

Robotics 1

Direct kinematics

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Kinematics of robot manipulators

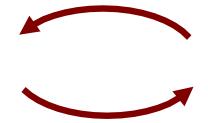
- study of ...
 geometric and timing aspects of robot motion,
 without reference to the causes producing it
- robot seen as ...
 an (open) kinematic chain of rigid bodies interconnected by (revolute or prismatic) joints

Robotics 1

Motivations

- functional aspects
 - definition of robot workspace
 - calibration
- operational aspects

task execution (actuation by motors)



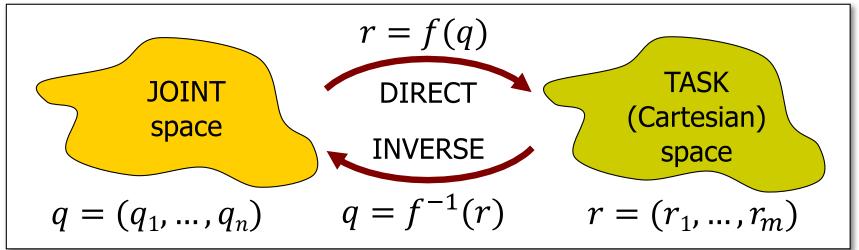
task definition and performance

two different "spaces" related by kinematic (and dynamic) maps

- trajectory planning
- programming
- motion control

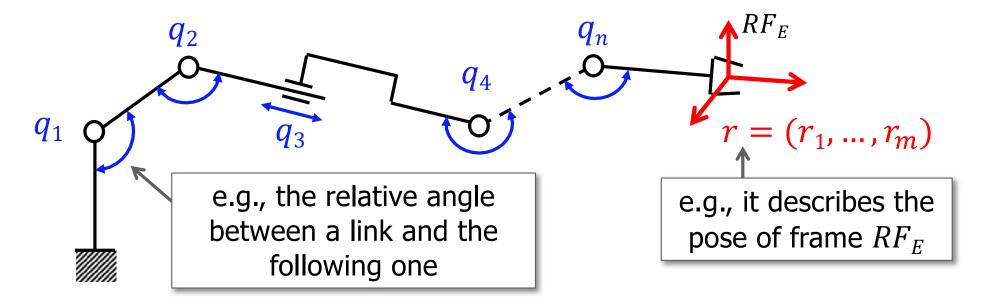
Robotics 1

Kinematics



- choice of parameterization q
 - unambiguous and minimal characterization of robot configuration
 - n = # degrees of freedom (dof) = # robot joints (rotational or translational)
- choice of parameterization r
 - compact description of position and/or orientation (pose) variables of interest to the required task
 - usually, $m \le n$ and m = 6 (but none of these is strictly necessary)

Open kinematic chains

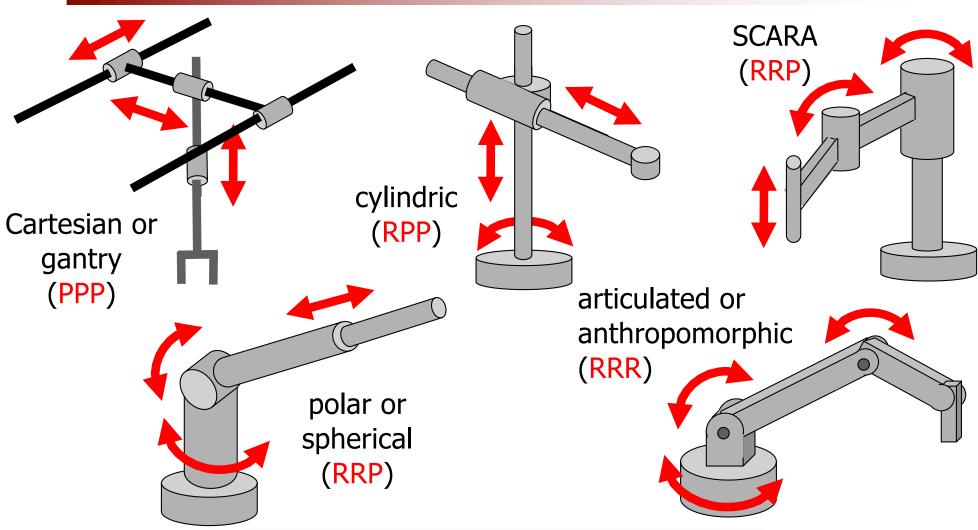


- m = 2
 - pointing in space
 - positioning in the plane
- m = 3
 - orientation in space
 - positioning and orientation in the plane

- m = 5
 - positioning and pointing in space (like for spot welding)
- m = 6
 - positioning and orientation in space
 - positioning of two points in space (e.g., end-effector and elbow)

Classification by kinematic type

first 3 dofs only



R = 1-dof rotational (revolute) joint

P = 1-dof translational (prismatic) joint

the structure of the direct kinematics function depends on the chosen r

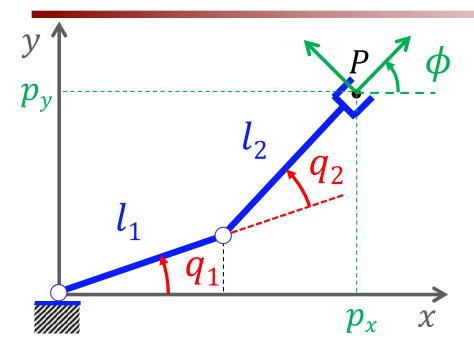
$$r = f_r(q)$$

- methods for computing $f_r(q)$
 - geometric/by inspection
 - systematic: assigning frames attached to the robot links and using homogeneous transformation matrices

Robotics 1

Direct kinematics of 2R planar robot

just using inspection...



$$q = \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} \qquad n = 2$$

$$r = \begin{bmatrix} p_x \\ p_y \\ \phi \end{bmatrix} \quad m = 3$$

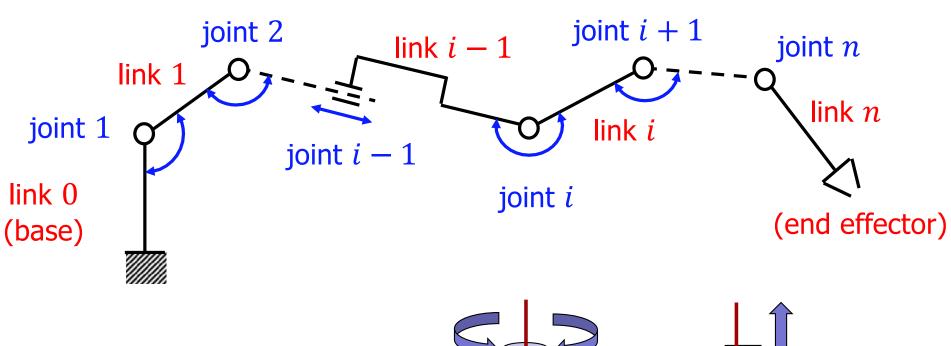
$$p_x = l_1 \cos q_1 + l_2 \cos(q_1 + q_2)$$

$$p_y = l_1 \sin q_1 + l_2 \sin(q_1 + q_2)$$

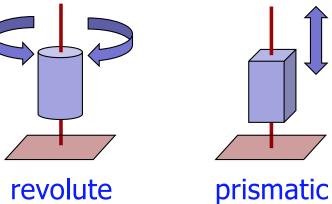
$$\phi = q_1 + q_2$$

for more general cases, we need a 'method'!

Numbering links and joints

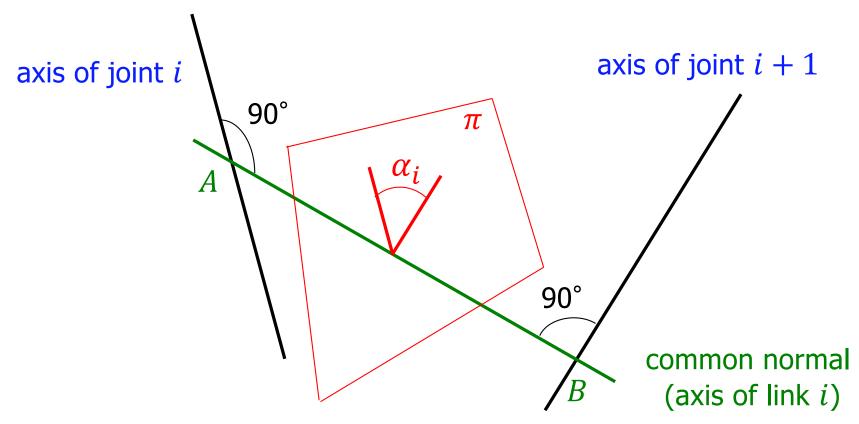


icon representation of joint types for the manipulator skeleton



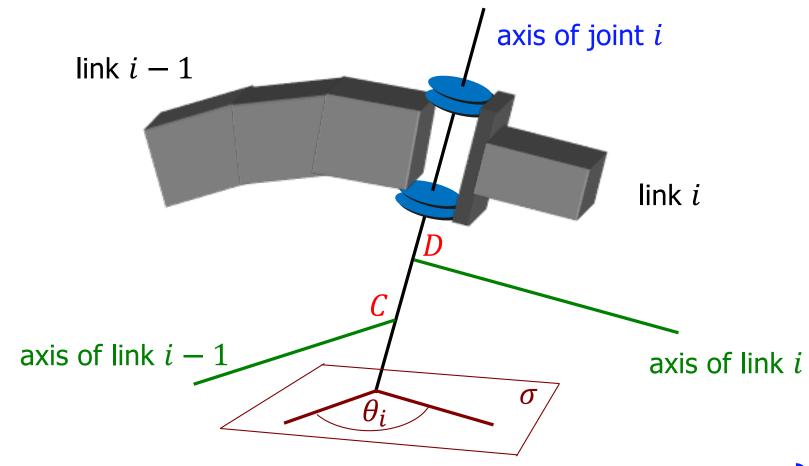
Robotics 1

Spatial relation between joint axes



```
a_i =  displacement AB between joint axes (always well defined) always constant! \alpha_i =  twist angle between joint axes — projected on a plane \pi orthogonal to the link axis with sign (pos/neg)!
```

Spatial relation between link axes

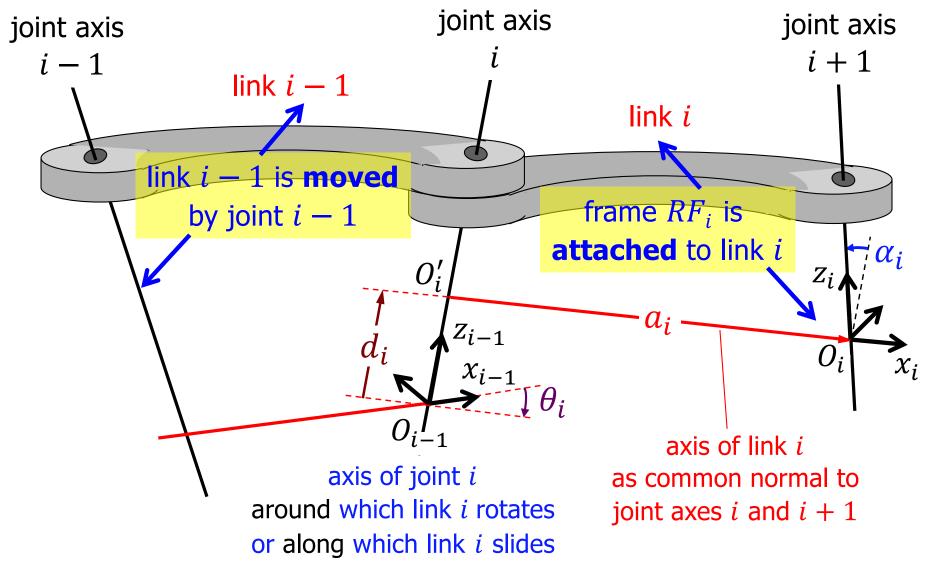


 $d_i =$ displacement CD (a variable if joint i is prismatic)

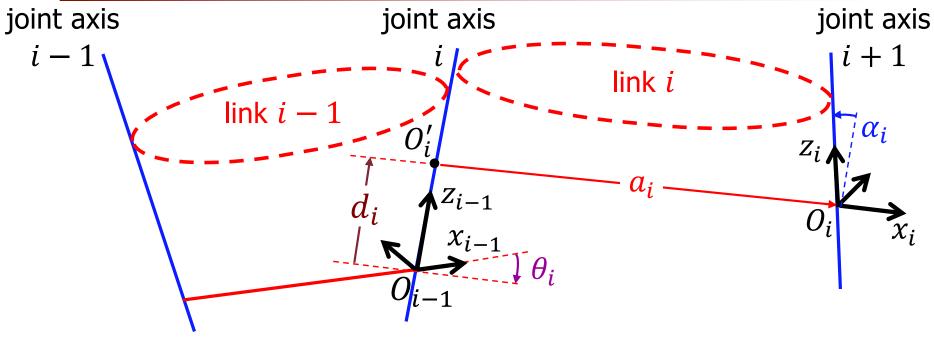
 θ_i = angle between link axes (a variable if joint i is revolute) — projected on a plane σ orthogonal to the joint axis

with sign (pos/neg)!

Denavit-Hartenberg (DH) frames



Definition of DH parameters



- unit vector z_i along axis of joint i + 1
- unit vector x_i along the common normal to joint i and i+1 axes $(i \rightarrow i+1)$
- d_i = distance $O_{i-1}O'_i$, + if oriented as Z_{i-1} , variable if joint i is PRISMATIC
- θ_i = angle from x_{i-1} to x_i around z_{i-1} , + if CCW, variable if joint i is REVOLUTE
- a_i = distance $O_i'O_i$, + if oriented as x_i , always constant (= 'length' of link i)
- α_i = twist angle from z_{i-1} to z_i around x_i , + if CCW, always constant

DH layout made simple

video

https://www.youtube.com/watch?v=rA9tm0gTln8

■ **note**: the author of this video uses r in place of a, and does not add subscripts!

Homogeneous transformation

between successive DH frames (from frame i - 1 to frame i)

• roto-translation (screw motion) around and along z_{i-1}

the product of these two matrices commutes!

rotational joint
$$\Rightarrow q_i = \theta_i$$
 prismatic joint $\Rightarrow q_i = d_i$

• roto-translation (screw motion) around and along x_i

$$i'A_i = \begin{bmatrix}
1 & 0 & 0 & a_i \\
0 & \cos \alpha_i & -\sin \alpha_i & 0 \\
0 & \sin \alpha_i & \cos \alpha_i & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\leftarrow \text{always a constant matrix}$$

J. Denavit and R.S. Hartenberg, "A kinematic notation for lower-pair mechanisms based on matrices," *Trans. ASME J. Applied Mechanics*, **23**: 215–221, 1955

$$^{i-1}A_i(q_i) = ^{i-1}A_{i'}(q_i) ^{i'}A_i = \begin{bmatrix} \cos\theta_i & -\cos\alpha_i\sin\theta_i & \sin\alpha_i\sin\theta_i & a_i\cos\theta_i \\ \sin\theta_i & \cos\alpha_i\cos\theta_i & -\sin\alpha_i\cos\theta_i & a_i\sin\theta_i \\ 0 & \sin\alpha_i & \cos\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

compact notation: $c = \cos$, $s = \sin$

super-compact notation (if feasible): $c_i = \cos q_i$, $s_i = \sin q_i$

Direct kinematics of robot manipulators

slide s

 $z_E \leftarrow \text{approach } a$

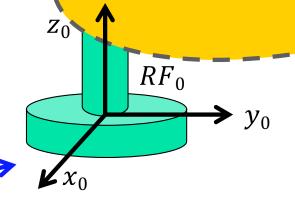
normal *n*

description 'internal' to the robot using

 $\bullet \ q = (q_1, \dots, q_n)$

product of DH matrices

$${}^{0}A_{1}(q_{1}) {}^{1}A_{2}(q_{2}) \cdots {}^{n-1}A_{n}(q_{n})$$



$${}^{w}T_{E} = {}^{w}T_{0} {}^{0}A_{1}(q_{1}) {}^{1}A_{2}(q_{2}) \cdots {}^{n-1}A_{n}(q_{n}) {}^{n}T_{E}$$

$$r = f_{r}(q)$$

description 'external' to the robot using

$$\bullet \ ^{w}T_{E} = \begin{bmatrix} ^{w}R_{E} & ^{w}p_{wE} \\ 0^{T} & 1 \end{bmatrix}$$

$$= \begin{bmatrix} n & s & a & p \\ 0^{T} & 1 \end{bmatrix}$$

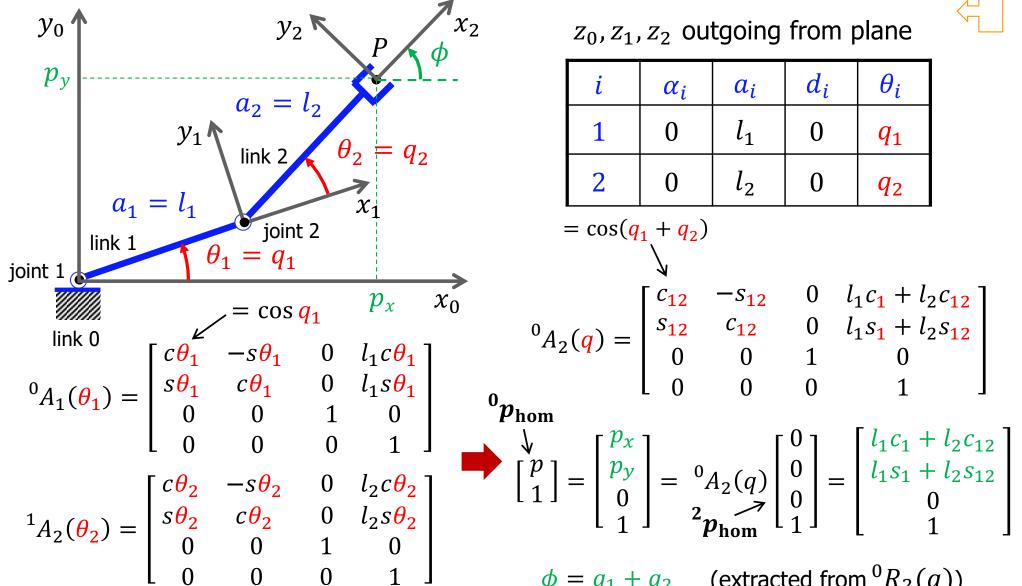
•
$$r = (r_1, \dots, r_m)$$

alternative representations of the **direct kinematics**

 RF_{w}

Direct kinematics of 2R planar robot

using DH frame assignment...



Robotics 1

$$z_0, z_1, z_2$$
 outgoing from plane

i	α_i	a_i	d_i	θ_i
1	0	l_1	0	q_1
2	0	l_2	0	q_2

$$= \cos(q_1 + q_2)$$

$${}^{0}A_{2}(q) = \begin{bmatrix} c_{12} & -s_{12} & 0 & l_{1}c_{1} + l_{2}c_{12} \\ s_{12} & c_{12} & 0 & l_{1}s_{1} + l_{2}s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\phi = q_1 + q_2$$
 (extracted from ${}^0R_2(q)$)

Direct kinematics of 2R planar robot

TCP location on the robot end effector



Tool Center Point TCP and associated end-effector frame RF_E

$${}^{2}T_{E} = \begin{bmatrix} 0 & 1 & 0 & {}^{2}TCP_{x} \\ 0 & 0 & -1 & {}^{2}TCP_{y} \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{0}TCP(q) \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{0}TCP_{x}(q) \\ {}^{0}TCP_{y}(q) \\ 0 \\ 1 \end{bmatrix} = {}^{0}A_{2}(q) \begin{bmatrix} {}^{2}TCP_{x} \\ {}^{2}TCP_{y} \\ 0 \\ 1 \end{bmatrix} = {}^{0}T_{E}(q) \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = {}^{0}A_{2}(q) {}^{2}T_{E}(q) \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Ambiguities in defining DH frames

- frame 0: origin and x_0 axis are arbitrary (z_0 on first joint axis!)
- frame n: choose conveniently the origin, z_n axis is not specified
 - however, x_n must intersect and be chosen orthogonal to z_{n-1}
- positive direction of z_{i-1} (up/down on axis of joint i) is arbitrary
 - choose one, and try to 'avoid flipping over' to the next one
- positive direction of x_i (back/forth on axis of link i) is arbitrary
 - if successive joint axes are incident, we often take $x_i = z_{i-1} \times z_i$
 - when natural, follow the direction 'from base to tip'
- if z_{i-1} and z_i are parallel (common normal not uniquely defined)
 - O_i is chosen arbitrarily along z_i , still trying to 'zero out' parameters
- if z_{i-1} and z_i are coincident, normal x_i axis can be chosen at will
 - this case occurs only if the two joints are of different kind (P/R or R/P)
 - again, try using 'simple values' (e.g., 0 or $\pm \pi/2$) for constant angles

Robotics 1

DH assignment for a SCARA robot

video

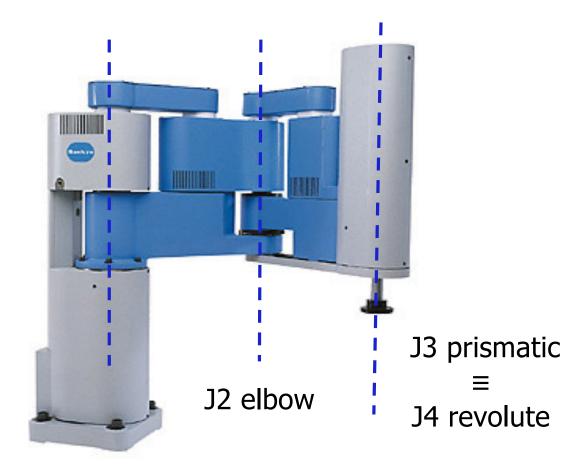
Sankyo SCARA 8438

Sankyo SCARA SR 8447

Step 1: joint axes

all parallel (or coincident)

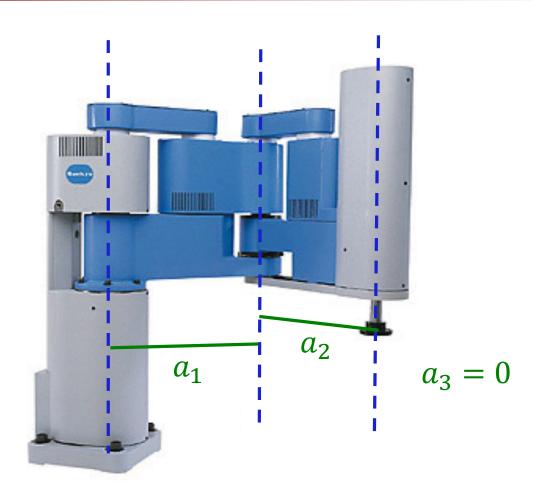
twist angles $\alpha_i = 0$ or π



J1 shoulder

Step 2: link axes

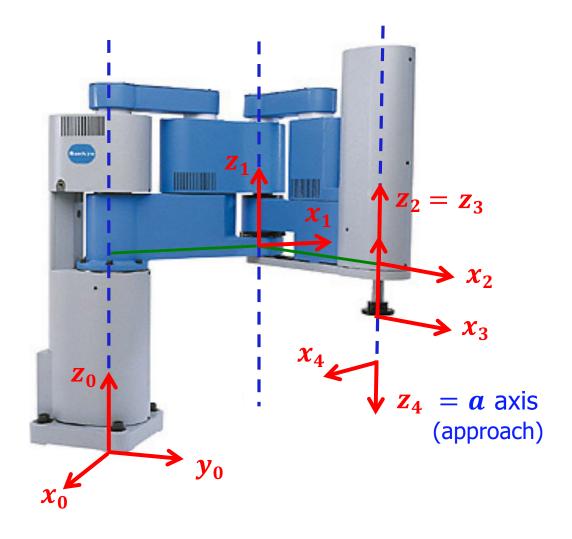
the vertical 'heights' of the link axes are arbitrary (for the time being)



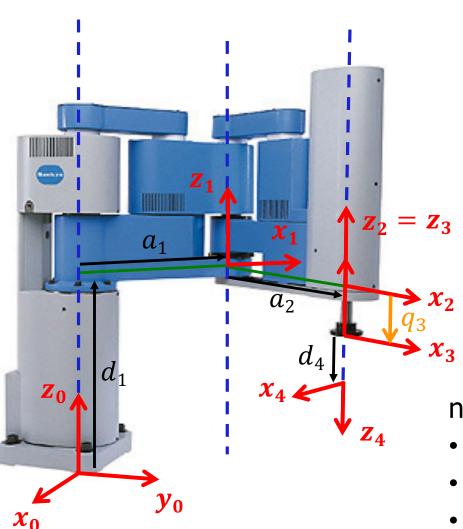
Step 3: frames

axes y_i for i > 0 are not shown

(nor needed; they form right-handed frames)



Step 4: DH table of parameters



i	α_i	a_i	d_i	θ_i
1	0	a_1	d_1	q_1
2	0	a_2	0	q_2
3	0	0	q_3	0
4	π	0	d_4	q_4

note that

- d_1 and d_4 could be set = 0
- $d_4 < 0$ (opposite to \mathbf{z}_3)
- $q_3 < 0$ in this configuration
- similarly, here $q_1 > 0$, $q_2 < 0$, $q_4 < 0$

Step 5: DH transformation matrices

$${}^{0}A_{1}(q_{1}) = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & a_{1}c\theta_{1} \\ s\theta_{1} & c\theta_{1} & 0 & a_{1}s\theta_{1} \\ 0 & 0 & 1 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{i-1}A_{i}(q_{i}) = \begin{bmatrix} c\theta_{i} & -c\alpha_{i}s\theta_{i} & s\alpha_{i}s\theta_{i} & a_{i}c\theta_{i} \\ s\theta_{i} & c\alpha_{i}c\theta_{i} & -s\alpha_{i}c\theta_{i} & a_{i}s\theta_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} & d_{i} \\ 0 & 0 & 1 \end{bmatrix}$$

$$^{i-1}A_i(q_i) = \begin{bmatrix} c\theta_i & -c\alpha_i s\theta_i & s\alpha_i s\theta_i & a_i c\theta_i \\ s\theta_i & c\alpha_i c\theta_i & -s\alpha_i c\theta_i & a_i s\theta_i \\ 0 & s\alpha_i & c\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{1}A_{2}(q_{2}) = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & a_{2}c\theta_{2} \\ s\theta_{2} & c\theta_{2} & 0 & a_{2}s\theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}^{2}A_{3}(q_{3}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}A_{3}(q_{3}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$q = (q_1, q_2, q_3, q_4)$$
$$= (\theta_1, \theta_2, d_3, \theta_4)$$

$${}^{3}A_{4}(q_{4}) = \begin{bmatrix} c\theta_{4} & s\theta_{4} & 0 & 0\\ s\theta_{4} & -c\theta_{4} & 0 & 0\\ 0 & 0 & -1 & d_{4}\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Step 6a: direct kinematics

homogeneous matrix wT_E as product of the ${}^{i-1}A_i(q_i)$'s

$${}^{0}A_{2}(q_{1}, q_{2}) = \begin{bmatrix} c_{12} & -s_{12} & 0 & a_{1}c_{1} + a_{2}c_{12} \\ s_{12} & c_{12} & 0 & a_{1}s_{1} + a_{2}s_{12} \\ 0 & 0 & 1 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}A_{3}(q_{1},q_{2},q_{3}) = \begin{bmatrix} c_{12} & -s_{12} & 0 & a_{1}c_{1} + a_{2}c_{12} \\ s_{12} & c_{12} & 0 & a_{1}s_{1} + a_{2}s_{12} \\ 0 & 0 & 1 & d_{1} + q_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

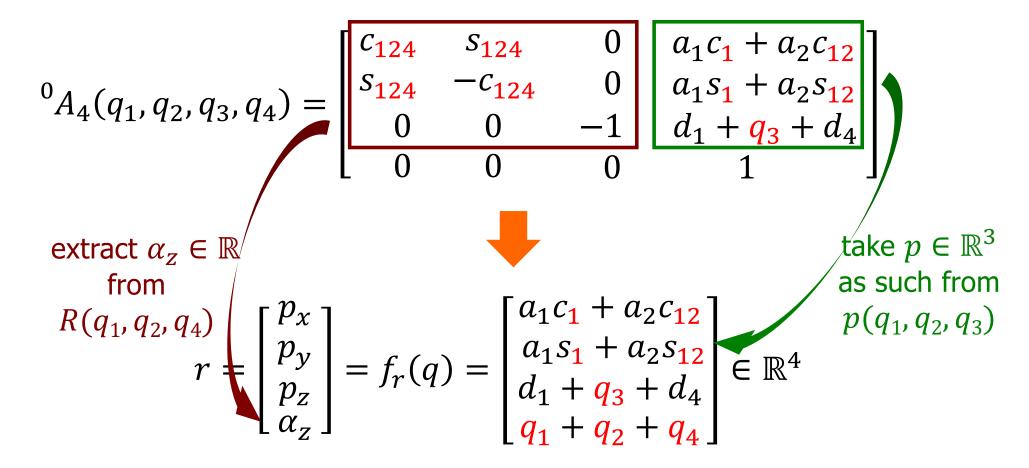
$${}^{w}T_{E} = {}^{0}A_{4}(q_{1}, q_{2}, q_{3}, q_{4}) = \begin{bmatrix} c_{124} & s_{124} & 0 \\ s_{124} & -c_{124} & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} a_{1}c_{1} + a_{2}c_{12} \\ a_{1}s_{1} + a_{2}s_{12} \\ d_{1} + q_{3} + d_{4} \end{bmatrix}$$

$${}^{w}T_{E} = {}^{0}A_{4}(q_{1}, q_{2}, q_{3}, q_{4}) = \begin{bmatrix} c_{124} & s_{124} & 0 \\ s_{124} & -c_{124} & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} a_{1}c_{1} + a_{2}c_{12} \\ a_{1}s_{1} + a_{2}s_{12} \\ d_{1} + q_{3} + d_{4} \end{bmatrix}$$

$${}^{w}T_{E} = {}^{0}A_{4}(q_{1}, q_{2}, q_{3}, q_{4}) = \begin{bmatrix} c_{124} & s_{124} & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} a_{1}c_{1} + a_{2}c_{12} \\ a_{1}s_{1} + a_{2}s_{12} \\ d_{1} + q_{3} + d_{4} \end{bmatrix}$$

Step 6b: direct kinematics

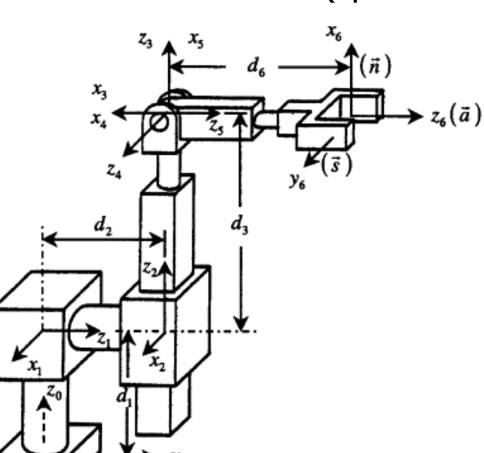
as task vector $r \in \mathbb{R}^m$



MATLAB code available on web site: dirkin_SCARA.m

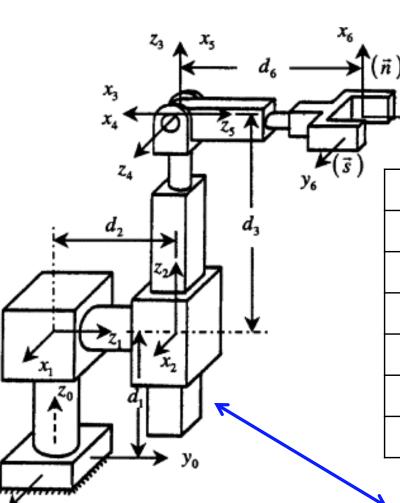
Stanford manipulator

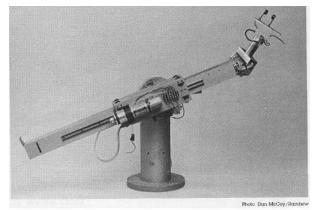
6-dof: 2R-1P-3R (spherical wrist)



- robot with shoulder offset
- 'one possible' DH assignment of frames is shown
- determine the associated
 - table of DH parameters
 - homogeneous transformation matrices
 - direct kinematics
- write a program for computing the direct kinematics
 - numerically (Matlab), given a q
 - symbolically (Mathematica, Maple, Symbolic Manipulation Toolbox of Matlab, ...)

6-dof: 2R-1P-3R (spherical wrist)





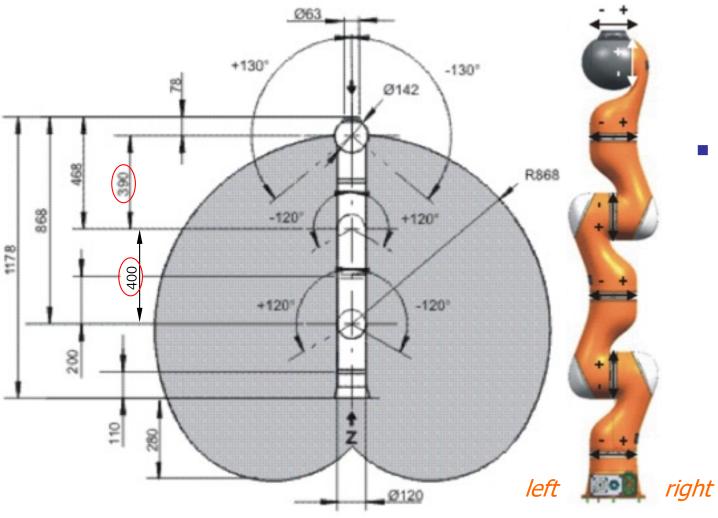
i	α_i	a_i	d_i	$ heta_i$
1	$-\pi/2$	0	$d_1 > 0$	$q_1 = 0$
2	$\pi/2$	0	$d_2 > 0$	$q_2 = 0$
3	0	0	$q_3 > 0$	$-\pi/2$
4	$-\pi/2$	0	0	$q_4 = 0$
5	$\pi/2$	0	0	$q_5 = -\pi/2$
6	0	0	$d_6 > 0$	$q_6 = 0$

joint variables are in red, while their values in the shown robot configuration are in blue

Robotics 1

KUKA LWR 4+

7R (no offsets, spherical shoulder and spherical wrist)



side view (from the left)

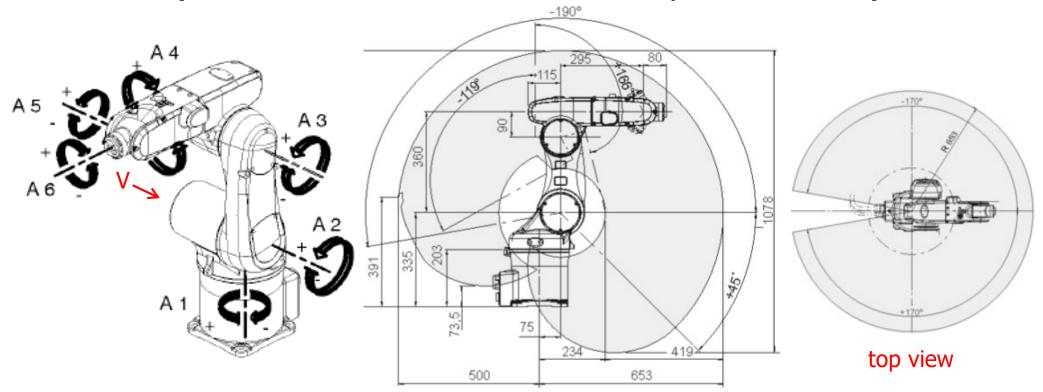
available at DIAG Robotics Lab

- determine
 - frames and table of DH parameters
 - homogeneous transformation matrices
 - direct kinematics
 - d_1 and d_7 can be set = 0 or not (as needed)

frontal view

KUKA KR5 Sixx R650

6R (offsets at shoulder and elbow, spherical wrist)



determine

- side view (from observer in V)
- frames and table of DH parameters
- homogeneous transformation matrices
- direct kinematics (symbolic & numeric)

available at DIAG Robotics Lab

Appendix: Modified DH convention

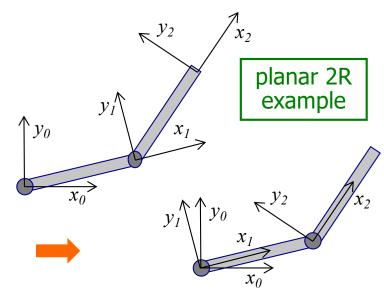
- a modified version introduced in J. Craig's book "Introduction to Robotics" (1986) and aligned for the indexing by Khalil and Kleinfinger (ICRA, 1986)
 - has z_i axis on joint i
 - $a_i \& \alpha_i$ = distance & twist angle from z_{i-1} to z_i , measured along & about x_{i-1}
 - $d_i \& \theta_i$ = distance & angle from x_{i-1} to x_i , measured along & about z_i
 - source of much confusion... if you are not aware of it (or don't mention it!)
 - convenient with link flexibility: a rigid frame at the base, another at the tip...

classical (or distal)

$$^{i-1}A_i = \begin{bmatrix} c\theta_i & -c\alpha_i s\theta_i & s\alpha_i s\theta_i & a_i c\theta_i \\ s\theta_i & c\alpha_i c\theta_i & -s\alpha_i c\theta_i & a_i s\theta_i \\ 0 & s\alpha_i & c\alpha_i & d_i \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow$$

modified (or proximal)

$$a_i^{i-1}A_i^{\text{mod}} = \begin{bmatrix} c\theta_i & -s\theta_i & 0 & a_i \\ c\alpha_i s\theta_i & c\alpha_i c\theta_i & -s\alpha_i & -d_i s\alpha_i \\ s\alpha_i s\theta_i & s\alpha_i c\theta_i & c\alpha_i & d_i c\alpha_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



modified DH tends to place frames 'at the base' of each link