

Robotics 1

Robot components: Introduction, Actuators, Transmissions

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA Automatica e Gestionale Antonio Ruberti

Robot as a system

Functional units of a robot

- mechanical units (robot arms)
 - serial manipulators: rigid links connected via rotational or prismatic joints (each giving 1 degree of freedom = DOF)
 - supporting structure (mobility), wrist (dexterity), end-effector (for task execution, e.g., manipulation)
- actuation units
 - motors (electrical, hydraulic, pneumatic) and transmissions
 - motion control algorithms
- sensor units
 - proprioceptive (internal robot state: position and velocity of the joints)
 - exteroceptive (external world: force and proximity, vision, ...)
- supervision units
 - task planning and control
 - artificial intelligence and reasoning

Arrangement of mechanical links

Examples of industrial robots with brands

Bi-manual industrial robots with brands

Actuation systems

Desired characteristics for robot servomotors

- low inertia
- high power-to-weight ratio
- high acceleration capabilities
 - variable motion regime, with several stops and inversions
- large range of operational velocities
 - 1 to 2000 rpm (round per min)
- high accuracy in positioning
 - at least 1/1000 of a turn
- low torque ripple
 - continuous rotation at low speed
- power: 10 W to 10 kW

Servomotors

- pneumatic: pneumatic energy (compressor) → pistons or chambers → mechanical energy
 - difficult to control accurately (change of fluid compressibility) → no trajectory control
 - used for opening/closing grippers

- ... or as artificial muscles (McKibben actuators)
- hydraulic: hydraulic energy (accumulation tank)
 - \rightarrow pumps/valves \rightarrow mechanical energy
 - advantages: no static overheating, self-lubricated, inherently safe (no sparks), excellent power-to-weight ratio, large torques at low velocity (w/o reduction)
 - disadvantages: needs hydraulic supply, large size, linear motion only, low power conversion efficiency, high cost, increased maintenance (oil leaking)

Electrical servomotors

advantages

- power supply available everywhere
- Iow cost
- large variety of products
- high power conversion efficiency
- easy maintenance
- no pollution in working environment

disadvantages

- overheating in static conditions (in the presence of gravity)
 - use of (emergency) brakes
- need special protection in flammable environments
- some advanced models require more complex control laws

Electrical servomotors for robots

direct current (DC) motor

with electronic switches (brushless)

- reduced losses, both electrical (due to tension drops at the collector-brushes contacts) and mechanical (friction)
- reduced maintenance (no substitution of brushes)
- easier heat dissipation
- more compact rotor (less inertia and smaller dimensions)

Principle of operation of a DC motor

DC electrical motor

mathematical model (in the time domain)

 $\tau_{load}(t)$

 I_m

electrical balance (on the equivalent armature circuit) $v_a(t) = R_a i_a(t) + L_a \frac{di_a(t)}{dt} + v_{emf}(t)$ $v_{emf}(t) = k_v \omega(t)$ (back emf) $v_a(t)$ mechanical balance (Newton law on torques)

$$\tau_m(t) = I_m(t) \frac{d\omega(t)}{dt} + F_m \omega(t) + \tau_{load}(t)$$

$$\tau_m(t) = k_t i_a(t)$$

(motor torque)

using Laplace transform, differential equations become algebraic relations! $X(s) = \mathcal{L}[x(t)] = \int x(t)e^{-st} dt$

in the absence of losses, conservation of

power holds in energy transformations

 $P_{elec} = v_{emf}i_a = \tau_m\omega = P_{mecc}$

 R_a

 $v_{emf}(t)$

 $i_a(t)$

 $\implies k_v = k_t$ (in SI units)

 L_a

 $\tau_m(t)$

 $\omega(t)$

 $= \theta(t)$

DC electrical motor

mathematical model for command and control

Characteristic curves of a DC motor

Data sheet electrical motors

DC drives

Model of actuator		RHS-14		RHS-17		RHS-20/RFS-20				RHS-25/RFS-25			RHS-32/RFS-32				
		6003	3003	6006	3006	6007	3007	6012	3012	6012	3012	6018	3018	6018	3018	6030	3030
Rated Torque	Inlb	48	69	87	177	106	212	177	266	177	354	266	531	266	531	443	885
	Nm	5.4	7.8	9.8	20	12	24	20	30	20	40	30	60	30	60	50	100
Rated Speed of Rotation	rpm	60	30	60	30	60	30	60	30	60	30	60	30	60	30	60	30
Max. Instant. Torque	Inlb	159	248	301	478	504	743	504	743	885	1416	885	1416	1947	3009	1947	3009
	Nm	18	28	34	54	57	84	57	84	100	160	100	160	220	340	220	340
Max.Speed of Rotation	rpm	100	50	80	40	80	40	80	40	80	40	80	40	80	40	80	40

nominal/peak torques and speeds

Data sheet electrical motors

AC drives

	unit	HKM-20-60	HKM-20-30	HKM-25-60	HKM-25-30		
Rated Power	Watts	10	00	200			
Pated Terraus	in-lb	115	223	233	440		
Rated Torque	N-m	13	26	26	50		
Maximum Torquo	in-lb	345	700	830	1330		
Maximum Torque	N-m	39	79	94	150		
Rated Speed	r/min	60	30	60	30		
Maximum Speed	r/min	80	40	80	40		
Current Rated	A	1.8	1.4	4.8	3		
Current Max	A	5	4	14	9		
Thermal Time Constant	min.						
Gear Reduction Ratio	R:1	50	100	50	100		
Output Possilution	P/rev	50,000	100,000	75,000	150,000		
output Resolution	arc sec	26	13	17	9		
Absolute Accuracy	+/- arc sec	75	40	60	40		

- for applications requiring a rapid and accurate response (in robotics!)
- induction motors driven by alternate current (AC)
- small diameter rotors, with low inertia for fast starts, stops, and reversals

- optimize the transfer of mechanical torque from actuating motors to driven links
- quantitative transformation (from low torque/high velocity to high torque/low velocity)
- qualitative transformation (e.g., from rotational motion of an electrical motor to a linear motion of a link along the axis of a prismatic joint)
- allow improvement of static and dynamic performance by reducing the weight of the actual robot structure in motion (locating the motors remotely, closer to the robot base)

spur gears: modify direction and/or translate axis

of (rotational or translational) motor displacement

Transmissions in robotics

- problems: deformations, backlash
- lead screws, worm gearing: convert rotational into translational motion (prismatic joints)
 - problems: friction, elasticity, backlash
- toothed belts and chains: dislocate the motor w.r.t. the joint axis
 - problems: compliance (belts) or vibrations induced by larger mass at high speed (chains)
- harmonic drives: compact, in-line, power efficient, with high reduction ratio (up to 150-200:1)
 - problems: elasticity
- transmission shafts: long, inside the links, with flexible couplings for alignment

Transmission gears in motion

- racks and pinion
 - one rack moving (or both)

- epi-cycloidal gear train
 - or hypo-cycloidal (small gear inside)

- planetary gear set
 - one of three components is locked: sun gear, planet carrier, ring gear

Harmonic drives

video

Operation of an harmonic drive

commercial video by Harmonic Drives AG (<u>https://www.youtube.com/watch?v=bzRh672peNk</u>)

Optimal choice of reduction ratio

Transmissions in industrial robots

transmissions used (inside) 6-dof Unimation industrial robots with serial kinematics

Inside views on joint axes 4, 5 & 6 of an industrial KUKA robot

A CONTRACTOR

- looking inside the forearm to see the transmissions of the spherical wrist
- motor rotation seen from the encoder side (small couplings exist)

video

Exploded view of a joint in the DLR-III robot

