Robotics 1

Statics and force transformations

Prof. Alessandro De Luca

Dipartimento di Ingegneria Informatica
automatica e gestionale Antonio Ruberti

SAPIENZA
UNIVERSITÀ DI ROMA

Generalized forces and torques

- $\tau=$ forces/torques exerted by the motors at the robot joints
- $F=$ equivalent forces/torques exerted by the robot end-effector
- $F_{e}=$ forces/torques exerted by the environment at the end-effector
- principle of action and reaction: $F_{e}=-F$
reaction from environment is equal and opposite to the robot action on it

Transformation of forces - Statics

in a given configuration

- what is the transformation between F at robot end-effector and τ at joints? in static equilibrium conditions (i.e., no motion):
- what F will be exerted on environment by a τ applied at the robot joints?
- what τ at the joints will balance a $F_{e}(=-F)$ exerted by the environment?
all equivalent formulations

Virtual displacements and works

- without kinetic energy variation (zero acceleration)
- without dissipative effects (zero velocity)
the virtual work is the work done by all forces/torques acting on the system for a given virtual displacement

Hint: one of the advantages of working with (D-H) joint variables is that they are already free of equality constraints (= generalized coordinates)

Principle of virtual work

Exercise on static balance whiteboard ...

Two 2R planar robots, A and B, having unitary link lengths are in their D-H configurations $\boldsymbol{q}_{A}=(3 \pi / 4,-\pi / 2), \boldsymbol{q}_{B}=(\pi / 2,-\pi / 2)[\mathrm{rad}]$ w.r.t. their base frames, as in figure (no gravity!).
Robot A pushes against robot B with a force $\boldsymbol{F} \in \mathbb{R}^{2}$ of norm $\|\boldsymbol{F}\|=10[\mathrm{~N}]$, as in figure. Compute the joint torques $\boldsymbol{\tau}_{A} \in \mathbb{R}^{2}$ and $\boldsymbol{\tau}_{B} \in \mathbb{R}^{2}$ (both in [Nm]) that keep the two robots in equilibrium.
i) evaluate the task Jacobians of the two robots $\left(\dot{q}_{A} \rightarrow v_{A}\right.$ and $\left.\dot{q}_{B} \rightarrow v_{B}\right)$

$$
\begin{array}{ll}
\text { robot } A \boldsymbol{\tau}_{A 2} \boldsymbol{J}_{A}\left(\boldsymbol{q}_{A}\right)=\left.\left(\begin{array}{cc}
-\sin q_{1}-\sin \left(q_{1}+q_{2}\right) & -\sin \left(q_{1}+q_{2}\right) \\
\cos q_{1}+\cos \left(q_{1}+q_{2}\right) & \cos \left(q_{1}+q_{2}\right)
\end{array}\right)\right|_{\boldsymbol{q}=\boldsymbol{q}_{A}}=\left(\begin{array}{cc}
-\sqrt{2} & -\frac{\sqrt{2}}{2} \\
0 & \frac{\sqrt{2}}{2}
\end{array}\right) \\
\boldsymbol{x}_{A, 0} & \boldsymbol{J}_{B}\left(\boldsymbol{q}_{B}\right)=\left.\left(\begin{array}{cc}
-\sin q_{1}-\sin \left(q_{1}+q_{2}\right) & -\sin \left(q_{1}+q_{2}\right) \\
\cos q_{1}+\cos \left(q_{1}+q_{2}\right) & \cos \left(q_{1}+q_{2}\right)
\end{array}\right)\right|_{\boldsymbol{q}=\boldsymbol{q}_{B}}=\left(\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right)
\end{array}
$$

ii) express the exchanged force in the proper frame(s) ...

$$
\begin{aligned}
& { }^{A} \boldsymbol{F}_{A}=\left.\|\boldsymbol{F}\| \cdot\binom{\cos \left(q_{1}+q_{2}\right)}{\sin \left(q_{1}+q_{2}\right)}\right|_{\boldsymbol{q}=\boldsymbol{q}_{A}}=10\binom{\sqrt{2} / 2}{\sqrt{2} / 2}[\mathrm{~N}] \\
& { }^{B} \boldsymbol{F}_{B}={ }^{B} \boldsymbol{R}_{A}{ }^{A} \boldsymbol{F}_{B}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\left(-{ }^{A} \boldsymbol{F}_{A}\right)={ }^{A} \boldsymbol{F}_{A}=10\binom{\sqrt{2} / 2}{\sqrt{2} / 2}[\mathrm{~N}] \\
& \text { planar rotation matrix } \in \text { SO(2) }
\end{aligned}
$$

iii) ... and compute the torque for each robot by the virtual work principle

$$
\begin{aligned}
& \boldsymbol{\tau}_{A}=\boldsymbol{J}_{A}^{T}\left(\boldsymbol{q}_{A}\right)^{A} \boldsymbol{F}_{A}=\binom{-10}{0}[\mathrm{Nm}] \\
& \boldsymbol{\tau}_{B}=\boldsymbol{J}_{B}^{T}\left(\boldsymbol{q}_{B}\right)^{B} \boldsymbol{F}_{B}=\binom{0}{5 \sqrt{2}}=\binom{0}{7.0711}[\mathrm{Nm}] .
\end{aligned}
$$

Duality between velocity and force

$J(q)$

velocity \dot{q}
(or displacement $d q$) in the joint space
generalized velocity v (or e-e displacement $\left(\begin{array}{c}d p \\ \omega\end{array} d t\right)$)
in the Cartesian space
forces/torques τ at the joints
generalized forces F at the Cartesian e-e
$J^{T}(q)$
the singular configurations for the velocity map are the same

$$
\rho(J)=\rho\left(J^{T}\right)
$$ as those for the force map

Robot Jacobian

 decomposition in linear subspaces and duality

Dual subspaces of velocity and force
 summary of definitions

$$
\begin{aligned}
\mathcal{R}(J) & =\left\{v \in \mathbb{R}^{m}: \exists \dot{q} \in \mathbb{R}^{n}, J \dot{q}=v\right\} \\
\mathcal{N}\left(J^{T}\right) & =\left\{F \in \mathbb{R}^{m}: J^{T} F=0\right\} \\
& \mathcal{R}(J) \bigoplus \mathcal{N}\left(J^{T}\right)=\mathbb{R}^{m}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{R}\left(J^{T}\right)= & \left\{\tau \in \mathbb{R}^{n}: \exists F \in \mathbb{R}^{m}, J^{T} F=\tau\right\} \\
\mathcal{N}(J)= & \left\{\dot{q} \in \mathbb{R}^{n}: J \dot{q}=0\right\} \\
& \mathcal{R}\left(J^{T}\right) \bigoplus \mathcal{N}(J)=\mathbb{R}^{n}
\end{aligned}
$$

Velocity and force singularities list of possible cases

$$
\rho=\operatorname{rank}(J)=\operatorname{rank}\left(J^{T}\right) \leq \min (m, n)
$$

1. $\rho=m$
$\exists \dot{q} \neq 0: J \dot{q}=0$
$\mathcal{N}\left(J^{T}\right)=\{0\}$
2. $\rho<m$
$\exists \dot{q} \neq 0: J \dot{q}=0$
$\exists F \neq 0: J^{T} F=0\left|\exists F \neq 0: J^{T} F=0\right| \exists F \neq 0: J^{T} F=0$

Singularity analysis

planar 2 R arm with
link lengths l_{1} and l_{2}

$$
J(q)=\left(\begin{array}{cc}
-\left(l_{1} s_{1}+l_{2} s_{12}\right) & -l_{2} s_{12} \\
l_{1} c_{1}+l_{2} c_{12} & l_{2} c_{12}
\end{array}\right) \quad \operatorname{det} J(q)=l_{1} l_{2} s_{2}
$$

singularity at $q_{2}=0$ (arm straight) $\Rightarrow J=\left(\begin{array}{cc}-\left(l_{1}+l_{2}\right) s_{1} & -l_{2} s_{1} \\ \left(l_{1}+l_{2}\right) c_{1} & l_{2} c_{1}\end{array}\right)$

$$
\mathcal{R}(J)=\alpha\binom{-s_{1}}{c_{1}} \quad \mathcal{N}\left(J^{T}\right)=\alpha\binom{c_{1}}{s_{1}}
$$

$\mathcal{R}\left(J^{T}\right)=\beta\binom{l_{1}+l_{2}}{l_{2}} \quad \mathcal{N}(J)=\beta\binom{l_{2}}{-\left(l_{1}+l_{2}\right)}$
$\mathcal{R}(J)$
singularity at $q_{2}=\pi$ (arm folded) $\Rightarrow J=\left(\begin{array}{cc}\left(l_{2}-l_{1}\right) s_{1} & l_{2} s_{1} \\ -\left(l_{2}-l_{1}\right) c_{1} & -l_{2} c_{1}\end{array}\right)$
$\mathcal{R}(J)$ and $\mathcal{N}\left(J^{T}\right)$ as above
$\mathcal{R}\left(J^{T}\right)=\beta\binom{l_{2}-l_{1}}{l_{2}}\left(\right.$ for $\left.l_{1}=l_{2}: \beta\binom{0}{1}\right) \quad \mathcal{N}(J)=\beta\binom{l_{2}}{-\left(l_{2}-l_{1}\right)}\left(\right.$ for $l_{1}=l_{2}: \beta\binom{1}{0}$)

Force manipulability

- in a given configuration, evaluate how effective is the transformation between joint torques and end-effector forces
- "how easily" can the end-effector apply generalized forces (or balance applied ones) in the various directions of the task space
- in singular configurations, there are directions in the task space where external forces are balanced without the need of any joint torque
- we consider all end-effector forces that can be applied (or balanced) by choosing joint torque vectors of unit norm

$$
\tau^{T} \tau=1 \quad \square \quad F^{T} J J^{T} F=1
$$

same directions of the principal axes of the velocity ellipsoid, but with semi-axes of inverse lengths

task force
 manipulability ellipsoid

Velocity and force manipulability

dual comparison of actuation vs. control
planar 2R arm with unitary links
note:
velocity and force ellipsoids have been drawn using a different scale for a better view
velocity manipulability ellipsoid

Cartesian actuation task (joint-to-task high transformation ratio): preferred velocity (or force) directions are those where the ellipsoid stretches

Cartesian control task (low transformation ratio = high resolution): preferred velocity (or force) directions are those where the ellipsoid shrinks

Ellipsoids and polytopes

manipulability versus task limits due to bounds

- manipulability: instantaneous capability of moving the end-effector (or of resisting to task forces) in different directions
- task limits: maximum velocity (or static balanced force) achievable in different task directions in the presence of joint velocity bounds

velocity ellipsoid and polytope at \boldsymbol{q} for a 2 R robot with joint velocity bounds
- a polytope is the convex hull of a set of p points in an Euclidean space
- linear maps transform polytopes into polytopes

Velocity and force transformations

- same reasoning made for relating end-effector to joint forces/torques (virtual work principle + static equilibrium) used also for transforming forces and torques applied at different places of a rigid body and/or expressed in different reference frames
transformation among generalized velocities

$$
\left[\begin{array}{c}
{ }^{A} v_{A} \\
{ }^{A} \omega
\end{array}\right]=\left[\begin{array}{cc}
{ }^{A} R_{B} & -{ }^{A} R_{B} S\left({ }^{B} r_{B A}\right) \\
0 & { }^{A} R_{B}
\end{array}\right]\left[\begin{array}{c}
{ }^{B} v_{B} \\
{ }^{B} \omega
\end{array}\right]=J_{B A}\left[\begin{array}{c}
{ }^{B} v_{B} \\
{ }^{B} \omega
\end{array}\right]
$$

$$
\left[\begin{array}{c}
{ }^{B} f_{B} \\
{ }^{B} m
\end{array}\right]=J_{B A}^{T}\left[\begin{array}{c}
A \\
f_{A} \\
{ }^{A} m
\end{array}\right]=\left[\begin{array}{cc}
{ }^{B} R_{A} & 0 \\
S\left({ }^{B} r_{B A}\right)^{B} R_{A} & { }^{B} R_{A}
\end{array}\right]\left[\begin{array}{l}
A \\
f_{A} \\
{ }^{A} m
\end{array}\right]
$$

transformation among generalized forces
for skew-symmetric matrices, it is: $-S^{T}(r)=S(r)$

Example: 6D force/torque sensor

Example: Gear reduction at joints

transmission element

with motion reduction ratio $n_{r}: 1$

one of the simplest applications of the principle of virtual work:

$$
P_{m}=u_{m} \dot{\theta}_{m}=u \dot{\theta}=P
$$

$\dot{\theta}_{m}=n_{r} \dot{\theta}$
$u=n_{r} u_{m}$

