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Inversion of differential kinematics

n find the joint velocity vector that realizes a desired task/
end-effector velocity (“generalized” = linear and/or angular)

n problems
n near a singularity of the Jacobian matrix (too high �̇�)
n for redundant robots (no standard “inverse” of a rectangular matrix)

in these cases, more robust inversion methods are needed

�̇� = 𝐽!"(𝑞)𝑣

𝐽 square and
non-singular at 𝑞

𝑣 = 𝐽(𝑞)�̇�
generalized velocity
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Incremental solution
to inverse kinematics problems

n joint velocity inversion can be used also to solve on-line and 
incrementally a “sequence” of inverse kinematics problems

n each problem differs by a small amount 𝑑𝑟 from previous one

Robotics 1 3

direct kinematics

𝑟 = 𝑓!(𝑞)
differential kinematics

(here with a square, analytic Jacobian)

𝑑𝑟 =
𝜕𝑓!(𝑞)
𝜕𝑞

𝑑𝑞 = 𝐽! 𝑞 𝑑𝑞

first, increment the
desired task variables

𝑟 + 𝑑𝑟 = 𝑓!(𝑞)
then, solve the inverse 

kinematics problem

𝑞 = 𝑓!"#(𝑟 + 𝑑𝑟)

(possibly, with a numerical method
from the current configuration)

first, solve the inverse 
differential kinematics problem

𝑑𝑞 = 𝐽!"# 𝑞 𝑑𝑟
then, increment the

original joint variables

𝑞 ⟶ 𝑞 + 𝑑𝑞

𝑟
current next

⟶ 𝑟 + 𝑑𝑟

𝑞
current



Behavior close to a singularity

n problems arise only when 
commanding joint motion by 
inversion of a given Cartesian 
motion task

n here, a linear Cartesian 
trajectory for a planar 2R robot

n there is a sudden increase of 
the displacement/velocity of the 
first joint near 𝜃$ = −𝜋 (end-
effector close to the origin), 
despite the required Cartesian 
displacement is small
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motion
start

�̇� = 𝐽"#(𝑞)𝑣

constant
𝑣



Moving close to a singularity
in inverse (differential) kinematics problems

n on-line inversion of velocities or incremental inverse kinematics
n singular configurations for a 6R robot with spherical wrist

Robotics 1 5

wrist
joint axes 
4 & 6 aligned

elbow 
arm stretched 
(or folded)

shoulder 
wrist center on
first joint axis

video



Moving close to a singularity
6R KUKA Agile (with spherical wrist)

video Ecole de Technologie Supérieure, CoR Lab, Montreal
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n wrist, shoulder and elbow singularities: feasible joint motions versus
end-effector (linear) paths crossing/coming close to critical points



Moving close to a singularity
6R Universal Robots UR5 (no spherical wrist)

video Ecole de Technologie Supérieure, CoR Lab, Montreal
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n same ‘wrist’, shoulder, and elbow singularities, though with slightly 
different configurations and full rotation of joints 4 & 6 in first case



Simulation results
planar 2R robot in straight line Cartesian motion
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a line from right to left, at 𝛼 = 170° angle with 𝑥-axis,
executed at constant speed 𝑣 = 0.6 m/s for 𝑇 = 6 s

start

end

regular case�̇� = 𝐽"#(𝑞)𝑣

stroboscopic 
view

all d
one

in M
ATLAB



Simulation results
planar 2R robot in straight line Cartesian motion
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path at
𝛼 = 170°

regular
case

𝑞1

𝑞2

error due
only to

numerical
integration
(10!"#)

distance to
singularity by
the minimum
singular value

𝜎$%& = 𝜎' > 0
of Jacobian 𝐽

�̇�1

�̇�2



Simulation results
planar 2R robot in straight line Cartesian motion
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a line from right to left, at 𝛼 = 178° angle with 𝑥-axis,
executed at constant speed 𝑣 = 0.6 m/s for 𝑇 = 6 s

close to singular case

startend

�̇� = 𝐽"#(𝑞)𝑣

stroboscopic 
view



Simulation results
planar 2R robot in straight line Cartesian motion
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path at
𝛼 = 178°

close to
singular

case

𝑞1

𝑞2

still very
small, but
increased
numerical
integration

error
(2 ) 10!()

large
peak
of �̇�*

�̇�1

�̇�2



Simulation results
planar 2R robot in straight line Cartesian motion
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a line from right to left, at 𝛼 = 178° angle with 𝑥-axis,
executed at constant speed 𝑣 = 0.6 m/s for 𝑇 = 6 s

close to singular case
with joint velocity saturation at 𝑉+ = 300°/𝑠

startend

�̇� = 𝐽"#(𝑞)𝑣

stroboscopic 
view



Simulation results
planar 2R robot in straight line Cartesian motion
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path at
𝛼 = 178°

close to
singular

case

𝑞1

𝑞2

actual
position
error!!
(6 cm)

saturated
value
of �̇�*

�̇�1

�̇�2

to be recovered 
using an 

error feedback 
control action!



Damped Least Squares (DLS) method

n inversion of differential kinematics as unconstrained optimization problem
n function 𝐻 = weighted sum of two objectives (norm of joint velocity and 

error norm on achieved end-effector velocity) to be minimized
n 𝐽,-. can be used for both cases: 𝑚 = 𝑛 (square) and 𝑚 < 𝑛 (redundant)
n 𝜆 = 0 when “far enough” from singularities: 𝐽,-. = 𝐽/ 𝐽 𝐽/ 0* = 𝐽0* or 𝐽#

n with 𝜆 > 0, there is a (vector) error 𝜖 (= 𝑣 − 𝐽�̇�) in executing the desired 
end-effector velocity 𝑣 (check that 𝜖 = 𝜆 𝜆𝐼2 + 𝐽 𝐽/ 0*𝑣), but the joint 
velocities are always reduced (“damped”)

two equivalent expressions, but the second is more convenient in redundant robots!
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min
"̇
𝐻 =

𝜆
2 �̇� # +

1
2 𝐽�̇� − 𝑣 #, 𝜆 ≥ 0

�̇� = 𝜆𝐼$ + 𝐽%𝐽 &'𝐽%𝑣 = 𝐽% 𝜆𝐼( + 𝐽 𝐽% &'𝑣 = 𝐽)*+ 𝑣prove it!

prove it!



Simulation results
planar 2R robot in straight line Cartesian motion
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a line from right to left, at 𝛼 = 179.5° angle with 𝑥-axis,
executed at constant speed 𝑣 = 0.6 m/s for 𝑇 = 6 s

a comparison of inverse and damped inverse Jacobian methods
even closer to singular case (removing joint velocity saturation)

startend startend

some
position
error ...

�̇� = 𝐽"#(𝑞)𝑣 �̇� = 𝐽%&'(𝑞)𝑣



Simulation results
planar 2R robot in straight line Cartesian motion
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here, a very fast
reconfiguration of 

first joint ...

a completely different inverse solution,
around/after crossing the region 

close to the folded singularity

path at
𝛼 = 179.5°�̇� = 𝐽"#(𝑞)𝑣 �̇� = 𝐽%&'(𝑞)𝑣

stroboscopic 
views



Simulation results
planar 2R robot in straight line Cartesian motion
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extremely large
peak velocity
of first joint!!

smoother
joint motion
with limited

joint velocities!

𝑞1

𝑞2

�̇� = 𝐽"#(𝑞)𝑣 �̇� = 𝐽%&'(𝑞)𝑣

�̇�1

�̇�2

�̇�1

�̇�2

𝑞1

𝑞2



Simulation results
planar 2R robot in straight line Cartesian motion
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minimum
singular
value of

𝐽𝐽! and λ𝐼 + 𝐽𝐽!

error (25 mm)
when crossing
the singularity, 

later recovered by
a feedback action
(𝑣 ⇒ 𝑣 + 𝐾"𝑒"

with 𝑒" = 𝑝# − 𝑝(𝑞))

increased
numerical
integration

error
(3 ) 10!))

they differ only 
when damping

factor is non-zero

damping factor
𝜆 is chosen
non-zero

only close to
singularity!

�̇� = 𝐽"#(𝑞)𝑣 �̇� = 𝐽%&'(𝑞)𝑣



§ if 𝑣 ∈ ℛ 𝐽 , the differential constraint is satisfied (𝑣 is feasible)

§ else, 𝐽�̇� = 𝐽 𝐽#𝑣 = 𝑣-, where 𝑣- minimizes the error 𝐽�̇� − 𝑣

Pseudoinverse method
a constrained optimization (minimum norm) problem

solution pseudoinverse of 𝐽
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orthogonal projection of 𝑣 on ℛ 𝐽

such thatmin
)̇
𝐻 =

1
2
�̇� 2 𝐽�̇� = 𝑣 ⇔

min
)̇∈'

𝐻 =
1
2
‖�̇�‖$

𝑆 =
�̇� ∈ 𝑅+ ∶

𝐽�̇� − 𝑣 is minimum

�̇� = 𝐽#𝑣



Definition of the pseudoinverse

𝐽 𝐽# 𝐽 = 𝐽 𝐽# 𝐽 𝐽# = 𝐽#

𝐽 𝐽#
G
= 𝐽 𝐽# 𝐽# 𝐽

G
= 𝐽#𝐽

n explicit expressions for full rank cases
n if 𝜌(𝐽) = 𝑚 = 𝑛: 𝐽# = 𝐽&'

n if 𝜌(𝐽) = 𝑚 < 𝑛: 𝐽# = 𝐽% 𝐽 𝐽% &'

n if 𝜌 𝐽 = 𝑛 < 𝑚: 𝐽# = 𝐽%𝐽 &' 𝐽%

n 𝐽# always exists and is computed in general numerically 
using the SVD = Singular Value Decomposition of 𝐽
n e.g., with the MATLAB function pinv (which uses in turn svd)

given 𝐽, is the unique matrix 𝐽# satisfying the four relationships
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Numerical example
Jacobian of 2R robot with 𝑙# = 𝑙$ = 1 at 𝑞$ = 0 (rank 𝜌(𝐽) = 1)

�̇� = 𝐽#𝑣 is the minimum norm joint velocity vector that realizes exactly 𝑣4
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𝐽 = −2𝑠# −𝑠#
2𝑐# 𝑐#

𝐽# =
1
5
−2𝑠# 2𝑐#
−𝑠# 𝑐#

𝑥

𝑦

𝑙1 𝑙2
𝑞1

ℛ 𝐽
𝒩 𝐽-

§ at 𝑞" = 𝜋/6: for 𝑣 = −0.5
0 [m/s], �̇� = 𝐽#𝑣 = 0.1

0.05 [rad/s] ⇒ 𝑣+ = 𝐽 𝐽#𝑣 =
− ⁄1 8

⁄3 8
[m/s]

𝑣
𝑣.

§ at 𝑞" = 𝜋/2: 𝐽 = −2 −1
0 0 ⇒ 𝐽# = −0.4 0

−0.2 0 ; now the same 𝑣 ∈ ℛ 𝐽 , �̇� = 0.2
0.1 ⇒ 𝑣+ = 𝑣 (no error!)

𝐽 𝐽# = 𝑠"' −𝑠"𝑐"
−𝑠"𝑐" 𝑐"'

𝐽#𝐽 = 0.8 0.4
0.4 0.2

both symmetric …

forbidden
velocity direction

feasible velocity direction



General solution for 𝑚 < 𝑛

projection matrix in the null space 𝒩(𝐽)

ALL solutions of the inverse differential kinematics problem can be written as

any joint
velocity...

this is the solution of a slightly modified constrained optimization problem
(“biased” toward the joint velocity 𝜉, chosen to avoid obstacles, joint limits, etc.)
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verification of the actual task velocity that is being obtained

⇔such that 𝐽�̇� = 𝑣min
)̇
𝐻 =

1
2
�̇� − 𝜉 2

min
)̇∈'

𝐻 =
1
2
‖�̇� − 𝜉‖$

𝑆 = �̇� ∈ 𝑅+ ∶
𝐽�̇� − 𝑣 is minimum

𝑣,-./,0 = 𝐽�̇� = 𝐽 𝐽#𝑣 + 𝐼 − 𝐽#𝐽 𝜉 = 𝐽 𝐽#𝑣 + 𝐽 𝐼 − 𝐽#𝐽 𝜉 = 𝐽 𝐽# 𝐽𝑤 = 𝐽𝑤 = 𝑣

if 𝑣 ∈ ℛ 𝐽 ⇒ 𝑣 = 𝐽𝑤 for some 𝑤 ∈ ℝ+

�̇� = 𝐽#𝑣 + 𝐼 − 𝐽#𝐽 𝜉



Geometric interpretation for 𝑚 < 𝑛
a simple case with 𝑛 = 2, 𝑚 = 1

at a given configuration 
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“biasing” joint velocity
(in general, not a solution)

𝜉

space of joint velocities
(at a configuration q)

solution with
minimum
�̇� − 𝜉 '

orthogonal
projection of
𝜉 on 𝒩(𝐽)

𝐽�̇� = 𝑗# 𝑗$
�̇�#
�̇�$

= 𝑣 ∈ ℝ

task equality
constraint
𝐽�̇� = 𝑣

associated 
homogeneous

equation
𝐽�̇� = 0 minimum norm 

solution
𝐽#𝑣

�̇�"

�̇�'

𝐼 − 𝐽#𝐽 𝜉

linear
subspace 𝒩 𝐽 = �̇� ∈ ℝ': 𝐽�̇� = 0

all possible
solutions

lie on this line ...



Velocity manipulability
n in a given configuration, evaluate how effective is the 

transformation between joint and end-effector velocities 
n “how easily” can the end-effector be moved in various directions 

of the task space
n equivalently, “how far” is the robot from a singular condition

n we consider all end-effector velocities that can be 
obtained by choosing joint velocity vectors of unit norm

task velocity
manipulability ellipsoid
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note: the “core” matrix of the ellipsoid
equation 𝑣5𝐴67 𝑣 = 1 is the matrix 𝐴!

𝑣! 𝐽#!𝐽#𝑣 = 1�̇�!�̇� = 1

𝐽 𝐽= >?
if 𝜌(𝐽) = 𝑚



(Hyper-)Spheres and Ellipsoids
whiteboard …
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𝒗M 𝐽 𝐽M NO𝒗 = 1�̇�M�̇� = 1

�̇�&' + �̇�'' + �̇�(' = �̇�!
1

1
1

�̇� = 1
𝑣)'

𝑎' +
𝑣*'

𝑏' +
𝑣+'

𝑐' = 𝒗!
𝑎'

𝑏'
𝑐'

,&

𝒗 = 1

𝑣/ 𝑣0

𝑣1

𝒗

𝑎 = 1.5, 𝑏 = 1.1, 𝑐 = 0.75

𝑏 𝑎

𝑐

�̇�#

�̇�$

�̇�2�̇�
𝑟 = 1

𝑟
𝑟

𝑟

𝑚 = 𝑛 = 3
𝐽 is a 3×3 (full rank) matrix singular values of 𝐽

𝑣 = 𝐽�̇�



Manipulability ellipsoid
in velocity

direction of principal axes 
eigenvectors associated to 𝜆3

length of principal (semi-)axes
singular values 𝜎3 of 𝐽 (in its SVD)

in a singularity, the ellipsoid 
loses a dimension 

(for 𝑚 = 2, it becomes a segment)

planar 2R arm with unitary links
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proportional to the volume of the 
ellipsoid (for 𝑚 = 2, to its area)

manipulability ellipsoid

manipulability measure

scale of
ellipsoid10

10 2
0

1

0

1

10 2

𝑤 = 𝑑𝑒𝑡 𝐽 𝐽% =C
./'

(

𝜎. ≥ 0

𝜎. 𝐽 = 𝜆. 𝐽 𝐽%



Manipulability measure
planar 2R arm (with 𝑙* = 𝑙L = 1):
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𝜃' 𝑟 𝑟

max at 𝜃' = 𝜋/2 max at 𝑟 = 2

𝜎"(𝐽)

𝜎'(𝐽)

best posture for manipulation
(similar to a human arm!)

no full isotropy (i.e., a circle)
is obtained in this case 

since it is always 𝜎7 ≠ 𝜎?

𝑑𝑒𝑡 𝐽 𝐽! = 𝑑𝑒𝑡 𝐽 < 𝑑𝑒𝑡 𝐽! = det 𝐽 = ∏-.&
' 𝜎-

×



Higher-order differential inversion
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n inversion of motion from task to joint space can be performed 
also at a higher differential level

n acceleration-level: given 𝑞, �̇�

n jerk-level: given 𝑞, �̇�, �̈�

n (pseudo-)inverse of the Jacobian is always the leading term
n smoother joint motions are expected (at least, due to the 

existence of higher-order time derivatives �̈�, 𝑟, …) 

�̈� = 𝐽#!"(𝑞) �̈� − ̇𝐽#(𝑞)�̇�

𝑞 = 𝐽#!"(𝑞) 𝑟 − ̇𝐽# 𝑞 �̈� − 2 ̈𝐽#(𝑞)�̇�


