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Differential kinematics

n relations between motion (velocity) in joint space  
and motion (linear/angular velocity) in task space  
(e.g., Cartesian space)

n instantaneous velocity mappings can be obtained 
through time differentiation of the direct kinematics 
or in a geometric way, directly at the differential level
n different treatments arise for rotational quantities
n establish the relation between angular velocity and 

n time derivative of a rotation matrix
n time derivative of the angles in a minimal representation 

of orientation
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Angular velocity of a rigid body

𝑃!
𝑟"!

“rigidity” constraint on distances among points: 
𝑟#$ = constant

𝑣%# − 𝑣%$ orthogonal to 𝑟#$
𝑣%! − 𝑣%" = 𝜔" × 𝑟"!1

𝑣%& − 𝑣%" = 𝜔" × 𝑟"&2

𝑣%& − 𝑣%! = 𝜔! × 𝑟!&3

2 - 1 = 3 𝜔" = 𝜔! = 𝜔

𝑃&
𝑟"&

∀𝑃" , 𝑃! , 𝑃&

§ the angular velocity 𝜔 is associated to the whole body (not to a point)
§ if ∃𝑃" , 𝑃!: 𝑣%" = 𝑣%! = 0 ⇒ pure rotation (circular motion of all 𝑃$ ∉ line 𝑃"𝑃!)
§ 𝜔 = 0 ⇒ pure translation (all points have the same velocity 𝑣%)

𝑟!&

𝑣%$ = 𝑣%# + 𝜔 × 𝑟#$= 𝑣%# + 𝑆 𝜔 𝑟#$ �̇�#$= 𝜔 × 𝑟#$
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𝑃"
𝑣%& − 𝑣%"

𝑣%! − 𝑣%"

𝑣%!
𝑣%"

𝑣%&

aka, “(fundamental)
kinematic equation”

of rigid bodies



𝑇 = 𝑅 𝑝
0! 1

Linear and angular velocity 
of the robot end-effector

n 𝑣 and 𝜔 are “vectors”, namely are elements of vector spaces
n they can be obtained as the sum of single contributions (in any order)
n such contributions will be given by the single (linear or angular) joint velocities 

n on the other hand, 𝜙 (and �̇�) is not an element of a vector space
n a minimal representation of a sequence of two rotations is not obtained summing 

the corresponding minimal representations (accordingly, for their time derivatives)

𝑟 = (𝑝, 𝜙)

𝝎
𝒗

alternative definitions
of the direct kinematics

of the end-effector

in general, 𝜔 ≠ �̇�
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𝜔" = 𝑧'�̇�"

𝜔! = 𝑧"�̇�! 𝜔( = 𝑧()"�̇�(

𝜔# = 𝑧#)"�̇�#
𝑣& = 𝑧!�̇�&



Finite and infinitesimal translations
n finite Δ𝑥, Δ𝑦, Δ𝑧 or infinitesimal 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 translations

(linear displacements) always commute
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𝑥

𝑦

𝑧 Δ𝑦

Δ𝑧
𝑥

𝑦

𝑧
Δ𝑧

same final
position

=

Δ𝑦



Finite rotations do not commute
example

𝑥

𝑦

𝑧

𝜙* = 90°

𝜙+ = 90°

𝑥

𝑦

𝑧

𝑥

𝑦

𝑧 𝜙* = 90°

𝑥
𝑦

𝑧

𝜙+ = 90°

mathematical fact: 𝜔 is 
NOT an exact differential form
(the integral of 𝜔 over time

depends on the integration path!)

different final
orientations!

𝑥

𝑦

𝑧

initial
orientation
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note: finite rotations still commute

when made around the same fixed axis



𝜔 is not an exact differential
whiteboard …
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initial
orientation

𝑅# = 𝐼
𝜔,

𝜔-

𝜔.

𝑇 = 2 𝑠

𝜔,

𝜔-

𝜔.

𝑇𝑇/2
𝑡

90°

90°

90°

90°

first final
orientation

𝑅$,&'

…final
orientation

𝑅$,'&

@
'

/
𝜔(𝑡)𝑑𝑡 = @

'

/ 𝜔,(𝑡)
𝜔-(𝑡)
𝜔.(𝑡)

𝑑𝑡

=
90°
0
90°

@
'

/
𝜔 𝑡 𝑑𝑡 = ⋯ =

90°
0
90°

@
'

/
�̇� 𝑡 𝑑𝑡 = @

'

/ 𝑑𝜙
𝑑𝑡 𝑑𝑡 = @

0(')

0(/)
𝑑𝜙 = 𝜙3 − 𝜙#

an exact differential form

…the same value 
but a different…



Infinitesimal rotations commute!
n infinitesimal rotations 𝑑𝜙', 𝑑𝜙(, 𝑑𝜙& around 𝑥, 𝑦, 𝑧 axes
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n 𝑅 𝑑𝜙 = 𝑅 𝑑𝜙!, 𝑑𝜙", 𝑑𝜙# =
1 −𝑑𝜙# 𝑑𝜙"
𝑑𝜙# 1 −𝑑𝜙!
−𝑑𝜙" 𝑑𝜙! 1

in any order

𝑅! 𝜙! =
1 0 0
0 cos𝜙! −sin𝜙!
0 sin𝜙! cos𝜙!

𝑅! 𝑑𝜙! =
1 0 0
0 1 −𝑑𝜙!
0 𝑑𝜙! 1

𝑅" 𝜙" =
cos𝜙" 0 sin𝜙"
0 1 0

−sin𝜙" 0 cos𝜙"
𝑅" 𝑑𝜙" =

1 0 𝑑𝜙"
0 1 0

−𝑑𝜙" 0 1

𝑅# 𝜙# =
cos𝜙# −sin𝜙# 0
sin𝜙# cos𝜙# 0
0 0 1

𝑅# 𝑑𝜙# =
1 −𝑑𝜙# 0
𝑑𝜙# 1 0
0 0 1

neglecting
second- and
third-order

(infinitesimal)
terms

= 𝐼 + 𝑆(𝑑𝜙)



Time derivative of a rotation matrix
§ let 𝑅 = 𝑅(𝑡) be a rotation matrix, given as a function of time
§ since 𝐼 = 𝑅(𝑡)𝑅$(𝑡), taking the time derivative of both sides yields

0 = 𝑑 𝑅 𝑡 𝑅$ 𝑡 /𝑑𝑡 = ⁄𝑑𝑅(𝑡) 𝑑𝑡 𝑅$(𝑡) + 𝑅 𝑡 ⁄𝑑𝑅$(𝑡) 𝑑𝑡

= ⁄𝑑𝑅(𝑡) 𝑑𝑡 𝑅$(𝑡) + ⁄𝑑𝑅(𝑡) 𝑑𝑡 𝑅$(𝑡) $

thus ⁄𝑑𝑅 𝑡 𝑑𝑡 𝑅$ 𝑡 = 𝑆(𝑡) is a skew-symmetric matrix
§ let 𝑝(𝑡) = 𝑅(𝑡)𝑝% a vector (with constant norm) rotated over time
§ comparing

�̇� 𝑡 = ⁄𝑑𝑅 𝑡 𝑑𝑡 𝑝% = 𝑆 𝑡 𝑅 𝑡 𝑝% = 𝑆(𝑡)𝑝(𝑡)
�̇� 𝑡 = 𝜔 𝑡 × 𝑝 𝑡 = 𝑆 𝜔 𝑡 𝑝(𝑡)

we get 𝑆 = 𝑆 𝜔

�̇� = 𝑆 𝜔 𝑅 𝑆 𝜔 = �̇� 𝑅!
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𝑝

𝜔

�̇�



Example
Time derivative of an elementary rotation matrix
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𝑅+ 𝜙 𝑡 =
1 0 0
0 cos 𝜙(𝑡) − sin 𝜙(𝑡)
0 sin 𝜙(𝑡) cos 𝜙(𝑡)

�̇�+ 𝜙 𝑅+/(𝜙) = �̇�
0 0 0
0 − sin 𝜙 − cos 𝜙
0 cos 𝜙 − sin 𝜙

1 0 0
0 cos 𝜙 sin 𝜙
0 − sin 𝜙 cos 𝜙

=
0 0 0
0 0 − �̇�
0 �̇� 0

= 𝑆 𝜔 𝜔 = 𝜔+ =
�̇�
0
0

more in general, for the axis/angle rotation matrix

�̇� 𝑟, 𝜃 𝑅/ 𝑟, 𝜃 = 𝑆 𝜔𝑅 𝑟, 𝜃 𝑡 ⟹ 𝜔 = 𝜔4 = �̇� 𝑟 = �̇�
𝑟,
𝑟-
𝑟.



Time derivative of RPY angles and 𝜔

𝑧

𝑦

𝑥

�̇�
𝑦5

𝛾
𝑥5

𝛽

𝑥55

𝑇6%7(𝛽, 𝛾)

det 𝑇6%7 𝛽, 𝛾 = cos 𝛽 = 0
for 𝛽 = ± ⁄𝜋 2

(singularity of the
RPY representation)

similar treatment for the other 11 minimal representations...

2nd col in 
𝑅! 𝛾

1st col in
𝑅! 𝛾 𝑅"! 𝛽
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the three 
contributions
�̇�𝑍, �̇�𝑌5, �̇�𝑋55
to 𝜔 are 
simply summed 
as vectors

𝑅&'" 𝛼!, 𝛽", 𝛾# = 𝑅#"#!## 𝛾#, 𝛽", 𝛼! = 𝑅# 𝛾 𝑅"# 𝛽 𝑅!## 𝛼

𝜔 =
�̇�
�̇�
�̇�

𝑐𝛽𝑐𝛾
𝑐𝛽𝑠𝛾
−𝑠𝛽

−𝑠𝛾
𝑐𝛾
0

0
0
1

𝑋55 𝑌5 𝑍�̇�

�̇�



Robot Jacobian matrices

n analytic Jacobian (obtained by time differentiation)

n geometric or basic Jacobian (no derivatives)
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n in both cases, the Jacobian matrix depends on the  
(current) configuration of the robot

𝑟 =
𝑝
𝜙 = 𝑓, 𝑞 �̇� =

�̇�
�̇� =

𝜕𝑓, 𝑞
𝜕𝑞 �̇� = 𝐽, 𝑞 �̇�

𝑣
𝜔 = 𝐽-(𝑞)

𝐽.(𝑞)
�̇� = 𝐽(𝑞)�̇�



Analytic Jacobian of planar 2R arm 

direct kinematics

𝑝𝑥 = 𝑙1 cos𝑞1 + 𝑙2 cos(𝑞1 + 𝑞2)

𝑝𝑦 = 𝑙1 sin𝑞1 + 𝑙2 sin(𝑞1 + 𝑞2)

given 𝑟, this is a 3 × 2 matrix
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𝑟

𝜙 = 𝑞1 + 𝑞2

�̇� = 𝜔. = �̇�1 + �̇�!

here, all rotations occur around the same
fixed axis 𝑧 (normal to the plane of motion)

𝑥

𝑦

𝑞1

𝑞2

𝑃
•

𝑙1

𝑙2

𝑝𝑥

𝑝𝑦
𝜙

�̇�𝑥 = −𝑙1 𝑠"�̇�" − 𝑙!𝑠"! �̇�" + �̇�!
�̇�𝑦 = 𝑙1 𝑐"�̇�" + 𝑙!𝑐"! �̇�" + �̇�!

𝐽 𝑞 = −𝑙"𝑠" − 𝑙!𝑠"! −𝑙!𝑠"!
𝑙"𝑐" + 𝑙!𝑐"! 𝑙!𝑐"!𝐽4 𝑞 =
−𝑙"𝑠" − 𝑙!𝑠"! −𝑙!𝑠"!
𝑙"𝑐" + 𝑙!𝑐"! 𝑙!𝑐"!

1 1

�̇� = 𝐽( 𝑞 �̇�



Analytic Jacobian of polar (RRP) robot

direct kinematics (here, 𝑟 = 𝑝)

taking the derivative w.r.t. time 𝑡 …
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𝑓((𝑞)

𝑝𝑥

𝑝𝑦

𝑝𝑧

𝑞1

𝑞2

𝑞3

𝑑1

𝑃
𝑝) = 𝑞*𝑐+𝑐,
𝑝- = 𝑞*𝑐+𝑠,
𝑝. = 𝑑, + 𝑞*𝑠+

𝑣 = �̇� =
−𝑞*𝑐+𝑠, −𝑞*𝑠+𝑐, 𝑐+𝑐,
𝑞*𝑐+𝑐, −𝑞*𝑠+𝑠, 𝑐+𝑠,
0 𝑞*𝑐+ 𝑠+

�̇� = 𝐽( 𝑞 �̇�

𝜕𝑓4 𝑞
𝜕𝑞

𝑦

𝑧

𝑥

… requires doing only partial derivatives 
w.r.t. joint variables 𝑞" … 𝑞(



Geometric Jacobian

contribution to the linear
e-e velocity due to �̇�,

linear and angular velocity belong to 
(linear) vector spaces in ℝ*

superposition of effects

end-effector
instantaneous

velocity

always a 6 × 𝑛 matrix

contribution to the angular
e-e velocity due to �̇�,
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𝑣/
𝜔/ = 𝐽0(𝑞)

𝐽1(𝑞)
�̇� = 𝐽0, 𝑞 ⋯ 𝐽02 𝑞

𝐽1, 𝑞 ⋯ 𝐽12 𝑞

�̇�,
⋮
�̇�2

𝑣8 = 𝐽9" 𝑞 �̇�" + ⋯+ 𝐽9( 𝑞 �̇�( 𝜔8 = 𝐽:" 𝑞 �̇�" + ⋯+ 𝐽:( 𝑞 �̇�(



prismatic
𝑖-th joint

𝐽-# 𝑞 �̇�# 𝑧#/0�̇�#

𝐽.# 𝑞 �̇�# 0

Contribution of a prismatic joint

𝑅𝐹'

𝑧#)"

�̇�# = �̇�#

𝐸

𝐽9# 𝑞 �̇�# = 𝑧#)"�̇�#
note: joints beyond the 𝑖-th one are considered to be “frozen”,

so that the distal part of the robot is a single rigid body
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joint 𝑖



revolute
𝑖-th joint

𝐽-# 𝑞 �̇�# 𝑧#/0× 𝑝#/0,1 �̇�#

𝐽.# 𝑞 �̇�# 𝑧#/0�̇�#

Contribution of a revolute joint

�̇�# = �̇�#
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joint 𝑖

𝑅𝐹'

𝑧#)"

𝐽:# 𝑞 �̇�# = 𝑧#)"�̇�#

𝐷𝐸𝐷 why not use the
minimum distance
vector 𝐷𝐸?

•

𝑝#/0,1
𝑂#)"

𝐽9# 𝑞 �̇�#

𝐸



Expression of geometric Jacobian

prismatic 
𝑖-th joint

revolute
𝑖-th joint

𝐽-# 𝑞 𝑧#/0 𝑧#/0× 𝑝#/0,1

𝐽.# 𝑞 0 𝑧#/0

𝑧34, = 5𝑅, 𝑞, ⋯ 34+𝑅34, 𝑞34, 34,𝑧34,
𝑝34,,/ = 𝑝5,/(𝑞,, ⋯ , 𝑞2) − 𝑝5,34,(𝑞,, ⋯ , 𝑞34,)

all vectors should be 
expressed in the same

reference frame
(here, the base frame 𝑅𝐹')
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=
𝜕𝑝',8(𝑞)
𝜕𝑞#

this can be also
computed as

𝑣/
𝜔/ = 𝐽0(𝑞)

𝐽1(𝑞)
�̇� = 𝐽0, 𝑞 ⋯ 𝐽02 𝑞

𝐽1, 𝑞 ⋯ 𝐽12 𝑞

�̇�,
⋮
�̇�2

�̇�5,/
𝜔/

=

0
0
1

partial kinematics
for 𝑂*+, position

complete kinematics
for e-e position



𝑝5,/

𝑝5,,

Geometric Jacobian of planar 2R arm 

𝑥0

𝑦0

• 𝐸

𝑙1

𝑙2

𝑥1

𝑦1

𝑦2 𝑥2
joint 𝛼# 𝑑# 𝑎# 𝜃#
1 0 0 𝑙" 𝑞"
2 0 0 𝑙! 𝑞!

𝑝0,1 = 𝑝3,1 − 𝑝3,0

Denavit-Hartenberg table

𝑧5 = 𝑧, =
0
0
1
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5𝐴, =

𝑐, −𝑠,
𝑠, 𝑐,

0 𝑙,𝑐,
0 𝑙,𝑠,

0 0
0 0

1 0
0 1

5𝐴+ =

𝑐,+ −𝑠,+
𝑠,+ 𝑐,+

0 𝑙,𝑐, + 𝑙+𝑐,+
0 𝑙,𝑠, + 𝑙+𝑠,+

0 0
0 0

1 0
0 1

𝐽 𝑞 =
𝑧3 × 𝑝3,1 𝑧0 × 𝑝0,1

𝑧3 𝑧0

𝑞"

𝑞!

all computations can be made numerically,
evaluating first the direct kinematics terms!



Geometric Jacobian of planar 2R arm

at most 2 components of the linear/angular
end-effector velocity can be independently assigned

Robotics 1 20

𝑦0

• 𝐸

𝑙1

𝑙2𝑦1

𝑦2 𝑥2 𝐽 𝑞 =
𝑧5 × 𝑝5,/ 𝑧, × 𝑝,,/

𝑧5 𝑧,

=

−𝑙,𝑠, − 𝑙+𝑠,+
𝑙,𝑐, + 𝑙+𝑐,+

0

−𝑙+𝑠,+
𝑙+𝑐,+
0

0
0
1

0
0
1

compare rows 1, 2, and 6
with the analytic

Jacobian in slide #13!

𝑥0

𝑥1
𝑞"

𝑞!

𝑣. ≡ 0
𝜔, ≡ 0
𝜔- ≡ 0

note: the Jacobian is here a 6 × 2 matrix, 
thus its maximum rank is 2



'𝑣8
'𝜔

>𝑣8
>𝜔

=
>𝑅' 0
0 >𝑅'

Transformations of Jacobian matrix

𝑂𝑛

𝑅𝐹0

𝑅𝐹𝐵

• 𝐸
𝑟(8

𝑣8 = 𝑣( + 𝜔 × 𝑟(8
= 𝑣( + 𝑆(𝑟8() 𝜔

a) we may choose
𝑅𝐹> ⇒ 𝑅𝐹#(𝑞)

𝑅𝐹𝑖

𝑂$

b) we may choose
𝐸 ⇒ 𝑂$(𝑞)

this part is never singular!

the one just        
computed …
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'𝑣(
'𝜔

= '𝐽( 𝑞 �̇�

𝐼 𝑆 '𝑟8(
0 𝐼

'𝑣(
'𝜔

=
>𝑅' 0
0 >𝑅'

𝐼 𝑆 '𝑟8(
0 𝐼

'𝐽( 𝑞 �̇� = >𝐽8 𝑞 �̇�



Example: Dexter robot
n 8R robot manipulator with transmissions by 

pulleys and steel cables (joints 3 to 8)
n lightweight: only 15 kg in motion
n 6 motors located inside the second link
n incremental encoders (homing)
n redundancy degree for e-e pose task: 𝑛 − 𝑚 = 2
n compliant in the interaction with environment
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Mid-frame Jacobian of Dexter robot
n geometric Jacobian 0𝐽8(𝑞) is very complex
n “mid-frame” Jacobian 4𝐽4(𝑞) is relatively simple!

6 rows,
8 columns 𝑥0

𝑦0

𝑧0

𝑂8

𝑥4𝑦4

𝑧4
𝑂4
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Summary of differential relations
�̇� ⇄ 𝑣
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𝑇 𝜙 has always  ⟺ singularity of the specific minimal
a singularity           representation of orientation

(moving) axes of definition for the 
sequence of rotations 𝜙# , 𝑖 = 1,2,3

�̇� = 𝑣

�̇� ⇄ 𝜔

�̇� ⇄ 𝜔

special case: if the task vector 𝑟 is 

𝑟 =
𝑝
𝜙 𝐽 𝑞 = 𝐼 0

0 𝑇 𝜙 𝐽((𝑞)𝐽( 𝑞 = 𝐼 0
0 𝑇4, 𝜙 𝐽(𝑞)

for each (unit) column 𝑟# of 𝑅 (a frame): �̇�# = 𝜔 × 𝑟#�̇� = 𝑆 𝜔 𝑅
𝑆 𝜔 = �̇�𝑅$

𝜔 = 𝜔8̇1 +𝜔8̇2 +𝜔8̇3 = 𝑎,�̇�, + 𝑎+ 𝜙, �̇�+ + 𝑎* 𝜙,, 𝜙+ �̇�*
= 𝑇 𝜙 �̇�

[ in body frame (Ω = 𝑅/𝜔): �̇� = 𝑅𝑆 Ω , 𝑆 Ω = 𝑅/�̇� = 𝑅/𝑆 𝜔 𝑅 ]

𝐽( ⇄ 𝐽



Acceleration relations (and beyond…)
Higher-order differential kinematics

n differential relations between motion in the joint space and motion in 
the task space can be established at the second order, third order, ... 

n the analytic Jacobian always “weights” the highest-order derivative

�̇� = 𝐽( 𝑞 �̇�velocity

�̈� = 𝐽( 𝑞 �̈� + ̇𝐽((𝑞)�̇�acceleration

𝑟 = 𝐽( 𝑞 𝑞 + 2 ̇𝐽( 𝑞 �̈� + ̈𝐽((𝑞)�̇�jerk

snap ̈�̈� = 𝐽((𝑞) ̈�̈� + ⋯

matrix function 𝑁!(𝑞, �̇�)

n the same holds true also for the geometric Jacobian 𝐽(𝑞)
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matrix function 𝑁&(𝑞, �̇�, �̈�)



Primer on linear algebra

n rank 𝜌(𝐽) = max # of rows or columns that are linearly independent
n 𝜌 𝐽 ≤ min 𝑚, 𝑛 ⟸ if equality holds, 𝐽 has full rank
n if 𝑚 = 𝑛 and 𝐽 has full rank, 𝐽 is nonsingular and the inverse 𝐽)" exists
n 𝜌 𝐽 = dimension of the largest nonsingular square submatrix of 𝐽

n range space ℛ 𝐽 = subspace of all linear combinations of the columns of 𝐽
ℛ 𝐽 = 𝑣 ∈ ℝ? ∶ ∃𝜉 ∈ ℝ( , 𝑣 = 𝐽𝜉

n dim ℛ 𝐽 = 𝜌(𝐽)

n null space 𝒩(𝐽) = subspace of all vectors that are zeroed by matrix 𝐽
𝒩 𝐽 = 𝜉 ∈ ℝ(: 𝐽𝜉 = 0 ∈ ℝ?

n dim 𝒩 𝐽 = 𝑛 − 𝜌(𝐽)

n ℛ 𝐽 ⊕𝒩 𝐽$ = ℝ9 and ℛ 𝐽$ ⊕𝒩 𝐽 = ℝ2 (direct sum of subspaces) 
n any element 𝑣 ∈ 𝑉 = 𝑉" + 𝑉! can be written as 𝑣 = 𝑣" + 𝑣!, 𝑣" ∈ 𝑉" , 𝑣! ∈ 𝑉!
n … in a unique way if and only if 𝑉" ∩ 𝑉! = 0 (a ‘direct’ sum, not just a sum!)

given a matrix 𝐽: 𝑚 × 𝑛 (𝑚 rows, 𝑛 columns)
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also called image of 𝐽

also called kernel of 𝐽



Robot Jacobian
decomposition in linear subspaces and duality

0 0

space of 
joint velocities

space of
task (Cartesian)

velocities

ℛ 𝐽𝒩(𝐽)

𝑱

space of 
joint torques

space of
task (Cartesian)

forces

0
ℛ 𝐽! 𝒩 𝐽!

𝑱𝑻

0

ℛ 𝐽 ⊕𝒩 𝐽! = ℝAℛ 𝐽! ⊕𝒩 𝐽 = ℝB

(in a given configuration 𝑞)

dual spacesdu
al

 s
pa

ce
s
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Mobility analysis in the task space
n 𝜌(𝐽) = 𝜌(𝐽(𝑞)), ℛ 𝐽 = ℛ 𝐽(𝑞) , 𝒩 𝐽$ = 𝒩 𝐽$(𝑞) , etc. are locally

defined, i.e., they depend on the current configuration 𝑞
n ℛ 𝐽(𝑞) is the subspace of all “generalized” velocities (with linear 

and/or angular components) that can be instantaneously realized by the 
robot end-effector when varying the joint velocities �̇� at the current 𝑞

n if 𝜌 𝐽 𝑞 = 𝑚 at 𝑞 (𝐽(𝑞) has max rank, with 𝑚 ≤ 𝑛), the end-effector 
can be moved in any direction of the task space ℝ9

n if 𝜌(𝐽(𝑞)) < 𝑚, there are directions in ℝ9 in which the end-effector 
cannot move (at least, not instantaneously!)
n these directions ∈ 𝒩 𝐽/(𝑞) , the complement of ℛ 𝐽(𝑞) to task space ℝ? , 

which is of dimension 𝑚 − 𝜌(𝐽(𝑞))

n if 𝒩(𝐽 𝑞 ) ≠ 0 , there are non-zero joint velocities �̇� that produce 
zero end-effector velocity (“self motions”)
n this happens always for 𝑚 < 𝑛, i.e., when the robot is redundant for the task 
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Mobility analysis for a planar 3R robot
whiteboard …
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n run the MATLAB code subspaces_3Rplanar.m available in the course material

𝑙" = 𝑙! = 𝑙& = 1 𝑛 = 3,

𝑊𝑆" = 𝑝 ∈ ℝ!: 𝑝 ≤ 3 ⊂ ℝ!

𝑊𝑆! = 𝑝 ∈ ℝ!: 𝑝 ≤ 1 ⊂ ℝ!

𝑝 =
𝑐" + 𝑐"! + 𝑐"!&
𝑠" + 𝑠"! + 𝑠"!&

𝑣 = �̇� =
−𝑠, − 𝑠,+ − 𝑠,+* −𝑠,+ − 𝑠,+* −𝑠,+*
𝑐, + 𝑐,+ + 𝑐,+* 𝑐,+ + 𝑐,+* 𝑐,+* �̇� = 𝐽(𝑞)�̇�

𝑚 = 2!

"#$

#%

&$ = 1

#) *•

*"

*!
&) = 1

&% = 1

𝑞 = (0, 𝜋/2, 𝜋/2)

𝐽 = −1 −1 0
0 −1 −1

case 1)

𝑞 = (𝜋/2, 0, 𝜋)

𝐽 = −1 0 1
0 0 0

case 2)

in ℝ! in ℝ&



Mobility analysis for a planar 3R robot
whiteboard …
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𝑞 = (0, 𝜋/2, 𝜋/2) 𝐽 = −1 −1 0
0 −1 −1

𝜌 𝐽 = 2 = 𝑚

𝒩 𝐽 = span
1
−1
1

dim𝒩 𝐽 = 1
= 𝑛 − 𝜌 𝐽 (= 𝑛 − 𝑚)ℛ 𝐽 = span 1

0 , 01 = ℝ+

𝒩 𝐽$ = 0

𝐽$ =
−1 0
−1 −1
0 −1

𝜌 𝐽$ = 𝜌 𝐽 = 2

ℛ 𝐽$ = span
1
1
0
,
0
1
1

dimℛ 𝐽/ = 2
= 𝜌 𝐽 (= 𝑚)

case 1)

ℛ 𝐽 ⊕𝒩 𝐽$ = ℝ+

ℛ 𝐽$ ⊕𝒩 𝐽 = ℝ*



𝐽 = −1 0 1
0 0 0

Mobility analysis for a planar 3R robot
whiteboard …
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𝑞 = (𝜋/2, 0, 𝜋)

𝜌 𝐽 = 1 < 𝑚

𝒩 𝐽 = span
0
1
0
,
1
0
1

dim𝒩 𝐽 = 2
= 𝑛 − 𝜌 𝐽

ℛ 𝐽 = span 1
0

𝒩 𝐽$ = span 0
1

𝐽$ =
−1 0
0 0
1 0

𝜌 𝐽$ = 𝜌 𝐽 = 1

ℛ 𝐽$ = span
−1
0
1

dimℛ 𝐽/ = 1
= 𝜌 𝐽

ℛ 𝐽 ⊕𝒩 𝐽$ = ℝ+

ℛ 𝐽$ ⊕𝒩 𝐽 = ℝ*

case 2)

dimℛ 𝐽 = 1 = 𝜌 𝐽

dim𝒩 𝐽/ = 1
= 𝑚 − 𝜌 𝐽

forbidden!



Kinematic singularities
n configurations where the Jacobian loses rank

⟺ loss of instantaneous mobility of the robot end-effector
n for 𝑚 = 𝑛 (≤ 6), they correspond to Cartesian poses at which the number 

of solutions of the inverse kinematics problem differs from the generic case
n “in” a singular configuration, we cannot find any joint velocity that realizes 

a desired end-effector velocity in some directions of the task space
n “close” to a singularity, large joint velocities may be needed to realize even 

a small velocity of the end-effector in some directions of the task space
n finding and analyzing in advance the mobility of a robot helps in singularity 

avoidance during trajectory planning and motion control
n when 𝑚 = 𝑛: find the configurations 𝑞 such that det 𝐽(𝑞) = 0
n when 𝑚 < 𝑛: find the configurations 𝑞 such that all 𝑚 ×𝑚 minors of 𝐽(𝑞) are 

singular (or, equivalently, such that det 𝐽(𝑞)𝐽/(𝑞) = 0)
n finding all singular configurations of a robot with a large number of joints, 

or the actual “distance” from a singularity, is a complex computational task
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Singularities of planar 2R robot

n singularities: robot arm is stretched (𝑞+ = 0) or folded (𝑞+ = 𝜋)
n singular configurations correspond here to Cartesian points that are on the 

boundary of the primary workspace (or at the center of 𝑊𝑆, if 𝑙, = 𝑙+)
n in many cases (as here), singularities separate regions of the configuration 

space with distinct inverse kinematic solutions (e.g., elbow ‘‘up” or “down”)

analytic Jacobian

det 𝐽(𝑞) = 𝑙0𝑙C𝑠C
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𝑞1

𝑞2

𝑃•

𝑙1

𝑙2

𝑦

𝑥
𝑝𝑥

𝑝𝑦 direct kinematics

𝑝) = 𝑙,𝑐, + 𝑙+𝑐,+
𝑝- = 𝑙,𝑠, + 𝑙+𝑠,+

�̇� = − 𝑙,𝑠, − 𝑙+𝑠,+ − 𝑙+𝑠,+
𝑙,𝑐, + 𝑙+𝑐,+ 𝑙+𝑐,+

�̇� = 𝐽(𝑞)�̇�



Singularities of polar (RRP) robot
direct kinematics

n singularities
n E-E is along the 𝑧 axis (𝑞! = ±𝜋/2): simple singularity ⇒ rank 𝜌(𝐽) = 2
n third link is fully retracted (𝑞& = 0): double singularity ⇒ rank 𝜌(𝐽) drops to 1

n all singular configurations correspond here to Cartesian points internal to 
the workspace (supposing no range limits for the prismatic joint)

analytic Jacobian

det 𝐽(𝑞) = 𝑞EC𝑐C
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𝑝𝑥

𝑝𝑦

𝑝𝑧

𝑞1

𝑞2

𝑞3

𝑑1

𝑃 𝑝) = 𝑞*𝑐+𝑐,
𝑝- = 𝑞*𝑐+𝑠,
𝑝. = 𝑑, + 𝑞*𝑠+

�̇� =
−𝑞*𝑠,𝑐+ −𝑞*𝑐,𝑠+ 𝑐,𝑐+
𝑞*𝑐,𝑐+ −𝑞*𝑠,𝑠+ 𝑠,𝑐+
0 𝑞*𝑐+ 𝑠+

�̇�

= 𝐽(𝑞)�̇�

𝑦

𝑥

𝑧



Singularities of robots with spherical wrist
n 𝑛 = 6, last three joints are revolute and their axes intersect at a point
n without loss of generality, we set 𝑂: = 𝑊 = center of spherical wrist

(i.e., choose 𝑑: = 0 in DH table) and obtain for the geometric Jacobian

n since det 𝐽 𝑞,, ⋯ , 𝑞; = det 𝐽,, b det 𝐽++, there is a decoupling property 
n det 𝐽"" 𝑞" , 𝑞! , 𝑞& = 0 provides the arm singularities
n det 𝐽!! 𝑞@ , 𝑞A = 0 provides the wrist singularities

n being in the geometric Jacobian 𝐽++ = 𝑧* 𝑧< 𝑧; , wrist singularities 
correspond to when 𝑧*, 𝑧< and 𝑧; become linearly dependent vectors 
⟹ when either 𝑞; = 0 or 𝑞; = ±𝜋/2 (see Euler angles singularities!)

n inversion of 𝐽(𝑞) is simpler (block triangular structure)
n the determinant of 𝐽(𝑞) will never depend on 𝑞,: why?
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𝐽 𝑞 = 𝐽00 0
𝐽0C 𝐽CC


