Robotics 1

Differential kinematics

Prof. Alessandro De Luca

Università di roma

Differential kinematics

- relations between motion (velocity) in joint space and motion (linear/angular velocity) in task space (e.g., Cartesian space)
- instantaneous velocity mappings can be obtained through time differentiation of the direct kinematics or in a geometric way, directly at the differential level
- different treatments arise for rotational quantities
- establish the relation between angular velocity and
- time derivative of a rotation matrix
- time derivative of the angles in a minimal representation of orientation

Angular velocity of a rigid body

$\forall P_{1}, P_{2}, P_{3}$

$$
v_{P j}=v_{P i}+\omega \times r_{i j}=v_{P i}+S(\omega) r_{i j}
$$

"rigidity" constraint on distances among points:

$$
\left\|r_{i j}\right\|=\text { constant }
$$

$\square v_{P i}-v_{P j}$ orthogonal to $r_{i j}$
$1 \quad v_{P 2}-v_{P 1}=\omega_{1} \times r_{12}$
$2 \quad v_{P 3}-v_{P 1}=\omega_{1} \times r_{13}$
$3 v_{P 3}-v_{P 2}=\omega_{2} \times r_{23}$

$$
\begin{aligned}
& 2-1=3 \\
& =v_{P i}+S(\omega) r_{i j}
\end{aligned}
$$

$$
\omega_{1}=\omega_{2}=\omega
$$

kinematic equation" of rigid bodies

- the angular velocity ω is associated to the whole body (not to a point)
- if $\exists P_{1}, P_{2}: v_{P 1}=v_{P 2}=0 \Rightarrow$ pure rotation (circular motion of all $P_{j} \notin$ line $P_{1} P_{2}$)
- $\omega=0 \Rightarrow$ pure translation (all points have the same velocity v_{P})

Linear and angular velocity of the robot end-effector

- v and ω are "vectors", namely are elements of vector spaces
- they can be obtained as the sum of single contributions (in any order)
- such contributions will be given by the single (linear or angular) joint velocities
- on the other hand, ϕ (and $\dot{\phi}$) is not an element of a vector space
- a minimal representation of a sequence of two rotations is not obtained summing the corresponding minimal representations (accordingly, for their time derivatives)
in general, $\omega \neq \dot{\phi}$

Finite and infinitesimal translations

- finite $\Delta x, \Delta y, \Delta z$ or infinitesimal $d x, d y, d z$ translations (linear displacements) always commute

Finite rotations do not commute example

ω is not an exact differential whiteboard ...

Infinitesimal rotations commute!

- infinitesimal rotations $d \phi_{X}, d \phi_{Y}, d \phi_{Z}$ around x, y, z axes

$$
\begin{aligned}
& R_{X}\left(\phi_{X}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi_{X} & -\sin \phi_{X} \\
0 & \sin \phi_{X} & \cos \phi_{X}
\end{array}\right] \Rightarrow R_{X}\left(d \phi_{X}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -d \phi_{X} \\
0 & d \phi_{X} & 1
\end{array}\right] \\
& R_{Y}\left(\phi_{Y}\right)=\left[\begin{array}{ccc}
\cos \phi_{Y} & 0 & \sin \phi_{Y} \\
0 & 1 & 0 \\
-\sin \phi_{Y} & 0 & \cos \phi_{Y}
\end{array}\right] \Rightarrow R_{Y}\left(d \phi_{Y}\right)=\left[\begin{array}{ccc}
1 & 0 & d \phi_{Y} \\
0 & 1 & 0 \\
-d \phi_{Y} & 0 & 1
\end{array}\right] \\
& R_{Z}\left(\phi_{Z}\right)=\left[\begin{array}{ccc}
\cos \phi_{Z} & -\sin \phi_{Z} & 0 \\
\sin \phi_{Z} & \cos \phi_{Z} & 0 \\
0 & 0 & 1
\end{array}\right] \Rightarrow R_{Z}\left(d \phi_{Z}\right)=\left[\begin{array}{ccc}
1 & -d \phi_{Z} & 0 \\
d \phi_{Z} & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \text { - } R(d \phi)=R\left(d \phi_{X}, d \phi_{Y}, d \phi_{Z}\right)=\left[\begin{array}{ccc}
1 & -d \phi_{Z} & d \phi_{Y} \\
\uparrow
\end{array} \begin{array}{ccc}
d \phi_{Z} & 1 & -d \phi_{X} \\
-d \phi_{Y} & d \phi_{X} & 1
\end{array}\right] \leftarrow \begin{array}{c}
\text { neglecting } \\
\text { second- and } \\
\text { (inifiriorder } \\
\text { (initesimimal } \\
\text { terms }
\end{array} \\
& \text { in any order } \quad=I+S(d \phi)
\end{aligned}
$$

Time derivative of a rotation matrix

- let $R=R(t)$ be a rotation matrix, given as a function of time
- since $I=R(t) R^{T}(t)$, taking the time derivative of both sides yields

$$
\begin{aligned}
0 & =d\left(R(t) R^{T}(t)\right) / d t=(d R(t) / d t) R^{T}(t)+R(t)\left(d R^{T}(t) / d t\right) \\
& =(d R(t) / d t) R^{T}(t)+\left((d R(t) / d t) R^{T}(t)\right)^{T}
\end{aligned}
$$

thus $(d R(t) / d t) R^{T}(t)=S(t)$ is a skew-symmetric matrix

- let $p(t)=R(t) p^{\prime}$ a vector (with constant norm) rotated over time
- comparing

$$
\begin{aligned}
\dot{p}(t) & =(d R(t) / d t) p^{\prime}=S(t) R(t) p^{\prime}=S(t) p(t) \\
\dot{p}(t) & =\omega(t) \times p(t)=S(\omega(t)) p(t)
\end{aligned}
$$

we get $S=S(\omega)$

$$
\dot{R}=S(\omega) R \Leftrightarrow S(\omega)=\dot{R} R^{T}
$$

Example

Time derivative of an elementary rotation matrix

$$
\begin{aligned}
R_{X}(\phi(t)) & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi(t) & -\sin \phi(t) \\
0 & \sin \phi(t) & \cos \phi(t)
\end{array}\right] \\
\dot{R}_{X}(\phi) R_{X}^{T}(\phi) & =\dot{\phi}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\sin \phi & -\cos \phi \\
0 & \cos \phi & -\sin \phi
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -\dot{\phi} \\
0 & \dot{\phi} & 0
\end{array}\right]=S(\omega) \quad \longrightarrow \quad \omega=\omega_{X}=\left[\begin{array}{l}
\dot{\phi} \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

more in general, for the axis/angle rotation matrix

$$
R(r, \theta(t)) \Rightarrow \dot{R}(r, \theta) R^{T}(r, \theta)=S(\omega) \quad \omega=\omega_{r}=\dot{\theta} r=\dot{\theta}\left[\begin{array}{l}
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right]
$$

Time derivative of RPY angles and ω

$$
R_{R P Y}\left(\alpha_{X}, \beta_{Y}, \gamma_{Z}\right)=R_{Z Y^{\prime} X^{\prime \prime}}\left(\gamma_{Z}, \beta_{Y}, \alpha_{X}\right)=R_{Z}(\gamma) R_{Y^{\prime}}(\beta) R_{X^{\prime \prime}}(\alpha)
$$

the three contributions $\dot{\gamma} Z, \dot{\beta} Y^{\prime}, \dot{\alpha} X^{\prime \prime}$ to ω are simply summed as vectors

$T_{R P Y}(\beta, \gamma)$

$$
\operatorname{det} T_{R P Y}(\beta, \gamma)=\cos \beta=0
$$

$$
\text { for } \beta= \pm \pi / 2
$$

(singularity of the RPY representation)
similar treatment for the other 11 minimal representations...

Robot Jacobian matrices

- analytic Jacobian (obtained by time differentiation)

$$
r=\binom{p}{\phi}=f_{r}(q) \quad \dot{r}=\binom{\dot{p}}{\dot{\phi}}=\frac{\partial f_{r}(q)}{\partial q} \dot{q}=J_{r}(q) \dot{q}
$$

- geometric or basic Jacobian (no derivatives)

$$
\binom{v}{\omega}=\binom{J_{L}(q)}{J_{A}(q)} \dot{q}=J(q) \dot{q}
$$

- in both cases, the Jacobian matrix depends on the (current) configuration of the robot

Analytic Jacobian of planar 2R arm

$\dot{p}_{x}=-l_{1} s_{1} \dot{q}_{1}-l_{2} s_{12}\left(\dot{q}_{1}+\dot{q}_{2}\right)$
$\dot{p}_{y}=l_{1} c_{1} \dot{q}_{1}+l_{2} c_{12}\left(\dot{q}_{1}+\dot{q}_{2}\right)$
direct kinematics

$$
r\left\{\begin{array}{l}
p_{x}=l_{1} \cos q_{1}+l_{2} \cos \left(q_{1}+q_{2}\right) \\
p_{y}=l_{1} \sin q_{1}+l_{2} \sin \left(q_{1}+q_{2}\right) \\
-\phi=q_{1}+q_{2}
\end{array}\right.
$$

$$
\dot{\phi}=\omega_{z}=\dot{q}_{1}+\dot{q}_{2}
$$

here, all rotations occur around the same fixed axis z (normal to the plane of motion)

$$
\dot{r}=J_{r}(q) \dot{q}
$$

Analytic Jacobian of polar (RRP) robot

Geometric Jacobian

always a $6 \times n$ matrix
$\underset{\text { instantaneous }}{\underset{\text { velocity }}{\text { end-effector }}}\binom{v_{E}}{\omega_{E}}=\left(\begin{array}{c}\downarrow \\ J_{L}(q) \\ J_{A}(q)\end{array}\right) \dot{q}=\left(\begin{array}{ccc}J_{L 1}(q) & \cdots & J_{L n}(q) \\ J_{A 1}(q) & \cdots & J_{A n}(q)\end{array}\right)\left(\begin{array}{c}\dot{q}_{1} \\ \vdots \\ \dot{q}_{n}\end{array}\right)$

linear and angular velocity belong to (linear) vector spaces in \mathbb{R}^{3}

Contribution of a prismatic joint

note: joints beyond the i-th one are considered to be "frozen", so that the distal part of the robot is a single rigid body $\quad J_{L i}(q) \dot{q}_{i}=z_{i-1} \dot{d}_{i}$

Contribution of a revolute joint

Expression of geometric Jacobian

$$
\left(\binom{\dot{p}_{0, E}}{\omega_{E}}=\right)\binom{v_{E}}{\omega_{E}}=\binom{J_{L}(q)}{J_{A}(q)} \dot{q}=\left(\begin{array}{lll}
J_{L 1}(q) & \cdots & J_{L n}(q) \\
J_{A 1}(q) & \cdots & J_{A n}(q)
\end{array}\right)\left(\begin{array}{c}
\dot{q}_{1} \\
\vdots \\
\dot{q}_{n}
\end{array}\right)
$$

	prismatic i-th joint	revolute i-th joint
$J_{L i}(q)$	z_{i-1}	Zi-1 $\times p_{i-1, E}$ this can be also computed as$=\frac{\partial p_{0, E}(q)}{\partial q_{i}}$

Geometric Jacobian of planar 2R arm

Denavit-Hartenberg table

[^0]$$
p_{1, E}=p_{0, E}-p_{0,1}
$$

Geometric Jacobian of planar 2R arm

note: the Jacobian is here a 6×2 matrix, thus its maximum rank is 2
at most 2 components of the linear/angular end-effector velocity can be independently assigned

Transformations of Jacobian matrix

Example: Dexter robot

- 8R robot manipulator with transmissions by pulleys and steel cables (joints 3 to 8)
- lightweight: only 15 kg in motion
- 6 motors located inside the second link
- incremental encoders (homing)
- redundancy degree for e-e pose task: $n-m=2$
- compliant in the interaction with environment

i	$\mathrm{a}(\mathrm{mm})$	$\mathrm{d}(\mathrm{mm})$	$\alpha(\mathrm{rad})$	range $\theta(\mathrm{deg})$
0	0	0	$-\pi / 2$	$[-12.56,179.89]$
1	144	450	$-\pi / 2$	$[-83,84]$
2	0	0	$\pi / 2$	$[7,173]$
3	100	350	$\pi / 2$	$[65,295]$
4	0	0	$-\pi / 2$	$[-174,-3]$
5	24	250	$-\pi / 2$	$[57,265]$
6	0	0	$-\pi / 2$	$[-129.99,-45]$
7	100	0	π	$[-55.05,30]$

Mid-frame Jacobian of Dexter robot

- geometric Jacobian ${ }^{0} J_{8}(q)$ is very complex
- "mid-frame" Jacobian ${ }^{4} J_{4}(q)$ is relatively simple!

> 6 rows,
> 8 columns

Summary of differential relations

$\dot{p} \rightleftarrows v \quad \dot{p}=v$
$\dot{R} \rightleftarrows \omega \quad \dot{R}=S(\omega) R \quad \Longleftrightarrow$ for each (unit) column r_{i} of R (a frame): $\dot{r}_{i}=\omega \times r_{i}$ $S(\omega)=\dot{R} R^{T}$
[in body frame $\left.\left(\Omega=R^{T} \omega\right): \dot{R}=R S(\Omega), S(\Omega)=R^{T} \dot{R}=R^{T} S(\omega) R\right]$

$$
\begin{aligned}
\dot{\phi} \rightleftarrows \omega \quad \omega & =\omega_{\dot{\phi}_{1}}+\omega_{\dot{\phi}_{2}}+\omega_{\dot{\phi}_{3}}=a_{1} \dot{\phi}_{1}+a_{2}\left(\phi_{1}\right) \dot{\phi}_{2}+a_{3}\left(\phi_{1}, \phi_{2}\right) \dot{\phi}_{3} \\
& =T(\phi) \dot{\phi} \quad \begin{array}{l}
\text { (moving) axes of definition for the } \\
\text { sequence of rotations } \phi_{i}, i=1,2,3
\end{array}
\end{aligned}
$$

special case: if the task vector r is

$$
r=\binom{p}{\phi} \Rightarrow J_{r}(q)=\left(\begin{array}{cc}
I & 0 \\
0 & T^{-1}(\phi)
\end{array}\right) J(q) \Leftrightarrow J(q)=\left(\begin{array}{cc}
I & 0 \\
0 & T(\phi)
\end{array}\right) J_{r}(q)
$$

$T(\phi)$ has always \Leftrightarrow singularity of the specific minimal a singularity representation of orientation

Acceleration relations (and beyond...)

Higher-order differential kinematics

- differential relations between motion in the joint space and motion in the task space can be established at the second order, third order, ...
- the analytic Jacobian always "weights" the highest-order derivative

- the same holds true also for the geometric Jacobian $J(q)$

Primer on linear algebra

given a matrix J: $m \times n$ (m rows, n columns)

- rank $\rho(J)=\max \#$ of rows or columns that are linearly independent
- $\rho(J) \leq \min (m, n) \Longleftarrow$ if equality holds, J has full rank
- if $m=n$ and J has full rank, J is nonsingular and the inverse J^{-1} exists
- $\rho(J)=$ dimension of the largest nonsingular square submatrix of J
- range space $\mathcal{R}(J)=$ subspace of all linear combinations of the columns of J

$$
\mathcal{R}(J)=\left\{v \in \mathbb{R}^{m}: \exists \xi \in \mathbb{R}^{n}, v=J \xi\right\} \longleftarrow \text { also called image of } J
$$

- $\operatorname{dim}(\mathcal{R}(J))=\rho(J)$
- null space $\mathcal{N}(J)=$ subspace of all vectors that are zeroed by matrix J

$$
\mathcal{N}(J)=\left\{\xi \in \mathbb{R}^{n}: J \xi=0 \in \mathbb{R}^{m}\right\} \quad \longleftarrow \text { also called kernel of } J
$$

- $\operatorname{dim}(\mathcal{N}(J))=n-\rho(J)$
- $\mathcal{R}(J) \oplus \mathcal{N}\left(J^{T}\right)=\mathbb{R}^{m}$ and $\mathcal{R}\left(J^{T}\right) \oplus \mathcal{N}(J)=\mathbb{R}^{n}$ (direct sum of subspaces)
- any element $v \in V=V_{1}+V_{2}$ can be written as $v=v_{1}+v_{2}, v_{1} \in V_{1}, v_{2} \in V_{2}$
- ... in a unique way if and only if $V_{1} \cap V_{2}=\{0\}$ (a 'direct' sum, not just a sum!)

Robot Jacobian

decomposition in linear subspaces and duality

Mobility analysis in the task space

- $\rho(J)=\rho(J(q)), \mathcal{R}(J)=\mathcal{R}(J(q)), \mathcal{N}\left(J^{T}\right)=\mathcal{N}\left(J^{T}(q)\right)$, etc. are locally defined, i.e., they depend on the current configuration q
- $\mathcal{R}(J(q))$ is the subspace of all "generalized" velocities (with linear and/or angular components) that can be instantaneously realized by the robot end-effector when varying the joint velocities \dot{q} at the current q
- if $\rho(J(q))=m$ at $q(J(q)$ has max rank, with $m \leq n)$, the end-effector can be moved in any direction of the task space \mathbb{R}^{m}
- if $\rho(J(q))<m$, there are directions in \mathbb{R}^{m} in which the end-effector cannot move (at least, not instantaneously!)
- these directions $\in \mathcal{N}\left(J^{T}(q)\right)$, the complement of $\mathcal{R}(J(q))$ to task space \mathbb{R}^{m}, which is of dimension $m-\rho(J(q))$
- if $\mathcal{N}(J(q)) \neq\{0\}$, there are non-zero joint velocities \dot{q} that produce zero end-effector velocity ("self motions")
- this happens always for $m<n$, i.e., when the robot is redundant for the task

Mobility analysis for a planar 3R robot

 whiteboard ...

- run the MATLAB code subspaces_3Rplanar.m available in the course material

Mobility analysis for a planar 3R robot

 whiteboard ...

Mobility analysis for a planar 3R robot

$q=(\pi / 2,0, \pi)$

$$
\begin{array}{cl}
J=\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) & J^{T}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right) \\
\rho(J)=1<m & \rho\left(J^{T}\right)=\rho(J)=1
\end{array}
$$

case 2)
forbidden!

$\mathcal{R}(J) \oplus \mathcal{N}\left(J^{T}\right)=\mathbb{R}^{2}$
$\mathcal{R}\left(J^{T}\right) \oplus \mathcal{N}(J)=\mathbb{R}^{3}$

$$
\mathcal{R}\left(J^{T}\right)=\operatorname{span}\left\{\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\} \begin{array}{r}
\operatorname{dim} \mathcal{R}\left(J^{T}\right)=1 \\
=\rho(J)
\end{array} \quad \mathcal{N}\left(J^{T}\right)=\operatorname{span}\left\{\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\} \begin{gathered}
\operatorname{dim} \mathcal{N}\left(J^{T}\right)=1 \\
=m-\rho(J)
\end{gathered}
$$

Kinematic singularities

- configurations where the Jacobian loses rank \Leftrightarrow loss of instantaneous mobility of the robot end-effector
- for $m=n$ (≤ 6), they correspond to Cartesian poses at which the number of solutions of the inverse kinematics problem differs from the generic case
- "in" a singular configuration, we cannot find any joint velocity that realizes a desired end-effector velocity in some directions of the task space
- "close" to a singularity, large joint velocities may be needed to realize even a small velocity of the end-effector in some directions of the task space
- finding and analyzing in advance the mobility of a robot helps in singularity avoidance during trajectory planning and motion control
- when $m=n$: find the configurations q such that $\operatorname{det} J(q)=0$
- when $m<n$: find the configurations q such that all $m \times m$ minors of $J(q)$ are singular (or, equivalently, such that $\operatorname{det}\left(J(q) J^{T}(q)\right)=0$)
- finding all singular configurations of a robot with a large number of joints, or the actual "distance" from a singularity, is a complex computational task

Singularities of planar 2R robot

direct kinematics

$$
\begin{aligned}
& p_{x}=l_{1} c_{1}+l_{2} c_{12} \\
& p_{y}=l_{1} s_{1}+l_{2} s_{12}
\end{aligned}
$$

analytic Jacobian

$$
\operatorname{det} J(q)=l_{1} l_{2} s_{2}
$$

$$
\dot{p}=\left(\begin{array}{cc}
-l_{1} s_{1}-l_{2} s_{12} & -l_{2} s_{12} \\
l_{1} c_{1}+l_{2} c_{12} & l_{2} c_{12}
\end{array}\right) \dot{q}=J(q) \dot{q}
$$

- singularities: robot arm is stretched ($q_{2}=0$) or folded ($q_{2}=\pi$)
- singular configurations correspond here to Cartesian points that are on the boundary of the primary workspace (or at the center of $W S_{1}$ if $l_{1}=l_{2}$)
- in many cases (as here), singularities separate regions of the configuration space with distinct inverse kinematic solutions (e.g., elbow "up" or "down")

Singularities of polar (RRP) robot

$$
\begin{gathered}
p_{x}=q_{3} c_{2} c_{1} \\
p_{y}=q_{3} c_{2} s_{1} \\
p_{z}=d_{1}+q_{3} s_{2} \\
\text { analytic Jacobian } \\
\dot{p}=\left(\begin{array}{ccc}
-q_{3} s_{1} c_{2} & -q_{3} c_{1} s_{2} & c_{1} c_{2} \\
q_{3} c_{1} c_{2} & -q_{3} s_{1} s_{2} & s_{1} c_{2} \\
0 & q_{3} c_{2} & s_{2}
\end{array}\right) \dot{q} \\
=J(q) \dot{q}
\end{gathered}
$$

direct kinematics

- singularities
- $\mathrm{E}-\mathrm{E}$ is along the z axis $\left(q_{2}= \pm \pi / 2\right)$: simple singularity $\Rightarrow \operatorname{rank} \rho(J)=2$
- third link is fully retracted ($q_{3}=0$): double singularity \Rightarrow rank $\rho(J)$ drops to 1
- all singular configurations correspond here to Cartesian points internal to the workspace (supposing no range limits for the prismatic joint)

Singularities of robots with spherical wrist

- $n=6$, last three joints are revolute and their axes intersect at a point
- without loss of generality, we set $O_{6}=W=$ center of spherical wrist (i.e., choose $d_{6}=0$ in DH table) and obtain for the geometric Jacobian

$$
J(q)=\left(\begin{array}{cc}
J_{11} & 0 \\
J_{12} & J_{22}
\end{array}\right)
$$

- since $\operatorname{det} J\left(q_{1}, \cdots, q_{5}\right)=\operatorname{det} J_{11} \cdot \operatorname{det} J_{22}$, there is a decoupling property
- $\operatorname{det} J_{11}\left(q_{1}, q_{2}, q_{3}\right)=0$ provides the arm singularities
- $\operatorname{det} J_{22}\left(q_{4}, q_{5}\right)=0$ provides the wrist singularities
- being in the geometric Jacobian $J_{22}=\left(\begin{array}{lll}z_{3} & z_{4} & z_{5}\end{array}\right)$, wrist singularities correspond to when z_{3}, z_{4} and z_{5} become linearly dependent vectors
\Rightarrow when either $q_{5}=0$ or $q_{5}= \pm \pi / 2$ (see Euler angles singularities!)
- inversion of $J(q)$ is simpler (block triangular structure)
- the determinant of $J(q)$ will never depend on q_{1} : why?

[^0]: all computations can be made numerically, evaluating first the direct kinematics terms!

