## Robotics 1

# Inverse kinematics <br> Prof. Alessandro De Luca 

Università di Roma

## Inverse kinematics

what are we looking for?

direct kinematics is always unique; how about inverse kinematics for this 6R robot?

## Inverse kinematics problem

- given a desired end-effector pose (position + orientation), find the values of the joint variables $q$ that will realize it
- a synthesis problem, with input data in the form
- $T=\left[\begin{array}{cc}R & p \\ 0^{T} & 1\end{array}\right]={ }^{0} A_{n}(q) \quad$ • $r=f_{r}(q)$, for a task function classical formulation:
inverse kinematics for a given end-effector pose $T$ inverse kinematics for a given value $r$ of task variables
- a typical nonlinear problem
- existence of a solution (workspace definition)
- uniqueness/multiplicity of solutions ( $r \in \mathbb{R}^{m}, q \in \mathbb{R}^{n}$ )
- solution methods


## Solvability and robot workspace

- primary workspace $W S_{1}$ : set of all positions $p$ that can be reached with at least one orientation ( $\phi$ or $R$ )
- out of $\mathrm{WS}_{1}$ there is no solution to the problem
- if $p \in W S_{1}$, there is a suitable $\phi$ (or $R$ ) for which a solution exists
- secondary (or dexterous) workspace $W S_{2}$ : set of positions $p$ that can be reached with any orientation (among those feasible for the robot direct kinematics)
- if $p \in W S_{2}$, there exists a solution for any feasible $\phi$ (or $R$ )
- $W S_{2} \subseteq W S_{1}$


## Workspace of Fanuc R-2000i/165F

Area di lavoro
Operating Spac
Operating Space
section for a
constant angle $q_{1}$


$W S_{1} \subset \mathbb{R}^{3}$ ( $\approx W S_{2}$ for spherical wrist without joint limits)

Top View
rotating the base joint angle $q_{1}$

## Workspace of a planar 2R arm



- if $l_{1}=l_{2}=l$
- $W S_{1}=\left\{p \in \mathbb{R}^{2}:\|p\| \leq 2 l\right\} \subset \mathbb{R}^{2}$
- $W S_{2}=\{p=0\}$ (all feasible orientations at the origin!... an infinite number)


## Wrist position and E-E pose

 inverse solutions for an articulated 6R robot

## Inverse kinematic solutions of UR10 6-dof Universal Robot UR10, with non-spherical wrist

video (slow motion)
desired pose

$$
\begin{aligned}
& \mathrm{p}=\left(\begin{array}{c}
-0.2373 \\
-0.0832 \\
1.3224
\end{array}\right)[\mathrm{m}] \\
& \mathrm{R}=\left(\begin{array}{ccc}
\sqrt{3} / 2 & 0.5 & 0 \\
-0.5 & \sqrt{3} / 2 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

home configuration at start

$$
q=\left(\begin{array}{llllll}
0 & -\pi / 2 & 0 & -\pi / 2 & 0 & 0
\end{array}\right)^{\mathrm{T}}
$$



## 8 inverse kinematic solutions of UR10



Robotics 1

## Multiplicity of solutions

- E-E positioning of planar 2 R robot $(m=n=2)$
- 2 regular solutions in $\operatorname{int}\left(W S_{1}\right)$
- 1 solution on $\partial W S_{1}$
- for $l_{1}=l_{2}: \infty$ solutions in $W S_{2}$
singular solutions
- E-E positioning of elbow-type spatial 3R robot ( $m=n=3$ )
- 4 regular solutions in $W S_{1}$ (with singular cases yet to be investigated ...)
- spatial 6 R robot arms ( $m=n=6$ )
- $\leq 16$ distinct solutions, out of singularities: this "upper bound" of solutions was shown to be attained by a particular instance of "orthogonal" robot, i.e., with twist angles $\alpha_{i}=0$ or $\pm \pi / 2$ ( $\forall i$ )
- analysis based on algebraic transformations of robot kinematics
- transcendental equations are transformed into a single polynomial equation in one variable (number of roots = degree of the polynomial)
- seek for a transformed polynomial equation of the least possible degree


## A 6R robot with 16 IK solutions all distinct and non-singular

an orthogonal manipulator with DH table $\quad{ }^{\theta_{3}}$

| $i$ | $d_{i}$ | $\theta_{i}$ | $a_{i}$ | $\alpha_{i}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | $\theta_{1}$ | $a_{1}$ | $\pi / 2$ |
| 2 | 0 | $\theta_{2}$ | $a_{2}$ | 0 |
| 3 | $d_{3}$ | $\theta_{3}$ | 0 | $\pi / 2$ |
| 4 | 0 | $\theta_{4}$ | $a_{4}$ | 0 |
| 5 | 0 | $\theta_{5}$ | 0 | $\pi / 2$ |
| 6 | 0 | $\theta_{6}$ | 0 | 0 |

with non-spherical wrist
$a_{1}=0.3, a_{2}=1, a_{4}=1.5, d_{3}=0.2$
$\therefore$ base


Manseur and Doty:
International Journal of Robotics Research, 1989
solutions found using a fast numerical inversion algorithm

| $n$ | $\theta_{1}$ | $\theta_{2}$ | $\theta_{3}$ | $\theta_{4}$ | $\theta_{5}$ | $\theta_{6}$ | $\operatorname{det}\left(\mathrm{~J}^{3}\right)$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 0.000 | 107.458 | 112.460 | -7.662 | 0.000 | 0.000 | 1.310 |
| 6 | 0.000 | 107.458 | -67.540 | -172.338 | 180.000 | 180.000 | 1.310 |
|  | 88.670 | -176.682 | -178.394 | -63.284 | 157.829 | 139.944 | -0.800 |
| 4 | 88.670 | -176.682 | 1.606 | -116.716 | 22.171 | -40.056 | -0.800 |
| 4 | 113.841 | 4.741 | -179.093 | -55.954 | -63.659 | -42.463 | -1.256 |
| 6 | 113.841 | 4.741 | 0.907 | -124.046 | -116.341 | 137.537 | -1.256 |
| 7 | 168.703 | -104.205 | 146.556 | -16.393 | -170.903 | 98.216 | 0.803 |
| 8 | 168.703 | -104.205 | -33.444 | -163.607 | -9.097 | -81.784 | 0.803 |
| 9 | 180.000 | 107.458 | -147.375 | -7.662 | -164.675 | 180.000 | 0.732 |
| 10 | 180.000 | 107.458 | 32.625 | -172.338 | -15.325 | 0.000 | 0.732 |
| 11 | -120.748 | 173.066 | -178.472 | 31.328 | -146.087 | 142.605 | -0.717 |
| 12 | -120.748 | 173.066 | 1.528 | 148.672 | -33.913 | -37.395 | -0.717 |
| 13 | -96.292 | -5.766 | -179.142 | 38.477 | 51.922 | -39.631 | -1.441 |
| 14 | -96.292 | -5.766 | 0.858 | 141.523 | 128.078 | 140.369 | -1.441 |
| 15 | -11.768 | -105.495 | -114.490 | 1.243 | 6.408 | -79.398 | 1.318 |
| 16 | -11.768 | -105.495 | 65.510 | 178.757 | 173.592 | 100.602 | 1.318 |

## Algebraic transformations whiteboard ...

start with some trigonometric equation in the joint angle $\theta$ to be solved ...

$$
a \sin \theta+b \cos \theta=c \quad(*)
$$

introduce the algebraic transformation (... and the related inverse formulas)

$$
\begin{gathered}
u=\tan (\theta / 2) \\
\left.\Rightarrow \quad \sin \theta=\frac{2 u}{1+u^{2}} \quad \cos \theta=\frac{1-u^{2}}{1+u^{2}} \quad \Leftrightarrow \sin ^{2} \theta+\cos ^{2} \theta=1\right)
\end{gathered}
$$

$$
\tan \theta=\tan 2(\theta / 2)=\frac{2 \tan (\theta / 2)}{1-\tan ^{2}(\theta / 2)}=\frac{2 u}{1-u^{2}} \quad \text { (using the duplication formula) }
$$

substituting in (*)

$$
\left.\begin{array}{c}
a \frac{2 u}{1+u^{2}}+b \frac{1-u^{2}}{1+u^{2}}=c \quad \Rightarrow
\end{array} \begin{array}{c}
\text { polynomial equation of second degree in } 2 \\
(b+c) u^{2}-2 a u-(b-c)=0
\end{array}\right] \quad u_{1,2}=\frac{a \pm \sqrt{a^{2}+b^{2}-c^{2}}}{b+c} \quad \Rightarrow \quad \theta_{1,2}=2 \arctan \left(u_{1,2}\right)
$$

only if argument is real, else no solution

## A planar 3R arm

## workspace and number/type of inverse solutions



$$
\begin{aligned}
& l_{1}=l_{2}=l_{3}=l \quad n=3, m=2 \\
& W S_{1}=\left\{p \in \mathbb{R}^{2}:\|p\| \leq 3 l\right\} \subset \mathbb{R}^{2} \\
& W S_{2}=\left\{p \in \mathbb{R}^{2}:\|p\| \leq l\right\} \subset \mathbb{R}^{2}
\end{aligned}
$$

any planar orientation is feasible in $W S_{2}$

1. in $\operatorname{int}\left(W S_{1}\right)$, except for case $3: \infty^{1}$ regular solutions, at which the E-E can take a continuum of $\infty$ orientations (but not all orientations in the plane!)
2. if $\|p\|=3 l$ : only 1 solution, singular

3. if $\|p\|=l: \infty^{1}$ solutions, 3 of which singular

4. if $\|p\|<l$ : $\infty^{1}$ regular solutions (that are never singular)

## Workspace of a planar 3R arm

## with generic link lengths

$$
\begin{aligned}
l_{\text {max }} & =\max \left\{l_{i}, i=1,2,3\right\} \\
l_{\text {min }} & =\min \left\{l_{i}, i=1,2,3\right\}
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
R_{\text {out }} & =l_{\text {min }}+l_{\text {med }}+l_{\text {max }}=l_{1}+l_{2}+l_{3} \\
R_{\text {in }} & =\max \left\{0, l_{\text {max }}-\left(l_{\text {med }}+l_{\text {min }}\right)\right\}
\end{aligned}
$$

a) $l_{1}=1, l_{2}=0.4, l_{3}=0.3[\mathrm{~m}] \Rightarrow l_{\max }=l_{1}=1, l_{\text {med }}=l_{2}=0.4, l_{\min }=l_{3}=0.3$

b) $l_{1}=0.5, l_{2}=0.7, l_{3}=0.5[\mathrm{~m}] \Rightarrow l_{\max }=l_{2}=0.7, l_{\text {med }}=l_{\min }=l_{1}\left(\right.$ or $\left.l_{3}\right)=0.5$
$\Rightarrow R_{\text {in }}=0, R_{\text {out }}=1.7$

## Multiplicity of solutions

summary of the general cases

- if $m=n$
- $\nexists$ solutions
- a finite number of solutions (regular/generic case)
- "degenerate" solutions: infinite or finite set, but anyway different in number from the generic case (singularity)
- if $m<n$ (robot is kinematically redundant for the task)
- $\nexists$ solutions
- $\infty^{n-m}$ solutions (regular/generic case)
- a finite or infinite number of singular solutions
- use of the term singularity will become clearer when dealing with differential kinematics
- instantaneous velocity mapping from joint to task velocity
- lack of full rank of the associated $m \times n$ Jacobian matrix $J(q)$


## Dexter 8R robot arm

- $m=6$ (position and orientation of E-E)
- $n=8$ (all revolute joints)
- $\infty^{2}$ inverse kinematic solutions (redundancy degree $=n-m=2$ )
video

exploring inverse kinematic solutions by a robot self-motion


## Solution methods

ANALYTICAL solution (in closed form)

- preferred, if it can be found*
- use ad-hoc geometric inspection
- algebraic methods (solution of polynomial equations)
- systematic ways for generating a reduced set of equations to be solved
* sufficient conditions for 6-dof arms
- 3 consecutive rotational joint axes are incident (e.g., spherical wrist), or
- 3 consecutive rotational joint axes are parallel
D. Pieper, PhD thesis, Stanford University, 1968


## Inverse kinematics of planar 2R arm


direct kinematics
$p_{x}=l_{1} c_{1}+l_{2} c_{12}$
$p_{y}=l_{1} s_{1}+l_{2} s_{12}$
data $q_{1}, q_{2}$ unknowns
"squaring and summing" the equations of the direct kinematics

$$
p_{x}^{2}+p_{y}^{2}-\left(l_{1}^{2}+l_{2}^{2}\right)=2 l_{1} l_{2}\left(c_{1} c_{12}+s_{1} s_{12}\right)=2 l_{1} l_{2} c_{2}
$$

and from this


## Inverse kinematics of 2 R arm (cont'd)



## by geometric inspection

$$
q_{1}=\alpha-\beta
$$

2 solutions (one for each value of $s_{2}$ )

$$
q_{1}=\operatorname{atan} 2\left\{p_{y}, p_{x}\right\}-\operatorname{atan} 2\left\{l_{2} s_{2}, l_{1}+l_{2} c_{2}\right\}
$$ note: difference of atan2's needs

 to be re-expressed in $(-\pi, \pi]$ ! $\left\{q_{1}, q_{2}\right\}_{\text {DOWN/RIGHT }}$ $q_{2}^{\prime}$ and $q_{2}^{\prime \prime}$ have same absolute value, but opposite signs

## Algebraic solution for $q_{1}$

$$
\left.\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
\text { another } \\
\text { solution } \\
\text { method... }
\end{array}
\end{array} p_{x}=l_{1} c_{1}+l_{2} c_{12}=l_{1} c_{1}+l_{2}\left(c_{1} c_{2}-s_{1} s_{2}\right) \\
p_{y}=l_{1} s_{1}+l_{2} s_{12}=l_{1} s_{1}+l_{2}\left(s_{1} c_{2}+c_{1} s_{2}\right)
\end{array}\right\} \underbrace{s_{1} \text { and } c_{1}}_{\text {linear in }} \begin{aligned}
& {\left[\begin{array}{cc}
l_{1}+l_{2} c_{2} & -l_{2} s_{2} \\
l_{2} s_{2} & l_{1}+l_{2} c_{2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
s_{1}
\end{array}\right]=\left[\begin{array}{c}
p_{x} \\
p_{y}
\end{array}\right]} \\
& \begin{array}{c}
\operatorname{except} \text { if } l_{1}=l_{2} \text { and } c_{2}=-1 \\
\text { being then } q_{1} \text { undefined } \\
\text { (singular case: } \infty^{1} \text { solutions) }
\end{array} \\
& \qquad \begin{array}{l}
q_{1}^{2}=\operatorname{atan2}\left\{s_{1}, c_{1}^{2}\right\} \\
=\operatorname{atan} 2\left\{\left(p_{y}\left(l_{1}+l_{2} c_{2}\right)-p_{x} l_{2} s_{2}\right) / \operatorname{det},\left(p_{x}\left(l_{1}+l_{2} c_{2}\right)+p_{y} l_{2} s_{2}\right) / \text { det }\right\}
\end{array}
\end{aligned}
$$

notes: a) this method provides directly the result in $(-\pi, \pi]$
b) when evaluating atan2, det $>0$ can be in fact eliminated from the expressions of $s_{1}$ and $c_{1}$ (not changing the result)

## Inverse kinematics of polar (RRP) arm

note: here $q_{2}$ is NOT a DH variable!

$$
\begin{array}{cl} 
& p_{x}=q_{3} c_{2} c_{1} \\
\text { direct } & p_{y}=q_{3} c_{2} s_{1} \\
\text { kinematics } & p_{z}=d_{1}+q_{3} s_{2} \\
p_{x}^{2}+p_{y}^{2}+\left(p_{z}-d_{1}\right)^{2}=q_{3}^{2}
\end{array}
$$

$$
q_{3}=+\sqrt{p_{x}^{2}+p_{y}^{2}+\left(p_{z}-d_{1}\right)^{2}}
$$ our choice: take here only the positive value... if $q_{3} \stackrel{\swarrow}{=} 0$, then $q_{1}$ and $q_{2}$ remain both undefined (stop); else

$$
q_{2}=\operatorname{atan} 2\left\{\left(p_{z}-d_{1}\right) / q_{3}, \pm \sqrt{p_{x}^{2}+p_{y}^{2}} / q_{3}\right\}
$$

if $p_{x}^{2}+p_{y}^{2}=0$, then $q_{1}$ remains undefined (stop); else
(if we stop, it is a singular case:
$\infty^{2}$ or $\infty^{1}$
solutions)

$$
q_{1}=\operatorname{atan} 2\left\{p_{y} / c_{2}, p_{x} / c_{2}\right\} \quad\left(2 \text { regular solutions }\left\{q_{1}, q_{2}, q_{3}\right\}\right)
$$

## Inverse kinematics of 3R elbow-type arm


$W S_{1}=\left\{\right.$ spherical shell centered at $\left(0,0, d_{1}\right)$, with outer radius $R_{\text {out }}=L_{2}+L_{3}$ and inner radius $\left.R_{\text {in }}=\left|L_{2}-L_{3}\right|\right\}$

symmetric structure without offsets e.g., first 3 joints of Mitsubishi PA10 robot

$\Rightarrow$4 regular inverse
kinematics solutions in $W S_{1}$
more details (e.g., full handling of singular cases)
can be found in the solution of Exercise \#1
in written exam of 11 Apr 2017

## Inverse kinematics of 3 R elbow-type arm <br> step 1


direct kinematics

$$
\begin{aligned}
& p_{x}=c_{1}\left(L_{2} c_{2}+L_{3} c_{23}\right) \\
& p_{y}=s_{1}\left(L_{2} c_{2}+L_{3} c_{23}\right) \\
& p_{z}=d_{1}+L_{2} s_{2}+L_{3} s_{23}
\end{aligned}
$$

$$
p_{x}^{2}+p_{y}^{2}+\left(p_{z}-d_{1}\right)^{2}=c_{1}^{2}\left(L_{2} c_{2}+L_{3} c_{23}\right)^{2}+s_{1}^{2}\left(L_{2} c_{2}+L_{3} c_{23}\right)^{2}+\left(L_{2} s_{2}+L_{3} s_{23}\right)^{2}
$$

$$
=\cdots=L_{2}^{2}+L_{3}^{2}+2 L_{2} L_{3}\left(c_{2} c_{23}+s_{2} s_{23}\right)=L_{2}^{2}+L_{3}^{2}+2 L_{2} L_{3} c_{3}
$$

$$
c_{3}=\left(p_{x}^{2}+p_{y}^{2}+\left(p_{z}-d_{1}\right)^{2}-L_{2}^{2}-L_{3}^{2}\right) / 2 L_{2} L_{3} \in[-1,+1] \text { (else, } p \text { is out of workspace!) }
$$

$$
\pm s_{3}= \pm \sqrt{1-c_{3}^{2}} \Rightarrow \text { two solutions }\left\{\begin{array}{l}
q_{3}^{\{+\}}=\operatorname{atan} 2\left\{s_{3}, c_{3}\right\} \\
q_{3}^{\{-\}}=\operatorname{atan} 2\left\{-s_{3}, c_{3}\right\}=-q_{3}^{\{+\}}
\end{array}\right.
$$

## Inverse kinematics of 3 R elbow-type arm

 step 2

$$
\text { again, two solutions } \Rightarrow\left\{\begin{array}{l}
q_{1}^{\{+\}}=\operatorname{atan} 2\left\{p_{y}, p_{x}\right\} \\
q_{1}^{\{-\}}=\operatorname{atan} 2\left\{-p_{y},-p_{x}\right\}
\end{array}\right.
$$

## Inverse kinematics of 3 R elbow-type arm step 3

 combine first the two equations of direct kinematics and rearrange the last one

$$
\left[\begin{array}{rl}
c_{1} p_{x}+s_{1} p_{y} & =L_{2} c_{2}+L_{3} c_{23} \\
& =\left(L_{2}+L_{3} c_{3}\right) c_{2}-L_{3} s_{3} s_{2} \\
p_{z}-d_{1} & =L_{2} s_{2}+L_{3} s_{23} \\
& =L_{3} s_{3} c_{2}+\left(L_{2}+L_{3} c_{3}\right) s_{2}
\end{array}\right.
$$

define and solve a linear system $A x=b$ in the algebraic unknowns $x=\left(c_{2}, s_{2}\right)$

$$
\begin{array}{cc}
{\left[\begin{array}{cc}
L_{2}+L_{3} c_{3} & -L_{3} s_{3}^{\{+,-\}} \\
L_{3} s_{3}^{\{+,-\}} & L_{2}+L_{3} c_{3}
\end{array}\right]\left[\begin{array}{c}
c_{2} \\
s_{2}
\end{array}\right]=\left[\begin{array}{c}
c_{1}^{\{+,-\}} p_{x}+s_{1}^{\{+,-\}} p_{y} \\
p_{z}-d_{1}
\end{array}\right]} & \begin{array}{l}
4 \text { regular solutions for } q_{2}, \\
\text { depending on the combinations } \\
\text { of }\{+,-\} \text { from } q_{1} \text { and } q_{3}
\end{array} \\
\text { coefficient matrix } A & \text { known vector } b
\end{array} \begin{gathered}
\text { provided } \operatorname{det} A=p_{x}^{2}+p_{y}^{2}+\left(p_{z}-d_{1}\right)^{2} \neq 0 \\
\text { (else } q_{2} \text { is undefined -infinite solutions!) }
\end{gathered} \begin{aligned}
& q_{2}^{\{\{f, b\},\{u, d\}\}}
\end{aligned}
$$

## Inverse kinematics for robots with spherical wrist



1. $W=p-d_{6} a \Rightarrow q_{1}, q_{2}, q_{3}$ (inverse "position" kinematics for main axes)
2. $R={ }^{0} R_{3}\left(q_{1}, q_{2}, q_{3}\right) \underbrace{3} R_{6}\left(q_{4}, q_{5}, q_{6}\right) \Rightarrow{ }^{3} R_{6}\left(q_{4}, q_{5}, q_{6}\right)={ }^{0} R_{3}^{T} R \Rightarrow q_{4}, q_{5}, q_{6}$
known, Euler $Z Y Z$ or $Z X Z$ after step 1
(inverse "orientation"

## 6R robot Unimation PUMA 600



## Finding nice kinematic relations

## whiteboard ...

- the most complex inverse kinematics that can be solved in principle in closed form (i.e., analytically) is that of a 6R serial manipulator, with arbitrary DH table - ways to systematically generate equations from the direct kinematics that could be easier to solve $\Rightarrow$ some scalar equations may contain perhaps a single unknown variable!

$$
{ }^{0} T_{6}={ }^{0} A_{1}\left(\theta_{1}\right){ }^{1} A_{2}\left(\theta_{2}\right) \cdots{ }^{5} A_{6}\left(\theta_{6}\right)=U_{0}
$$

method used for the
Unimation PUMA 600 in $(*)$

$$
\begin{gathered}
{ }^{0} A_{1}^{-1}{ }^{0} T_{6}=U_{1}\left(={ }^{1} A_{2} \cdots{ }^{5} A_{6}\right) \\
{ }^{1} A_{2}^{-1}{ }^{0} A_{1}^{-1}{ }^{0} T_{6}=U_{2}\left(={ }^{2} A_{3} \cdots{ }^{5} A_{6}\right) \\
\cdots \\
{ }^{4} A_{5}^{-1} \cdots{ }^{1} A_{2}^{-1}{ }^{0} A_{1}^{-1}{ }^{0} T_{6}=U_{5}\left(={ }^{5} A_{6}\right)
\end{gathered}
$$

or also ...

$$
\begin{aligned}
& { }^{0} T_{6}{ }^{5} A_{6}^{-1}=V_{5}\left(={ }^{0} A_{1} \cdots{ }^{4} A_{5}\right) \\
& { }^{0} T_{6}{ }^{5} A_{6}^{-1{ }^{4}} A_{5}^{-1}=V_{4}\left(={ }^{0} A_{1} \cdots{ }^{3} A_{4}\right) \\
& \\
& \cdots \\
& { }^{0} T_{6}{ }^{5} A_{6}^{-1}{ }^{4} A_{5}^{-1} \cdots{ }^{1} A_{2}^{-1}=V_{1}\left(={ }^{0} A_{1}\right)
\end{aligned}
$$

(*) Paul, Shimano, and Mayer: IEEE Transactions on Systems, Man, and Cybernetics, 1981

- generating from the direct kinematics a reduced set of equations to be solved (setting w.l.o.g. $\left.d_{1}=d_{6}=0\right) \Rightarrow 4$ compact scalar equations in the 4 unknowns $\theta_{2}, \ldots, \theta_{5}$

$$
{ }^{0} T_{6}=\left[\begin{array}{cccc}
n & s & a & p \\
0 & 0 & 0 & 1
\end{array}\right]={ }^{0} A_{6}(\theta) \longrightarrow \begin{aligned}
& a_{z}=a^{T}(\theta) z
\end{aligned} \quad\|p\|^{2}=p^{T}(\theta) p(\theta) \quad \text { solved analytically }
$$

$$
z=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]^{T}
$$

## Numerical solution of inverse kinematics problems

- use when a closed-form solution $q$ to $r_{d}=f_{r}(q)$ does not exist or is "too hard" to be found
- all methods are iterative and need the matrix $J_{r}(q)=\frac{\partial f_{r}(q)}{\partial q}$ (analytical Jacobian)
- Newton method (here only for $m=n$, at the $k$ th iteration)
- $r_{d}=f_{r}(q)=f_{r}\left(q^{k}\right)+J_{r}\left(q^{k}\right)\left(q-q^{k}\right)+o\left(\left\|q-q^{k}\right\|\right)$
$\leftarrow$ neglected

$$
q^{k+1}=q^{k}+J_{r}^{-1}\left(q^{k}\right)\left[r_{d}-f_{r}\left(q^{k}\right)\right]
$$

- convergence for $q^{0}$ (initial guess) close enough to some $q^{*}: f_{r}\left(q^{*}\right)=r_{d}$
- problems near singularities of the Jacobian matrix $J_{r}(q)$
- in case of robot redundancy $(m<n)$, use the pseudoinverse $J_{r}^{\#}(q)$
- has quadratic convergence rate when near to a solution (fast!)


## Operation of Newton method

- in the scalar case, also known as "method of the tangent"
- for a differentiable function $f(x)$, find a root $x^{*}$ of $f\left(x^{*}\right)=0$ by iterating as

$$
\begin{aligned}
& x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} \\
& \text { an approximating sequence } \\
& \left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \cdots\right\} \rightarrow x^{*}
\end{aligned}
$$


animation from
http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

## Numerical solution of inverse kinematics problems (cont'd)

- Gradient method (max descent)
- minimize the error function

$$
\begin{gathered}
H(q)=\frac{1}{2}\left\|r_{d}-f_{r}(q)\right\|^{2}=\frac{1}{2}\left(r_{d}-f_{r}(q)\right)^{T}\left(r_{d}-f_{r}(q)\right) \\
q^{k+1}=q^{k}-\alpha \nabla_{q} H\left(q^{k}\right)
\end{gathered}
$$

from

$$
\nabla_{q} H(q)=(\partial H(q) / \partial q)^{T}=-\left(\left(r_{d}-f_{r}(q)\right)^{T}\left(\partial f_{r}(q) / \partial q\right)\right)^{T}=-J_{r}^{T}(q)\left(r_{d}-f_{r}(q)\right)
$$

we get

$$
q^{k+1}=q^{k}+\alpha J_{r}^{T}\left(q^{k}\right)\left(r_{d}-f_{r}\left(q^{k}\right)\right)
$$

- the scalar step size $\alpha>0$ should be chosen so as to guarantee a decrease of the error function at each iteration: too large values for $\alpha$ may lead the method to "miss" the minimum
- when the step size is too small, convergence is extremely slow


## Revisited as a feedback scheme

$$
\begin{aligned}
& e=r_{d}-f_{r}(q) \rightarrow 0 \Leftrightarrow \text { closed-loop equilibrium } e=0 \\
& \text { is asymptotically stable } \\
& V=\frac{1}{2} e^{T} e \geq 0 \quad \text { is a Lyapunov candidate function } \\
& \dot{V}=e^{T} \dot{e}=e^{T} \frac{d}{d t}\left(r_{d}-f_{r}(q)\right)=-e^{T} J_{r}(q) \dot{q}=-e^{T} J_{r}(q) J_{r}^{T}(q) e \leq 0 \\
& \dot{V}=0 \Leftrightarrow \underset{\uparrow}{\substack{\mathcal{N}}} \underset{r}{\text { null space }} \quad \text { asymptotic stability }) ~ \text { in particular, } e=0
\end{aligned}
$$

## Properties of Gradient method

- computationally simpler: use the Jacobian transpose, rather than its (pseudo)inverse
- same use also for robots that are redundant $(n>m)$ for the task
- may not converge to a solution, but it never diverges
- the discrete-time evolution of the continuous scheme

$$
q^{k+1}=q^{k}+\Delta T J_{r}^{T}\left(q^{k}\right)\left(r_{d}-f_{r}\left(q^{k}\right)\right), \quad \alpha=\Delta T
$$

is equivalent to an iteration of the Gradient method

- the scheme can be accelerated by using a gain matrix $K>0$

$$
\dot{q}=J_{r}^{T}(q) K e=J_{r}^{T}(q) K\left(r_{d}-f_{r}(q)\right)
$$

note: $K \rightarrow K+K_{S}$, with $K_{S}$ skew-symmetric, can be used also to "escape" from being stuck in a stationary point of $V=\frac{1}{2} e^{T} K e$, by rotating the error $K e$ out of the null space of $J_{r}^{T}$ (when a singularity is encountered)

## A case study

analytic expressions of Newton and gradient iterations

- 2 R robot with $l_{1}=l_{2}=1$, desired end-effector position $r_{d}=p_{d}=(1,1)$
- direct kinematic function and error

$$
f_{r}(q)=\binom{c_{1}+c_{12}}{s_{1}+s_{12}} \quad e=p_{d}-f_{r}(q)=\binom{1}{1}-f_{r}(q)
$$

- Jacobian matrix

$$
J_{r}(q)=\frac{\partial f_{r}(q)}{\partial q}=\left(\begin{array}{cc}
-\left(s_{1}+s_{12}\right) & -s_{12} \\
c_{1}+c_{12} & c_{12}
\end{array}\right)
$$

- Newton versus Gradient iteration

$$
q^{k+1}=q^{k}+\left\{\begin{array}{cc}
\frac{1}{S_{r}^{-1}\left(q^{k}\right)} \\
s_{2}\left(\begin{array}{cc}
c_{12} & s_{12} \\
-\left(c_{1}+c_{12}\right) & -\left(s_{1}+s_{12}\right)
\end{array}\right)_{\mid q=q^{k}} \\
\alpha\left(\begin{array}{cc}
-\left(s_{1}+s_{12}\right) & c_{1}+c_{12} \\
-s_{12} & c_{12}
\end{array}\right)_{\mid q=q^{k}}
\end{array} e_{k} \quad \times\binom{ 1-\left(c_{1}+c_{12}\right)}{1-\left(s_{1}+s_{12}\right)}_{\mid q=q^{k}}\right.
$$

## Error function

- 2 R robot with $l_{1}=l_{2}=1$ and desired end-effector position $p_{d}=(1,1)$

$$
e=p_{d}-f_{r}(q)
$$


plot of $\|e\|^{2}$ as a function of $q=\left(q_{1}, q_{2}\right)$


## Configuration space of 2 R robot

 whiteboard ...- can we represent the correct "distance" between two configurations $q^{\prime}$ and $q^{\prime \prime}$ of this robot on a (square) region in $\mathbb{R}^{2}$ ?

join the two sides $q_{2}=-\pi$ and $q_{2}=\pi$
- configuration space is a torus $S O(1) \times S O(1)$, i.e., the surface of a "donut"

- the right metric is a geodesic on the torus ...


## Error reduction by Gradient method

- flow of iterations along the negative (or anti-) gradient
- two possible cases: convergence or stuck (at zero gradient)




## Convergence analysis

## when does the gradient method get stuck?

- lack of convergence occurs when
- the Jacobian matrix $J_{r}(q)$ is not full rank (the robot is in a "singular configuration")
- AND the error $e$ is in the null space of $J_{r}^{T}(q)$



## Issues in implementation

- initial guess $q^{0}$
- only one inverse solution is generated for each guess
- multiple initializations for obtaining other solutions
- optimal step size $\alpha>0$ in Gradient method
- a constant step may work good initially, but not close to the solution (or vice versa)
- an adaptive one-dimensional line search (e.g., Armijo's rule) could be used to choose the best $\alpha$ at each iteration
- stopping criteria

Cartesian error
(possibly, separate for position and orientation)

$$
\left\|r_{d}-f_{r}\left(q^{k}\right)\right\| \leq \varepsilon \quad \begin{aligned}
& \text { algorithm } \\
& \text { increment }
\end{aligned}\left\|q^{k+1}-q^{k}\right\| \leq \varepsilon_{q}
$$

- understanding closeness to singularities

$$
\sigma_{\min }\left\{J_{r}\left(q^{k}\right)\right\} \geq \sigma_{0} \quad \begin{gathered}
\text { good numerical conditioning } \\
\text { of Jacobian matrix (SVD) }
\end{gathered}
$$

(or a simpler test on its determinant, for $m=n$ )

## Numerical tests on RRP robot

- RRP/polar robot: desired E-E position $r_{d}=p_{d}=(1,1,1)$ -see slide \#22, with $d_{1}=0.5$
- the two (known) analytical solutions, with $q_{3} \geq 0$, are

$$
\begin{aligned}
& q^{*}=(0.7854,0.3398,1.5) \\
& q^{* *}=\left(q_{1}^{*}-\pi, \pi-q_{2}^{*}, q_{3}^{*}\right)=(-2.3562,2.8018,1.5)
\end{aligned}
$$

- norms $\varepsilon=10^{-5}$ (max Cartesian error), $\varepsilon_{q}=10^{-6}$ (min joint increment)
- $k_{\max }=15$ (max \# iterations), $\left|\operatorname{det} J_{r}(q)\right| \leq 10^{-4}$ (singularity closeness)
- numerical performance of Gradient (with different steps $\alpha$ ) vs. Newton
- test 1: $q^{0}=(0,0,1)$ as initial guess
- test 2: $q^{0}=(-\pi / 4, \pi / 2,1)$ - "singular" start, since $c_{2}=0$ (see slide \#22)
- test 3: $q^{0}=(0, \pi / 2,0)-$ "doubly singular" start, since also $q_{3}=0$
- solution and plots with MATLAB code


## Numerical test - 1

- test 1: $q^{0}=(0,0,1)$ as initial guess; evolution of the error norm
 iterations
Newton in 5 iterations




$$
\text { in } 11 \text { iterations }
$$

Cartesian errors





## Numerical test - 1

- test $1: q^{0}=(0,0,1)$ as initial guess; evolution of joint variables



## Numerical test - 2

- test $2: q^{0}=(-\pi / 4, \pi / 2,1)$ : singular start



## Newton method

starts toward solution, but slowly stops
(in singularity): when Cartesian error vector $e \in \mathcal{N}\left(J_{r}^{T}(q)\right)$
with check of
$\leftrightarrow$ singularity: blocked at start
$\longleftrightarrow$ without check:
it diverges!

## Numerical test - 3

- test $3: q^{0}=(-\pi / 4, \pi / 2,1)$ : doubly singular start




## Final remarks

- an efficient iterative scheme can be devised by combining
- initial iterations using Gradient ("sure but slow", linear convergence rate)
- switch then to Newton method (quadratic terminal convergence rate)
- joint range limits are considered only at the end
- check if the solution found is feasible, as for analytical methods
- or, an optimization criterion and/or constraints included in the search
- drive iterations toward an inverse kinematic solution with nicer properties
- if the problem has to be solved on-line
- execute iterations and associate an actual robot motion: repeat steps at times $t_{0}, t_{1}=t_{0}+T, \ldots, t_{k}=t_{k-1}+T$ (e.g., every $T=40 \mathrm{~ms}$ )
- a "good" choice for the initial guess $q^{0}$ at $t_{k}$ is the solution of the previous problem at $t_{k-1}$ (provides continuity, requires only 1-2 Newton iterations)
- crossing of singularities and handling of joint range limits need special care
- Jacobian-based inversion schemes are used also for kinematic control, moving along/tracking a continuous task trajectory $r_{d}(t)$

