

Robotics 1

Direct kinematics

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA Automatica e Gestionale Antonio Ruberti

study of ...

geometric and timing aspects of robot motion, without reference to the causes producing it

robot seen as ...

an (open) kinematic chain of rigid bodies interconnected by (revolute or prismatic) joints

Motivations

- functional aspects
 - definition of robot workspace
 - calibration
- operational aspects

task execution
(actuation by motors)task definition and
performance

two different "spaces" related by kinematic (and dynamic) maps

- trajectory planning
- programming
- motion control

Kinematics formulation and parameterizations

- choice of parameterization q
 - unambiguous and minimal characterization of robot configuration
 - n = # degrees of freedom (dof) = # robot joints (rotational or translational)
- choice of parameterization r
 - compact description of position and/or orientation (pose) variables of interest to the required task

• usually, $m \le n$ and m = 6 (but none of these is strictly necessary)

Open kinematic chains

■ *m* = 2

- pointing in space
- positioning in the plane
- *m* = 3
 - orientation in space
 - positioning and orientation in the plane

■ *m* = 5

 positioning and pointing in space (like for spot welding)

■ *m* = 6

- positioning and orientation in space
- positioning of two points in space (e.g., end-effector and elbow)

Classification by kinematic type first 3 dofs only **SCARA** (RRP) cylindric Cartesian or (RPP) gantry (PPP) articulated or anthropomorphic (RRR) polar or spherical (RRP) R = 1-dof rotational (revolute) joint **P** = 1-dof translational (prismatic) joint Robotics 1 6

Direct kinematic map

 the structure of the direct kinematics function depends on the chosen r

$$r = f_r(q)$$

- methods for computing $f_r(q)$
 - geometric/by inspection
 - systematic: assigning frames attached to the robot links and using homogeneous transformation matrices

for the manipulator skeleton

Denavit-Hartenberg (DH) frames

Definition of DH parameters joint axis joint axis joint axis i + 1i - 1link *i* link i-1 α_i Z_i Z_{i-1} x_{i-1}

- unit vector z_i along axis of joint i + 1
- unit vector x_i along the common normal to joint i and i + 1 axes $(i \rightarrow i + 1)$
- a_i = distance DO_i , + if oriented as x_i , always constant (= 'length' of link i)
- d_i = distance $O_{i-1}D$, + if oriented as z_{i-1} , variable if joint *i* is PRISMATIC
- α_i = twist angle from z_{i-1} to z_i around x_i , + if CCW, always constant
- θ_i = angle from x_{i-1} to x_i around z_{i-1} , + if CCW, variable if joint *i* is REVOLUTE *Robotics 1*13

DH layout made simple

a popular 3-minute illustration...

https://www.youtube.com/watch?v=rA9tm0gTln8

• **note**: the author of this video uses *r* in place of *a*, and does not add subscripts!

Homogeneous transformation between successive DH frames (from frame i - 1 to frame i)

• roto-translation (screw motion) around and along Z_{i-1}

$${}^{i-1}A_{i'}(q_i) = \begin{bmatrix} \cos\theta_i & -\sin\theta_i & 0 & 0\\ \sin\theta_i & \cos\theta_i & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & d_i\\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos\theta_i & -\sin\theta_i & 0 & 0\\ \sin\theta_i & \cos\theta_i & 0 & 0\\ 0 & 0 & 1 & d_i\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

the product of these two matrices commutes!

rotational joint $\Rightarrow q_i = \theta_i$ prismatic joint $\Rightarrow q_i = d_i$

• roto-translation (screw motion) around and along χ_i

$${}^{i'}A_{i} = \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & \cos \alpha_{i} & -\sin \alpha_{i} & 0 \\ 0 & \sin \alpha_{i} & \cos \alpha_{i} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \longleftarrow \begin{array}{l} \text{always a} \\ \text{constant matrix} \end{array}$$

Denavit-Hartenberg matrix

J. Denavit and R.S. Hartenberg, "A kinematic notation for lower-pair mechanisms based on matrices," *Trans. ASME J. Applied Mechanics*, **23**: 215–221, 1955

$${}^{i-1}A_i(q_i) = {}^{i-1}A_{i'}(q_i) {}^{i'}A_i = \begin{bmatrix} \cos\theta_i & -\cos\alpha_i \sin\theta_i & \sin\alpha_i \sin\theta_i & a_i \cos\theta_i \\ \sin\theta_i & \cos\alpha_i \cos\theta_i & -\sin\alpha_i \cos\theta_i & a_i \sin\theta_i \\ 0 & \sin\alpha_i & \cos\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

compact notation: $c = \cos, s = \sin$

super-compact notation (if feasible): $c_i = \cos q_i$, $s_i = \sin q_i$

Direct kinematics of 2R planar robot using DH frame assignment...

Direct kinematics of 2R planar robot TCP location on the robot end effector

Tool Center Point *TCP* and associated end-effector frame RF_E

$${}^{2}T_{E} = \begin{bmatrix} 0 & 1 & 0 & {}^{2}TCP_{x} \\ 0 & 0 & -1 & {}^{2}TCP_{y} \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{0}TCP(q) \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{0}TCP_{x}(q) \\ {}^{0}TCP_{y}(q) \\ 0 \\ 1 \end{bmatrix} = {}^{0}A_{2}(q) \begin{bmatrix} {}^{2}TCP_{x} \\ {}^{2}TCP_{y} \\ 0 \\ 1 \end{bmatrix} = {}^{0}T_{E}(q) \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = {}^{0}A_{2}(q) {}^{2}T_{E}$$

Ambiguities in defining DH frames

- frame 0: origin and x_0 axis are arbitrary (z_0 on first joint axis!)
- frame *n*: choose conveniently the origin, z_n axis is not specified
 - however, x_n must intersect and be chosen orthogonal to z_{n-1}
- positive direction of z_{i-1} (up/down on axis of joint *i*) is arbitrary
 - choose one, and try to 'avoid flipping over' to the next one
- positive direction of x_i (back/forth on axis of link i) is arbitrary
 - if successive joint axes are incident, we often take $x_i = z_{i-1} \times z_i$
 - when natural, follow the direction 'from base to tip'
- if z_{i-1} and z_i are parallel (common normal not uniquely defined)
 - O_i is chosen arbitrarily along z_i , still trying to 'zero out' parameters
- if z_{i-1} and z_i are coincident, normal x_i axis can be chosen at will
 - this case occurs only if the two joints are of different kind (P/R or R/P)
 - again, try using 'simple values' (e.g., 0 or $\pm \pi/2$) for constant angles

DH assignment for a SCARA robot

Sankyo SCARA 8438

 q_3 q_4 Sankyo SCARA SR 8447

Step 1: joint axes

J1 shoulder

Step 2: link axes

the vertical 'heights' of the link axes are arbitrary (for the time being)

Step 3: frames

axes y_i for i > 0are not shown

(nor needed; they form right-handed frames)

Step 4: DH table of parameters

i	α_i	a _i	d _i	θ_i
1	0	<i>a</i> ₁	d_1	q_1
2	0	<i>a</i> ₂	0	<i>q</i> ₂
3	0	0	<i>q</i> ₃	0
4	π	0	d_4	q_4

note that

- d_1 and d_4 could be set = 0
- $d_4 < 0$ (opposite to z_3)
- $q_3 < 0$ in this configuration
- similarly, here $q_1 > 0$, $q_2 < 0$, $q_4 < 0$

Step 5: DH transformation matrices

$${}^{0}A_{1}(q_{1}) = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & a_{1}c\theta_{1} \\ s\theta_{1} & c\theta_{1} & 0 & a_{1}s\theta_{1} \\ 0 & 0 & 1 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{i-1}A_{i}(q_{i}) = \begin{bmatrix} c\theta_{i} & -ca_{i}s\theta_{i} & sa_{i}s\theta_{i} & a_{i}c\theta_{i} \\ s\theta_{i} & ca_{i}c\theta_{i} & -sa_{i}c\theta_{i} & a_{i}s\theta_{i} \\ 0 & sa_{i} & ca_{i} & d_{i} \\ 0 & 0 & 1 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{1}A_{2}(q_{2}) = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & a_{2}c\theta_{2} \\ s\theta_{2} & c\theta_{2} & 0 & a_{2}s\theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{2}A_{3}(q_{3}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{q} = (q_{1}, q_{2}, q_{3}, q_{4}) {}^{3}A_{4}(q_{4}) = \begin{bmatrix} c\theta_{4} & s\theta_{4} & 0 & 0 \\ s\theta_{4} & -c\theta_{4} & 0 & 0 \\ 0 & 0 & -1 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{1}$$

Step 6a: direct kinematics homogeneous matrix ${}^{w}T_{E}$ as product of the ${}^{i-1}A_{i}(q_{i})$'s

$${}^{0}A_{2}(q_{1},q_{2}) = \begin{bmatrix} c_{12} & -s_{12} & 0 & a_{1}c_{1} + a_{2}c_{12} \\ s_{12} & c_{12} & 0 & a_{1}s_{1} + a_{2}s_{12} \\ 0 & 0 & 1 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$${}^{0}A_{3}(q_{1},q_{2},q_{3}) = \begin{bmatrix} c_{12} & -s_{12} & 0 & a_{1}c_{1} + a_{2}c_{12} \\ s_{12} & c_{12} & 0 & a_{1}s_{1} + a_{2}s_{12} \\ 0 & 0 & 1 & d_{1} + q_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$${}^{R(q_{1},q_{2},q_{3})} = \begin{bmatrix} c_{124} & s_{124} & 0 \\ s_{124} & -c_{124} & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} c_{124} & s_{124} & 0 \\ s_{124} & -c_{124} & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_{1}c_{1} + a_{2}c_{12} \\ a_{1}s_{1} + a_{2}s_{12} \\ a_{1}s_{1} + a_{2}s_{12} \\ d_{1} + q_{3} + d_{4} \end{bmatrix}$$

Step 6b: direct kinematics

as task vector $r \in \mathbb{R}^m$

$${}^{0}A_{4}(q_{1}, q_{2}, q_{3}, q_{4}) = \begin{bmatrix} c_{124} & s_{124} & 0 \\ s_{124} & -c_{124} & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_{1}c_{1} + a_{2}c_{12} \\ a_{1}s_{1} + a_{2}s_{12} \\ d_{1} + q_{3} + d_{4} \\ 1 \end{bmatrix}$$
extract $\alpha_{z} \in \mathbb{R}$
from
$$R(q_{1}, q_{2}, q_{4})$$

$$r = \begin{bmatrix} p_{x} \\ p_{y} \\ p_{z} \\ \alpha_{z} \end{bmatrix} = f_{r}(q) = \begin{bmatrix} a_{1}c_{1} + a_{2}c_{12} \\ a_{1}s_{1} + a_{2}s_{12} \\ d_{1} + q_{3} + d_{4} \\ q_{1} + q_{2} + q_{4} \end{bmatrix} \in \mathbb{R}^{4}$$
take $p \in \mathbb{R}^{3}$
as such from
$$p(q_{1}, q_{2}, q_{3})$$

MATLAB code available on web site: **dirkin_SCARA.m**

Stanford manipulator

6-dof: 2R-1P-3R (spherical wrist)

- 'one possible' DH assignment of frames is shown
- determine the associated
 - table of DH parameters
 - homogeneous transformation matrices
 - direct kinematics
- write a program for computing the direct kinematics
 - numerically (Matlab), given a q
 - symbolically (Mathematica, Maple, Symbolic Manipulation Toolbox of Matlab, ...)

DH table for Stanford manipulator

 $z_6(\bar{a})$

6-dof: 2R-1P-3R (spherical wrist)

i	α_i	a _i	d_i	$ heta_i$
1	$-\pi/2$	0	$d_1 > 0$	$q_1 = 0$
2	$\pi/2$	0	$d_2 > 0$	$q_2 = 0$
3	0	0	$q_3 > 0$	$-\pi/2$
4	$-\pi/2$	0	0	$q_4 = 0$
5	$\pi/2$	0	0	$q_5 = -\pi/2$
6	0	0	$d_{6} > 0$	$q_{6} = 0$

joint variables are in red, while their values in the shown robot configuration are in blue

KUKA LWR 4+

7R (no offsets, spherical shoulder and spherical wrist)

available at DIAG Robotics Lab

- determine
 - frames and table of DH parameters
 - homogeneous transformation matrices
 - direct kinematics
 - d₁ and d₇ can be set = 0 or not (as needed)

KUKA KR5 Sixx R650

6R (offsets at shoulder and elbow, spherical wrist)

- frames and table of DH parameters
- homogeneous transformation matrices
- direct kinematics (symbolic & numeric)

Robotics 1

available at

DIAG Robotics Lab

Appendix: Modified DH convention

- a modified version introduced in J. Craig's book "Introduction to Robotics" (1986) and aligned for the indexing by Khalil and Kleinfinger (ICRA, 1986)
 - has z_i axis on joint i
 - $a_i \& \alpha_i$ = distance & twist angle from z_{i-1} to z_i , measured along & about x_{i-1}
 - $d_i \otimes \theta_i$ = distance & angle from x_{i-1} to x_i , measured along & about z_i
 - source of much confusion... if you are not aware of it (or don't mention it!)
 - convenient with link flexibility: a rigid frame at the base, another at the tip...

