

Robotics 1

Differential kinematics

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA Automatica e Gestionale Antonio Ruberti

Differential kinematics

- relations between motion (velocity) in joint space and motion (linear/angular velocity) in task space (e.g., Cartesian space)
- instantaneous velocity mappings can be obtained through time differentiation of the direct kinematics or in a geometric way, directly at the differential level
 - different treatments arise for rotational quantities
 - establish the relation between angular velocity and
 - time derivative of a rotation matrix
 - time derivative of the angles in a minimal representation of orientation

Angular velocity of a rigid body

"rigidity" constraint on distances among points: $||r_{ij}|| = \text{constant}$ v_{P2} v_{P1} • $v_{Pi} - v_{Pi}$ orthogonal to r_{ij} v_{P1} $v_{P2} - v_{P1} = \omega_1 \times r_{12}$ v_{P2} 2 $v_{P3} - v_{P1} = \omega_1 \times r_{13}$ v_{P3} 3 $v_{P3} - v_{P2} = \omega_2 \times r_{23}$ v_{P3} 2 - 1 = 3 \bullet $\omega_1 = \omega_2 = \omega$ $\forall P_1, P_2, P_3$ aka, "(fundamental) $v_{Pj} = v_{Pi} + \omega \times r_{ij} = v_{Pi} + S(\omega) r_{ij}$ \overleftrightarrow $\dot{r}_{ij} = \omega \times r_{ij}$ kinematic equation" of rigid bodies

- the angular velocity ω is associated to the whole body (**not** to a point)
- if $\exists P_1, P_2: v_{P_1} = v_{P_2} = 0 \Rightarrow$ pure rotation (circular motion of all $P_j \notin$ line P_1P_2)
- $\omega = 0 \Rightarrow$ pure translation (**all** points have the same velocity v_P) *Robotics 1*

- v and ω are "vectors", namely are elements of vector spaces
 - they can be obtained as the sum of single contributions (in any order)
 - such contributions will be given by the single (linear or angular) joint velocities
- on the other hand, ϕ (and $\dot{\phi}$) is not an element of a vector space
 - a minimal representation of a sequence of two rotations is not obtained summing the corresponding minimal representations (accordingly, for their time derivatives)

in general, $\omega \neq \dot{\phi}$

Finite and infinitesimal translations

• finite $\Delta x, \Delta y, \Delta z$ or infinitesimal dx, dy, dz translations (linear displacements) always commute

Robotics 1

6

ω is not an exact differential whiteboard ... ω_x first final 90° $\int_{0}^{T} \omega(t) dt = \int_{0}^{T} \begin{pmatrix} \omega_{x}(t) \\ \omega_{y}(t) \\ \omega_{z}(t) \end{pmatrix} dt$ orientation T = 2 s ω_v $=\begin{pmatrix}90^{\circ}\\0\end{pmatrix}$ $R_{f,ZX}$ initial ω_{z} orientation 90° $\int_0^T \dot{\phi}(t)dt = \int_0^T \frac{d\phi}{dt}dt = \int_{\phi(0)}^{\phi(T)} d\phi = \phi_f - \phi_i$ T/2 T t ω_x 90° an exact differential form $R_{f,XZ}$ $R_i = I$ ω_v $\int_0^t \omega(t) dt = \dots = \begin{pmatrix} 90^\circ \\ 0 \end{pmatrix}$ ω_{z} ...final ...the same value 90° but a different... orientation

Robotics 1

7

Infinitesimal rotations commute!

• infinitesimal rotations $d\phi_X$, $d\phi_Y$, $d\phi_Z$ around x, y, z axes

$$R_{X}(\phi_{X}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi_{X} & -\sin \phi_{X} \\ 0 & \sin \phi_{X} & \cos \phi_{X} \end{bmatrix} \implies R_{X}(d\phi_{X}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -d\phi_{X} \\ 0 & d\phi_{X} & 1 \end{bmatrix}$$

$$R_{Y}(\phi_{Y}) = \begin{bmatrix} \cos \phi_{Y} & 0 & \sin \phi_{Y} \\ 0 & 1 & 0 \\ -\sin \phi_{Y} & 0 & \cos \phi_{Y} \end{bmatrix} \implies R_{Y}(d\phi_{Y}) = \begin{bmatrix} 1 & 0 & d\phi_{Y} \\ 0 & 1 & 0 \\ -d\phi_{Y} & 0 & 1 \end{bmatrix}$$

$$R_{Z}(\phi_{Z}) = \begin{bmatrix} \cos \phi_{Z} & -\sin \phi_{Z} & 0 \\ \sin \phi_{Z} & \cos \phi_{Z} & 0 \\ 0 & 0 & 1 \end{bmatrix} \implies R_{Z}(d\phi_{Z}) = \begin{bmatrix} 1 & -d\phi_{Z} & 0 \\ d\phi_{Z} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R(d\phi) = R(d\phi_{X}, d\phi_{Y}, d\phi_{Z}) = \begin{bmatrix} 1 & -d\phi_{Z} & d\phi_{Y} \\ d\phi_{Z} & 1 & -d\phi_{X} \\ -d\phi_{Y} & d\phi_{X} & 1 \end{bmatrix} \xleftarrow{\text{neglecting second- and third-order (infinitesimal) terms}}$$

Time derivative of a rotation matrix

- let R = R(t) be a rotation matrix, given as a function of time
- since $I = R(t)R^{T}(t)$, taking the time derivative of both sides yields

$$0 = d(R(t)R^{T}(t))/dt = (dR(t)/dt)R^{T}(t) + R(t)(dR^{T}(t)/dt) = (dR(t)/dt)R^{T}(t) + ((dR(t)/dt)R^{T}(t))^{T}$$

thus $(dR(t)/dt) R^{T}(t) = S(t)$ is a skew-symmetric matrix

- let p(t) = R(t)p' a vector (with constant norm) rotated over time
- comparing

$$\dot{p}(t) = (dR(t)/dt)p' = S(t)R(t)p' = S(t)p(t)$$
$$\dot{p}(t) = \omega(t) \times p(t) = S(\omega(t))p(t)$$
we get $S = S(\omega)$

$$\dot{R} = S(\omega)R$$
 \iff $S(\omega) = \dot{R} R^T$

Example

Time derivative of an elementary rotation matrix

$$R_{X}(\phi(t)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi(t) & -\sin \phi(t) \\ 0 & \sin \phi(t) & \cos \phi(t) \end{bmatrix}$$
$$\dot{R}_{X}(\phi)R_{X}^{T}(\phi) = \dot{\phi} \begin{bmatrix} 0 & 0 & 0 \\ 0 & -\sin \phi & -\cos \phi \\ 0 & \cos \phi & -\sin \phi \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & -\sin \phi & \cos \phi \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -\dot{\phi} \\ 0 & \dot{\phi} & 0 \end{bmatrix} = S(\omega) \qquad \qquad \omega = \omega_{X} = \begin{bmatrix} \dot{\phi} \\ 0 \\ 0 \end{bmatrix}$$

more in general, for the axis/angle rotation matrix

$$R(r,\theta(t)) \implies \dot{R}(r,\theta)R^{T}(r,\theta) = S(\omega) \qquad \Longrightarrow \qquad \omega = \omega_{r} = \dot{\theta} r = \dot{\theta} \begin{vmatrix} r_{x} \\ r_{y} \\ r_{z} \end{vmatrix}$$

 $T_{RPY}(\beta,\gamma)$

Time derivative of RPY angles and $\boldsymbol{\omega}$

 $R_{RPY}(\alpha_X,\beta_Y,\gamma_Z) = R_{ZY'X''}(\gamma_Z,\beta_Y,\alpha_X) = R_Z(\gamma)R_{Y'}(\beta)R_{X''}(\alpha)$

Ζ $\boldsymbol{\omega} = \begin{bmatrix} c\beta c\gamma & -s\gamma & 0\\ c\beta s\gamma & c\gamma & 0\\ -s\beta & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{\boldsymbol{\alpha}}\\ \dot{\boldsymbol{\beta}}\\ \dot{\boldsymbol{\gamma}} \end{bmatrix}$ the three contributions $\dot{\gamma}Z, \dot{\beta}Y', \dot{\alpha}X''$ to ω are $X^{\prime\prime}$ Y^{\prime} Zsimply summed as vectors ν 1st col in 2nd col in $R_Z(\boldsymbol{\gamma})R_{\boldsymbol{\gamma}'}(\boldsymbol{\beta}) \quad R_Z(\boldsymbol{\gamma})$. ά det $T_{RPY}(\beta, \gamma) = \cos \beta = 0$ for $\beta = \pm \pi/2$ (singularity of the **RPY** representation)

similar treatment for the other 11 minimal representations...

Robot Jacobian matrices

analytic Jacobian (obtained by time differentiation)

$$r = \begin{pmatrix} p \\ \phi \end{pmatrix} = f_r(q) \quad \Longrightarrow \quad \dot{r} = \begin{pmatrix} \dot{p} \\ \dot{\phi} \end{pmatrix} = \frac{\partial f_r(q)}{\partial q} \dot{q} = J_r(q) \dot{q}$$

geometric or basic Jacobian (no derivatives)

$$\binom{\nu}{\omega} = \binom{J_L(q)}{J_A(q)} \dot{q} = J(q)\dot{q}$$

 in both cases, the Jacobian matrix depends on the (current) configuration of the robot

Analytic Jacobian of planar 2R arm

direct kinematics $p_x = l_1 \cos q_1 + l_2 \cos(q_1 + q_2)$ $p_y = l_1 \sin q_1 + l_2 \sin(q_1 + q_2)$ $\phi = q_1 + q_2$

$$I_{\mathbf{r}}(q) = \begin{pmatrix} -l_1 s_1 - l_2 s_{12} & -l_2 s_{12} \\ l_1 c_1 + l_2 c_{12} & l_2 c_{12} \\ 1 & 1 \end{pmatrix}$$

given *r*, this is a 3×2 matrix

$$\dot{r} = J_r(q)\dot{q}$$

Analytic Jacobian of polar (RRP) robot

Geometric Jacobian

Contribution of a prismatic joint

Contribution of a revolute joint

Expression of geometric Jacobian

$$\begin{pmatrix} \begin{pmatrix} \dot{p}_{0,E} \\ \omega_E \end{pmatrix} = \begin{pmatrix} \nu_E \\ \omega_E \end{pmatrix} = \begin{pmatrix} J_L(q) \\ J_A(q) \end{pmatrix} \dot{q} = \begin{pmatrix} J_{L1}(q) & \cdots & J_{Ln}(q) \\ J_{A1}(q) & \cdots & J_{An}(q) \end{pmatrix} \begin{pmatrix} \dot{q}_1 \\ \vdots \\ \dot{q}_n \end{pmatrix}$$

	prismatic	revolute	this can be also
	<i>i</i> -th joint	<i>i</i> -th joint	computed as
$J_{Li}(q)$	Z_{i-1}	$z_{i-1} \times p_{i-1,E}$	$=\frac{\partial p_{0,E}(q)}{\partial q_i}$
$J_{Ai}(q)$	0	Z_{i-1}	

$$z_{i-1} = {}^{0}R_1(q_1) \cdots {}^{i-2}R_{i-1}(q_{i-1}){}^{i-1}z_{i-1}$$

$$p_{i-1,E} = p_{0,E}(q_1, \cdots, q_n) - p_{0,i-1}(q_1, \cdots, q_{i-1})$$

$$complete \text{ kinematics for e-e position} partial \text{ kinematics for } 0_{i-1} \text{ position}$$

Robotics 1

all vectors should be expressed in the same reference frame (here, the base frame *RF*₀)

Geometric Jacobian of planar 2R arm

$$J(q) = \begin{pmatrix} z_0 \times p_{0,E} & z_1 \times p_{1,E} \\ z_0 & z_1 \end{pmatrix}$$
$$z_0 = z_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad {}^{0}A_2 =$$

all computations can be made numerically, evaluating first the direct kinematics terms!

Denavit-Hartenberg table

joint	α_i	d_i	a_i	θ_{i}
1	0	0	l_1	q_1
2	0	0	l_2	q_2

$${}^{0}A_{1} = \begin{pmatrix} c_{1} & -s_{1} & 0 & l_{1}c_{1} \\ s_{1} & c_{1} & 0 & l_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \to p_{0,1}$$

$$\begin{pmatrix} c_{12} & -s_{12} & 0 & l_{1}c_{1} + l_{2}c_{12} \\ s_{12} & c_{12} & 0 & l_{1}s_{1} + l_{2}s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \to p_{0,E}$$

 $p_{1,E} = p_{0,E} - p_{0,1}$

Geometric Jacobian of planar 2R arm

end-effector velocity can be independently assigned

Transformations of Jacobian matrix

Example: Dexter robot

- 8R robot manipulator with transmissions by pulleys and steel cables (joints 3 to 8)
 - lightweight: only 15 kg in motion
 - 6 motors located inside the second link
 - incremental encoders (homing)
 - redundancy degree for e-e pose task: n m = 2
 - compliant in the interaction with environment

i	a (mm)	d (mm)	α (rad)	range θ (deg)
0	0	0	$-\pi/2$	[-12.56, 179.89]
1	144	450	$-\pi/2$	[-83, 84]
2	0	0	$\pi/2$	[7, 173]
3	100	350	$\pi/2$	[65, 295]
4	0	0	$-\pi/2$	[-174, -3]
5	24	250	$-\pi/2$	[57, 265]
6	0	0	$-\pi/2$	[-129.99, -45]
7	100	0	π	[-55.05, 30]

Mid-frame Jacobian of Dexter robot

geometric Jacobian ⁰J₈(q) is very complex
 "mid-frame" Jacobian ⁴J₄(q) is relatively simple!

 ${}^{4}\hat{J}_{4} \!= \left[\begin{array}{c} d_{1}s_{1}s_{3} \!+\! d_{3}s_{3}c_{2}s_{1} \!-\! a_{1}c_{3}c_{1}s_{2} \!-\! d_{1}c_{3}c_{1}c_{2} \!-\! d_{3}c_{1}c_{3} \\ -a_{3}s_{3}c_{2}s_{1} \!+\! a_{3}c_{3}c_{1} \!+\! a_{1}c_{1}c_{2} \!-\! d_{1}c_{1}s_{2} \\ -d_{3}c_{3}c_{2}s_{1} \!-\! a_{1}s_{3}c_{1}s_{2} \!-\! d_{1}s_{3}c_{1}c_{2} \!-\! d_{3}s_{3}c_{1} \!-\! d_{1}s_{1}c_{3} \!+\! a_{3}s_{2}s_{1} \\ -c_{3}c_{2}s_{1} \!-\! c_{3}c_{2}s_{1} \!-\! s_{2}s_{1} \\ -s_{2}s_{1} \\ -s_{3}c_{2}s_{1} \!+\! c_{3}c_{1} \end{array} \right.$

	$a_1s_3 + d_3s_3s_2$	$d_{3}c_{3}$	0	0	0
	$-a_3s_3s_2$	$-a_{3}c_{3}$	0	0	0
,	$\scriptstyle -a_1c_3-d_3c_3s_2-a_3c_2$	$d_{3}s_{3}$	$-a_3$	0	0
าร	$-c_{3}s_{2}$	83	0	0	$-s_{4}$
	c_2	0	1	0	c_4
	-8382	$-c_{3}$	0	1	0

$-a_5s_4-d_5c_5c_4$	-a5 \$5 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
$_{-d_5c_5s_4+a_5c_4}$	$d_5s_5s_6s_4 - a_5s_5s_4c_6$
$d_{5}s_{5}$	$-a_5c_6c_5+d_5c_5s_6$
$-c_{4}s_{5}$	$-c_4c_5s_6+s_4c_6$
-8485	$-s_4c_5s_6-c_4c_6$
- C5	8586

6 rows, 8 columns

Summary of differential relations

$$\dot{p} \rightleftharpoons v \quad \dot{p} = v$$

 $\dot{R} \rightleftharpoons \omega$ $\dot{R} = S(\omega)R$ \longleftrightarrow for each (unit) column r_i of R (a frame): $\dot{r}_i = \omega \times r_i$ $S(\omega) = \dot{R}R^T$

[in body frame ($\Omega = R^T \omega$): $\dot{R} = RS(\Omega), S(\Omega) = R^T \dot{R} = R^T S(\omega)R$]

$$\dot{\phi} \rightleftharpoons \omega = \omega_{\dot{\phi}_1} + \omega_{\dot{\phi}_2} + \omega_{\dot{\phi}_3} = a_1 \dot{\phi}_1 + a_2 (\phi_1) \dot{\phi}_2 + a_3 (\phi_1, \phi_2) \dot{\phi}_3$$

$$= T(\phi) \dot{\phi}$$
(moving) axes of definition for the sequence of rotations ϕ_i , $i = 1, 2, 3$

special case: if the task vector *r* is

$$\mathbf{r} = \begin{pmatrix} p \\ \phi \end{pmatrix} \implies J_{\mathbf{r}}(q) = \begin{pmatrix} I & 0 \\ 0 & T^{-1}(\phi) \end{pmatrix} J(q) \iff J(q) = \begin{pmatrix} I & 0 \\ 0 & T(\phi) \end{pmatrix} J_{\mathbf{r}}(q)$$

 $T(\phi)$ has always \Leftrightarrow singularity of the specific minimal a singularity representation of orientation

Robotics 1

 $J_r \rightleftharpoons J$

Acceleration relations (and beyond...)

Higher-order differential kinematics

- differential relations between motion in the joint space and motion in the task space can be established at the second order, third order, ...
- the analytic Jacobian always "weights" the highest-order derivative

velocity
$$\dot{r} = J_r(q) \dot{q}$$
 matrix function $N_2(q, \dot{q})$
acceleration $\ddot{r} = J_r(q) \ddot{q} + \dot{J}_r(q)\dot{q}$ matrix function $N_3(q, \dot{q}, \ddot{q})$
jerk $\ddot{r} = J_r(q) \ddot{q} + 2\dot{J}_r(q)\ddot{q} + \ddot{J}_r(q)\dot{q}$
snap $\ddot{r} = J_r(q) \ddot{q} + \cdots$

• the same holds true also for the geometric Jacobian J(q)

Primer on linear algebra

given a matrix *J*: $m \times n$ (*m* rows, *n* columns)

- rank $\rho(J) = \max \#$ of rows or columns that are linearly independent
 - $\rho(J) \leq \min(m, n) \Leftarrow$ if equality holds, J has full rank
 - if m = n and J has full rank, J is nonsingular and the inverse J^{-1} exists
 - $\rho(J) =$ dimension of the largest nonsingular square submatrix of J
- range space R(J) = subspace of all linear combinations of the columns of J
 R(J) = {v ∈ ℝ^m : ∃ξ ∈ ℝⁿ, v = Jξ} ← also called image of J
 dim(R(J)) = ρ(J)
- null space $\mathcal{N}(J)$ = subspace of all vectors that are zeroed by matrix J $\mathcal{N}(J) = \{\xi \in \mathbb{R}^n : J\xi = 0 \in \mathbb{R}^m\}$ \longleftarrow also called kernel of J
 - $\dim(\mathcal{N}(J)) = n \rho(J)$

• $\mathcal{R}(J) \oplus \mathcal{N}(J^T) = \mathbb{R}^m$ and $\mathcal{R}(J^T) \oplus \mathcal{N}(J) = \mathbb{R}^n$ (direct sum of subspaces)

• any element $v \in V = V_1 + V_2$ can be written as $v = v_1 + v_2$, $v_1 \in V_1$, $v_2 \in V_2$

• ... in a unique way if and only if $V_1 \cap V_2 = \{0\}$ (a 'direct' sum, not just a sum!) *Robotics 1*

Mobility analysis in the task space

- $\rho(I) = \rho(I(q)), \mathcal{R}(I) = \mathcal{R}(I(q)), \mathcal{N}(I^T) = \mathcal{N}(I^T(q)), \text{ etc. are locally}$ defined, i.e., they depend on the current configuration q
- $\mathcal{R}(J(q))$ is the subspace of all "generalized" velocities (with linear and/or angular components) that can be instantaneously realized by the robot end-effector when varying the joint velocities \dot{q} at the current q
- if $\rho(J(q)) = m$ at q(J(q)) has max rank, with $m \le n$), the end-effector can be moved in any direction of the task space \mathbb{R}^m
- if $\rho(J(q)) < m$, there are directions in \mathbb{R}^m in which the end-effector cannot move (at least, not instantaneously!)
 - these directions $\in \mathcal{N}(J^T(q))$, the complement of $\mathcal{R}(J(q))$ to task space \mathbb{R}^m , which is of dimension $m - \rho(J(q))$
- if $\mathcal{N}(I(q)) \neq \{0\}$, there are non-zero joint velocities \dot{q} that produce zero end-effector velocity ("self motions")

• this happens always for m < n, i.e., when the robot is redundant for the task Robotics 1

Mobility analysis for a planar 3R robot whiteboard ...

run the MATLAB code subspaces_3Rplanar.m available in the course material Robotics 1

Mobility analysis for a planar 3R robot whiteboard ...

configurations where the Jacobian loses rank

- \Leftrightarrow loss of instantaneous mobility of the robot end-effector
- for $m = n \ (\leq 6)$, they correspond to Cartesian poses at which the number of solutions of the inverse kinematics problem differs from the generic case
- "in" a singular configuration, we cannot find any joint velocity that realizes a desired end-effector velocity in some directions of the task space
- "close" to a singularity, large joint velocities may be needed to realize even a small velocity of the end-effector in some directions of the task space
- finding and analyzing in advance the mobility of a robot helps in singularity avoidance during trajectory planning and motion control
 - when m = n: find the configurations q such that $\det J(q) = 0$
 - when m < n: find the configurations q such that all $m \times m$ minors of J(q) are singular (or, equivalently, such that $det(J(q)J^T(q)) = 0$)
- finding all singular configurations of a robot with a large number of joints, or the actual "distance" from a singularity, is a complex computational task
 Robotics 1

Singularities of planar 2R robot

- singularities: robot arm is stretched ($q_2 = 0$) or folded ($q_2 = \pi$)
- singular configurations correspond here to Cartesian points that are on the boundary of the primary workspace (or at the center of WS_1 if $l_1 = l_2$)
- in many cases (as here), singularities separate regions of the configuration space with distinct inverse kinematic solutions (e.g., elbow "up" or "down")

Singularities of polar (RRP) robot

- singularities
 - E-E is along the z axis ($q_2 = \pm \pi/2$): simple singularity \Rightarrow rank $\rho(J) = 2$
 - third link is fully retracted ($q_3 = 0$): double singularity \Rightarrow rank $\rho(J)$ drops to 1
- all singular configurations correspond here to Cartesian points internal to the workspace (supposing no range limits for the prismatic joint)

Singularities of robots with spherical wrist

- n = 6, last three joints are revolute and their axes intersect at a point
- without loss of generality, we set $O_6 = W =$ center of spherical wrist (i.e., choose $d_6 = 0$ in DH table) and obtain for the geometric Jacobian

$$J(q) = \begin{pmatrix} J_{11} & 0\\ J_{12} & J_{22} \end{pmatrix}$$

- since det $J(q_1, \dots, q_5) = \det J_{11} \cdot \det J_{22}$, there is a decoupling property
 - det $J_{11}(q_1, q_2, q_3) = 0$ provides the arm singularities
 - det $J_{22}(q_4, q_5) = 0$ provides the wrist singularities
- being in the geometric Jacobian J₂₂ = (z₃ z₄ z₅), wrist singularities correspond to when z₃, z₄ and z₅ become linearly dependent vectors
 ⇒ when either q₅ = 0 or q₅ = ±π/2 (see Euler angles singularities!)
- inversion of J(q) is simpler (block triangular structure)
- the determinant of J(q) will never depend on q_1 : why?