J(q_f) = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$$
$$q'_i = J^{-1}(q_i)p'_i = \begin{pmatrix} -2.430 \\ 1.784 \end{pmatrix} \qquad q'_f = J^{-1}(q_f)p'_f = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$

cubic interpolation

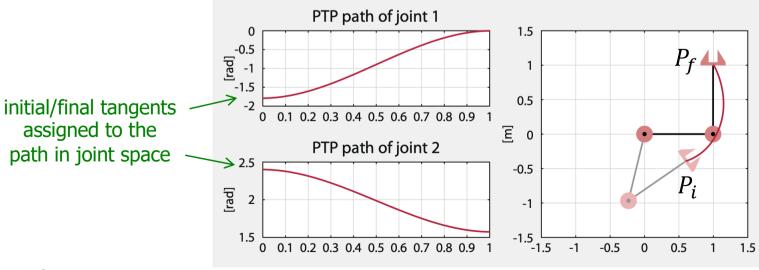
$$q(s) = {q_1(s) \choose q_2(s)} = {-1.790 - 2.430 \ s + 8.230 \ s^2 - 4.010 \ s^3 \choose 2.439 + 1.784 \ s - 2.067 \ s^2 - 0.550 \ s^3}$$
 $s \in [0,1]$

PTP path planning in joint space

from initial Cartesian data



- dropping requirements on p_i' and p_f' and imposing instead $q_i'=q_f'=0$



PTP cubic polynomial in time

$$q(0) = q_i$$

$$q(T) = q_f$$

$$\dot{q}(0) = v_i$$

$$\dot{q}(T) = v_f$$

 $q(0) = q_i \mid q(T) = q_f \mid \dot{q}(0) = v_i \mid \dot{q}(T) = v_f \mid 4 \text{ conditions}$

$$q(\tau) = q_i + \Delta q(a\tau^3 + b\tau^2 + c\tau + d)$$

$$\Delta q = q_f - q_i$$

$$\tau = t/T \in [0,1]$$

4 coefficients \longrightarrow "doubly normalized" polynomial $q_N(\tau)$

$$q_N(0) = 0 \Leftrightarrow d = 0$$

$$q_N(1) = 1 \Leftrightarrow a + b + c = 1$$

$$q'_N(0) = dq_N/d\tau|_{\tau=0} = c = \frac{v_i T}{\Delta q}$$

$$q'_{N}(0) = dq_{N}/d\tau|_{\tau=0} = c = \frac{v_{i}T}{\Delta q} \qquad q'_{N}(1) = dq_{N}/d\tau|_{\tau=1} = 3a + 2b + c = \frac{v_{f}T}{\Delta q}$$

special case: $v_i = v_f = 0$ (rest-to-rest)

$$q_N'(0) = 0 \Leftrightarrow c = 0$$

$$q_N(1) = 1 \Leftrightarrow a+b=1$$

$$q'_N(1) = 0 \Leftrightarrow 3a+2b=0$$

$$\Rightarrow a = -2$$

$$b = 3$$

$$q(0) = q_i$$

$$q(T) = q_f$$

$$\dot{q}(0)=0$$

$$q(0) = q_i \quad q(T) = q_f \quad \dot{q}(0) = 0 \quad \dot{q}(T) = 0$$

boundary conditions (rest-to-rest)

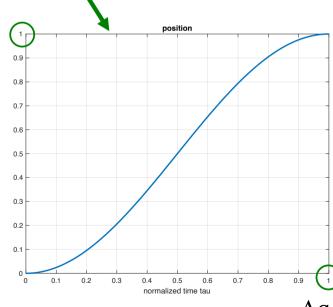
$$q(\tau) = q_i + \Delta q \, \frac{1 - \cos \pi \tau}{2}$$

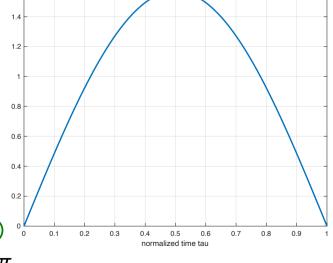
$$\Delta q = q_f - q_i$$

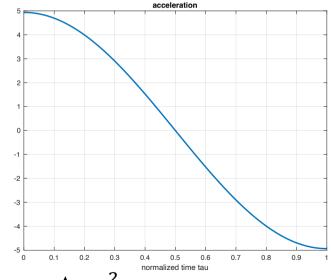
$$\tau = t/T \in [0,1]$$

$$\dot{q}(\tau) = \frac{\Delta q}{T} \frac{\pi}{2} \sin \pi \tau$$

$$\dot{q}(\tau) = \frac{\Delta q}{T} \frac{\pi}{2} \sin \pi \tau$$
 $\ddot{q}(\tau) = \frac{\Delta q}{T^2} \frac{\pi^2}{2} \cos \pi \tau$







$$\max \dot{q}(\tau) = \dot{q}(0.5) = \frac{\Delta q}{T} \frac{\pi}{2}$$

$$\max \dot{q}(\tau) = \dot{q}(0.5) = \frac{\Delta q}{T} \frac{\pi}{2} \qquad \max |\ddot{q}(\tau)| = \ddot{q}(0) = -\ddot{q}(1) = \frac{\Delta q}{T^2} \frac{\pi^2}{2}$$

(with
$$\Delta q > 0$$
)

PTP quintic polynomial

$$q(\tau) = a\tau^5 + b\tau^4 + c\tau^3 + d\tau^2 + e\tau + f$$
 6 coefficients
$$\tau \in [0, 1]$$

allows to satisfy 6 conditions, for example (in normalized time $\tau = t/T$)

$$q(0) = q_i$$
 $q(1) = q_f$ $q'(0) = v_i T$ $q'(1) = v_f T$ $q''(0) = a_i T^2$ $q''(1) = a_f T^2$

$$q(\tau) = (1 - \tau)^3 (q_i + (3q_i + v_i T)\tau + (a_i T^2 + 6v_i T + 12q_i)\tau^2/2) + \tau^3 (q_f + (3q_f - v_f T)(1 - \tau) + (a_f T^2 - 6v_f T + 12q_f)(1 - \tau)^2/2)$$

special case:
$$v_i = v_f = a_i = a_f = 0$$

$$q(\tau) = q_i + \Delta q(6\tau^5 - 15\tau^4 + 10\tau^3)$$
 $\Delta q = q_f - q_i$

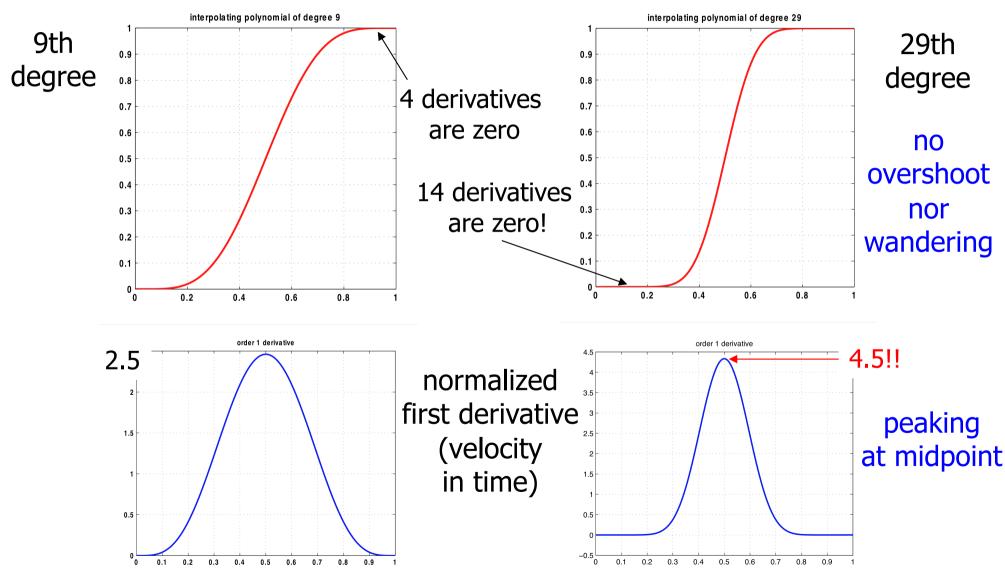
Higher-order polynomials

- a suitable solution class for satisfying symmetric boundary conditions (in a PTP motion) that impose zero values on higher-order derivatives
 - the interpolating polynomial is always of odd degree
 - the coefficients of such (doubly normalized) polynomials are always integers, alternate in sign, sum up to unity, and are zero for all terms up to the power = (degree-1)/2
- for MP tasks (e.g., for interpolating a large number N of points), their use is not recommended
 - there is a unique polynomial of degree N-1 interpolating N points
 - k-th degree polynomials have k-1 maximum and minimum points
 - oscillations arise out of the interpolation points (wandering)

Robotics 1 36

PTP interpolation

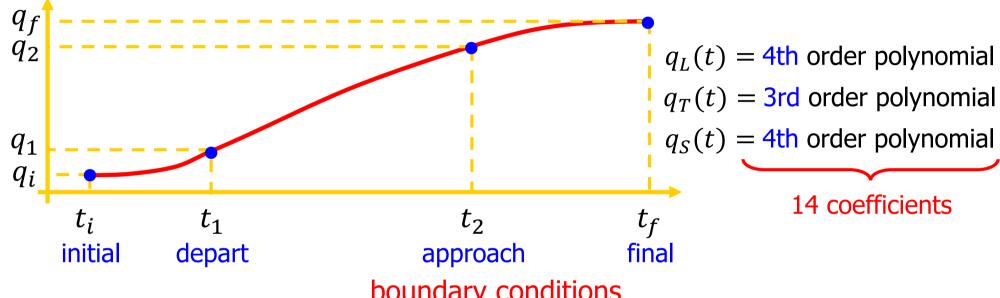
with higher-order polynomials and zero boundary conditions



4-3-4 polynomials

(special MP interpolation of N=4 knots in time)

three phases (Lift off, Travel, Set down) in a pick-and-place operation in time



the solution to this 14-dimensional linear system can be found in symbolic form!

MP interpolation of N knots $\bar{q}_1 \dots \bar{q}_N$

STONE STONE

with a **unique** polynomial of degree N-1

$$N=2 \Rightarrow \text{a line}$$

$$q(\tau) = a_0 + a_1 \tau$$

= $\bar{q}_1 + (\bar{q}_2 - \bar{q}_1)\tau$

$$N \Rightarrow$$
 a polynomial of degree $N-1$

$$q(\tau) = a_0 + a_1 \tau + \dots + a_{N-1} \tau^{N-1}$$

$$\tau = \frac{t}{T} \in [0,1]$$

$$N = 3 \Rightarrow a \text{ quadratic}$$

$$q(\tau) = a_0 + a_1 \tau + a_2 \tau^2$$

$$a_{0} = \overline{q}_{1}$$

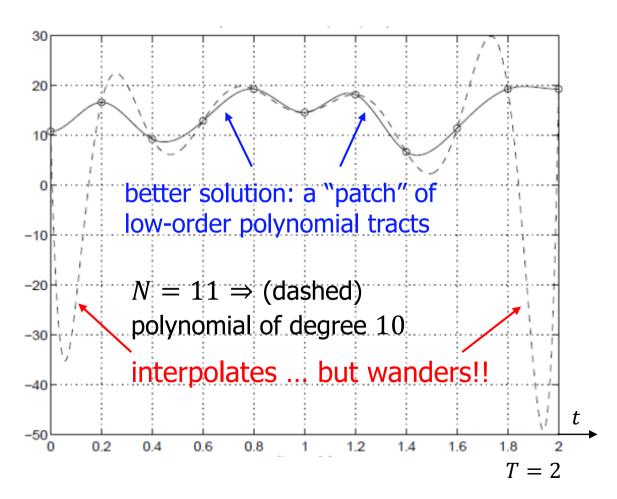
$$a_{1} = \frac{(\overline{q}_{3} - \overline{q}_{1})\tau_{m}^{2} - (\overline{q}_{2} - \overline{q}_{1})}{\tau_{m}(\tau_{m} - 1)}$$

$$a_{2} = \frac{(\overline{q}_{2} - q_{1}) - (\overline{q}_{3} - \overline{q}_{1})\tau_{m}}{\tau_{m}(\tau_{m} - 1)}$$

at
$$\tau_m \in (0,1)$$
, $q(\tau_m) = \overline{q}_2$

$$N = 4 \Rightarrow \text{a cubic}$$

 $q(\tau) = a_0 + a_1\tau + a_2\tau^2 + a_3\tau^3$

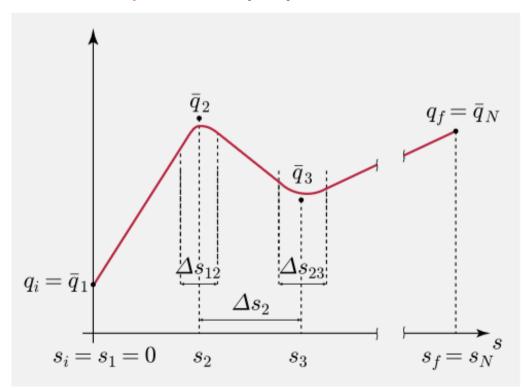


MP linear interpolation with parabolic blends

• interpolate N knots using linear segments, with continuity of the tangent $\{\overline{q}_1, \overline{q}_2, \dots, \overline{q}_N\}$ N knots

$$q(s) = \{\theta_k(s), \text{ for } s \in [s_k, s_{k+1}], k = 1, ..., N-1\}$$
 $N-1$ interpolating functions

use quadratic polynomials that blend linear segments and overfly knots



$$\Delta s_k = s_{k+1} - s_k \quad \text{intervals}$$

$$\theta_k(s) = \overline{q}_k + (\overline{q}_{k+1} - \overline{q}_k) \frac{s - s_k}{\Delta s_k}$$

linear segments

$$\theta_k' = \frac{\overline{q}_{k+1} - \overline{q}_k}{\Delta s_k}$$

 $\Delta s_{k-1,k}$ blending interval (at \bar{q}_k)

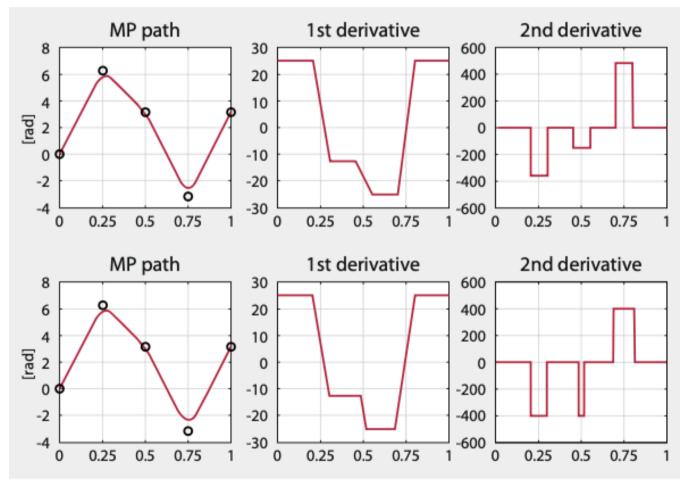
$$\theta_k^{\prime\prime} = \frac{\theta_k^{\prime} - \theta_{k-1}^{\prime}}{\Delta s_{k-1,k}} \Rightarrow \int \Rightarrow \int \frac{\text{quadratic}}{\text{function}}$$

blend with constant second derivative

MP linear interpolation

with parabolic blends

- N=5 knots: $\overline{q}_1=0$, $\overline{q}_2=2\pi$, $\overline{q}_3=\pi$, $\overline{q}_4=-\pi$, $\overline{q}_5=\pi$ [rad]
- at $s_1 = 0$, $s_2 = 0.25$, $s_3 = 0.5$, $s_4 = 0.75$, $s_5 = 1$ (equispaced)



 $\Delta s_{k-1,k} = 0.2$ for all blending intervals

bounded

$$|\theta_k^{\prime\prime}| \le 400 \text{ [rad]}$$

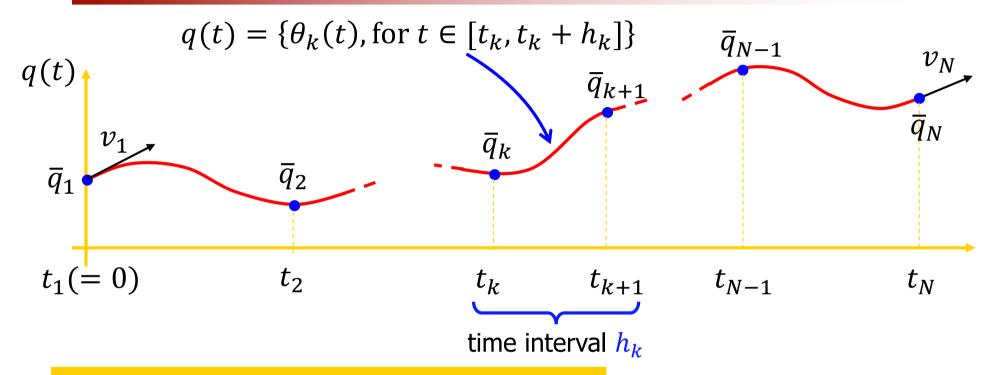
$$\downarrow \downarrow$$
 $\Delta s_{k-1,k}$ accordingly

MP interpolation using splines

- problem interpolate N knots, with continuity up to the second derivative
- **solution** \iff de Casteljau@Citroën, Bézier@Renault, de Boor@General Motors (late 1950) ... spline: N-1 cubic polynomials, concatenated so to pass through N knots, and continuous up to the second derivative at the N-2 internal knots
- 4(N-1) coefficients
- \blacksquare 4(N 1) 2 conditions, or
 - 2(N-1) of passage (for each cubic, in the two knots at its ends)
 - $\blacksquare N-2$ of continuity for first derivative (at the internal knots)
 - $\blacksquare N-2$ of continuity for second derivative (at the internal knots)
- 2 free parameters are still left over
 - can be used, e.g., to assign initial/final first derivatives $(q_1'/v_1, q_N'/v_N)$
- presented next in terms of time t, but similar in terms of space s
 - here: first derivative = velocity, second derivative = acceleration

SAN AND SAN AN

Building a cubic spline



$$\theta_k(\tau) = a_{k0} + a_{k1}\tau + a_{k2}\tau^2 + a_{k3}\tau^3 \qquad \tau = t - t_k \in [0, h_k]$$

$$(k = 1, \dots, N - 1)$$

continuity conditions for velocity and acceleration

$$\dot{\theta}_k(h_k) = \dot{\theta}_{k+1}(0)
\ddot{\theta}_k(h_k) = \ddot{\theta}_{k+1}(0)$$

$$k = 1, \dots, N-2$$

An efficient algorithm

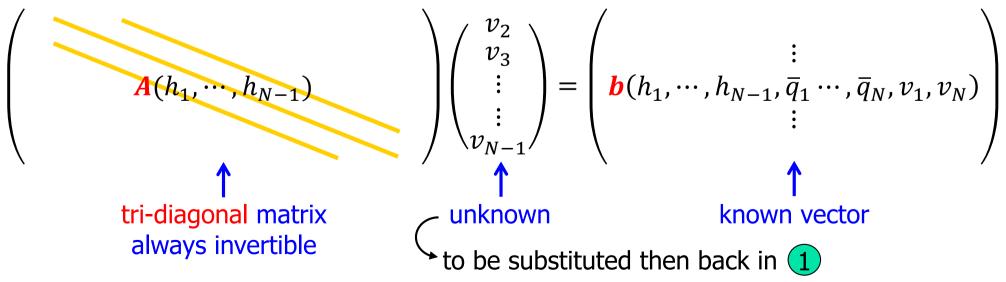
1. if all velocities v_k at internal knots were known, then each cubic in the spline would be uniquely determined by

$$\begin{array}{ll} \theta_k(0) = \overline{q}_k = a_{k0} \\ \dot{\theta}_k(0) = v_k = a_{k1} \end{array} \begin{pmatrix} h_k^2 & h_k^3 \\ 2h_k & 3h_k^2 \end{pmatrix} \begin{pmatrix} a_{k2} \\ a_{k3} \end{pmatrix} = \begin{pmatrix} \overline{q}_{k+1} - \overline{q}_k - v_k h_k \\ v_{k+1} - v_k \end{pmatrix}$$

2. impose the continuity for accelerations (N-2)

$$\ddot{\theta}_k(h_k) = 2a_{k2} + 6a_{k3}h_k = 2a_{k+1,2} = \ddot{\theta}_{k+1}(0)$$

3. expressing the coefficients a_{k2} , a_{k3} , $a_{k+1,2}$ in terms of the still unknown knot velocities (see step 1.) yields a linear system of equations that is always solvable



Robotics 1

Structure of A(h)

$$\begin{pmatrix} 2(h_1+h_2) & h_1 \\ h_3 & 2(h_2+h_3) & h_2 \\ & \cdots & & \\ & & \\ & & h_{N-2} & 2(h_{N-3}+h_{N-2}) & h_{N-3} \\ & & & h_{N-1} & 2(h_{N-2}+h_{N-1}) \end{pmatrix}$$

diagonally dominant matrix (for $h_k > 0$) [the same tridiagonal matrix for all joints]

Structure of $b(\boldsymbol{h}, \boldsymbol{q}, v_1, v_N)$

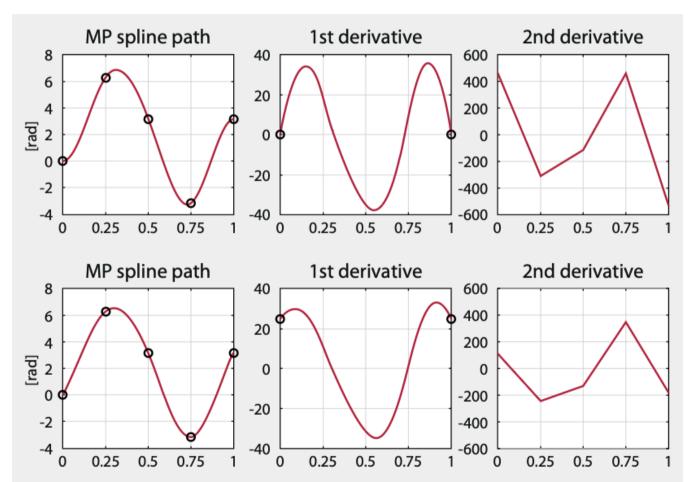
$$\begin{pmatrix} \frac{3}{h_{1}h_{2}}(h_{1}^{2}(\overline{q}_{3}-\overline{q}_{2})+h_{2}^{2}(\overline{q}_{2}-\overline{q}_{1}))-h_{2}v_{1} \\ \frac{3}{h_{2}h_{3}}(h_{2}^{2}(\overline{q}_{4}-\overline{q}_{3})+h_{3}^{2}(\overline{q}_{3}-\overline{q}_{2})) \\ \vdots \\ \frac{3}{h_{N-3}h_{N-2}}(h_{N-3}^{2}(\overline{q}_{N-1}-\overline{q}_{N-2})+h_{N-2}^{2}(\overline{q}_{N-2}-\overline{q}_{N-3})) \\ \frac{3}{h_{N-2}h_{N-1}}(h_{N-2}^{2}(\overline{q}_{N}-\overline{q}_{N-1})+h_{N-1}^{2}(\overline{q}_{N-1}-\overline{q}_{N-2}))-h_{N-2}v_{N} \end{pmatrix}$$

Robotics 1

Spline interpolation

numerical example in space

- N=5 knots: $\overline{q}_i=\overline{q}_1=0$, $\overline{q}_2=2\pi$, $\overline{q}_3=\pi$, $\overline{q}_4=-\pi$, $\overline{q}_f=\overline{q}_5=\pi$ [rad]
- at $s_1 = 0$, $s_2 = 0.25$, $s_3 = 0.5$, $s_4 = 0.75$, $s_5 = 1$ (equispaced)



$$q_i' = q_f' = 0$$
 as boundary conditions

$$q'_{i} = \frac{\overline{q}_{2} - \overline{q}_{1}}{s_{2} - s_{1}}$$
$$q'_{f} = \frac{\overline{q}_{N} - \overline{q}_{N-1}}{s_{N} - s_{N-1}}$$

as boundary conditions

Properties of splines

- a natural spline in space $(q_i'' = 0, q_f'' = 0)$ has the minimum curvature among all interpolating functions with continuous second derivative
- for cyclic tasks $(\bar{q}_1 = \bar{q}_N)$, it is preferable to simply impose continuity of first and second derivatives (i.e., velocity and acceleration in time) at the first/last knot as "squaring" conditions
 - choosing $v_1 = v_N = v$ (for a given v) doesn't guarantee in general the continuity up to the acceleration (when in space, up to the second derivative)
 - in this way, the first = last knot will be handled as all other internal knots
- **a** spline is uniquely determined from the set of data $\overline{q}_1, \dots, \overline{q}_N, h_1, \dots, h_{N-1}, v_1, v_N$
- in time, the total motion occurs in $T = \sum_k h_k = t_N t_1$
- the time intervals h_k can be chosen so to minimize T (linear objective function) under (nonlinear) bounds on velocity and acceleration in [0, T]
- spline construction can be suitably modified when the second derivative (in time, the acceleration) is also assigned at the initial and final knots

A modification

STONE STONE

handling assigned initial and final accelerations

- two more parameters are needed in order to impose also the initial acceleration a_1 and final acceleration a_N
- two "virtual knots" are inserted in the first and in the last original intervals, increasing the number of cubic polynomials from N-1 to N+1
- in the two virtual knots only continuity conditions on position, velocity and acceleration are imposed (i.e., no extra values!)
 - ⇒ two free parameters are left over (one in the first cubic and the other in the last cubic), which are used to satisfy the boundary conditions on acceleration
- depending on the (time) placement of the two additional knots, the resulting spline changes ...

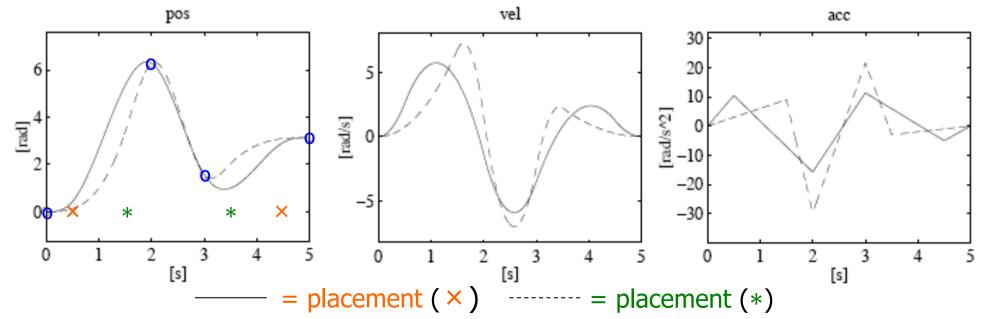
see textbook Sect. 4.3.2 (pp. 210-212) and Problem 4.8

Robotics 1

Spline interpolation

numerical example in time with b.c. on acceleration

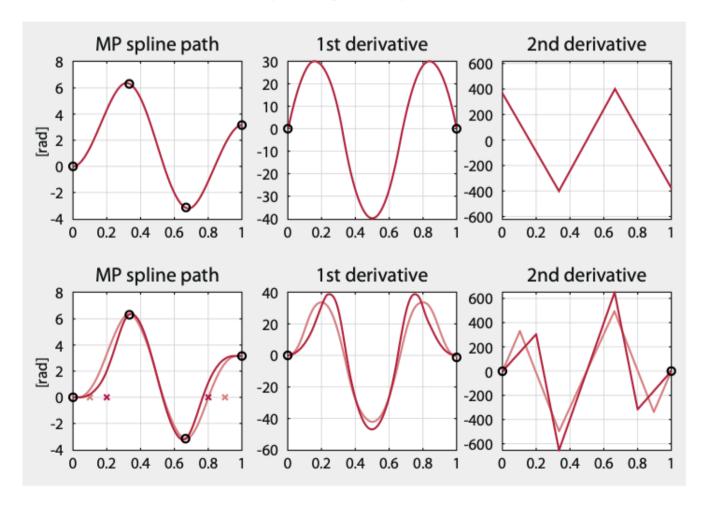
- N = 4 knots (o) \Rightarrow 3 cubic polynomials
 - joint values $\bar{q}_1=0$, $\bar{q}_2=2\pi$, $\bar{q}_3=\pi/2$, $\bar{q}_4=\pi$ [rad]
 - at $t_1 = 0$, $t_2 = 2$, $t_3 = 3$, $t_4 = 5 \Rightarrow h_1 = 2$, $h_2 = 1$, $h_3 = 2$ [s]
 - boundary velocities $v_1 = v_4 = 0$ [rad/s]
- 2 added knots to impose accelerations at both ends (5 cubic polynomials)
 - boundary accelerations $a_1 = a_4 = 0$ [rad/s²]
 - two placements: at $t_1' = 0.5$ and $t_3' = 4.5$ (×); or at $t_1'' = 1.5$ and $t_4'' = 3.5$ (*)



Spline interpolation

numerical example in space with b.c. on curvature

- N=4 knots: $\bar{q}_1=0$, $\bar{q}_2=2\pi$, $\bar{q}_3=-\pi$, $\bar{q}_4=\pi$ [rad]
- at $s_1 = 0$, $s_2 = 1/3$, $s_3 = 2/3$, $s_4 = 1$ (equispaced)



$$q_i'=q_f'=0$$

NO b.c. on q_i'' , q_f''

$$q'_i = q'_f = 0$$

 $q''_i = q''_f = 0$

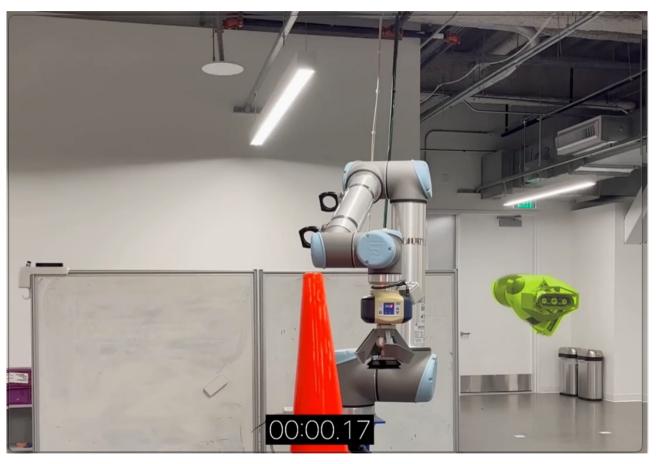
TWO choices for the virtual knots

$$s_a = 0.1$$
, $s_b = 0.9$
 $s_a = 0.2$, $s_b = 0.8$

Point-to-point optimal motion

computation in real time

- point-to-point motion without prescribed interpolation path (infinite feasible trajectories ...)
- in the presence of obstacles (robot modeled with "bubbles")
- optimization algorithm penalizes jerk and acceleration, leading to smooth and short trajectories
- real-time computation (100 ms) with a CUDA (Compute Unified Device Architecture) library using NVIDIA parallel GPUs



video: see https://curobo.org/index.html#overview

library content:

forward kinematics (URDF), numerical inverse kinematics (L-BFGS), collision checking, motion generation, model predictive control

Robotics 1 52