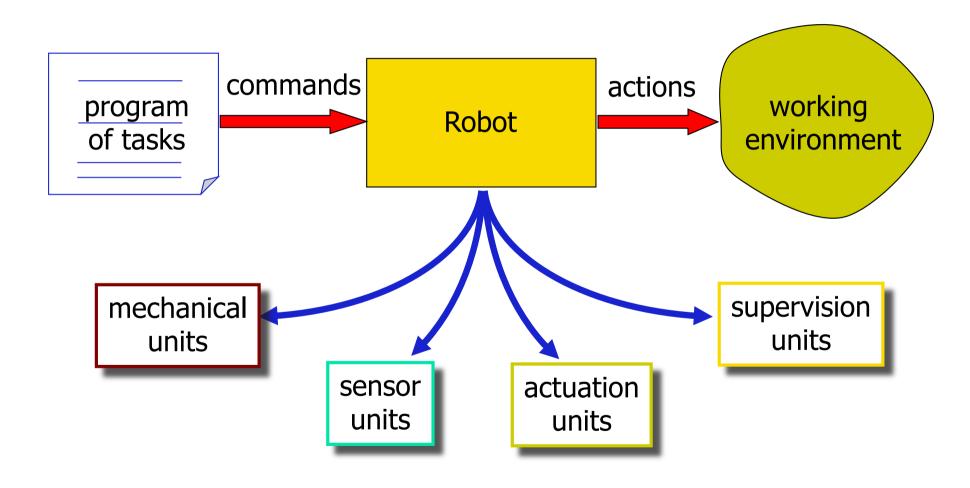


Robotics 1

Robot components: Introduction, Actuators, Transmissions

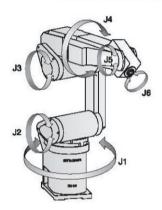
Prof. Alessandro De Luca

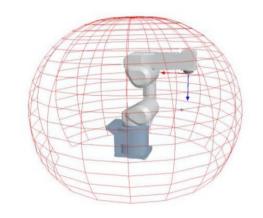

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Robotics 1

Robot as a system

Functional units of a robot

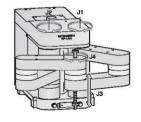

- mechanical units (robot arms)
 - serial manipulators: rigid links connected via rotational or prismatic joints (each giving 1 degree of freedom = DOF, R or P type)
 - supporting structure (mobility), wrist (dexterity), end-effector (for task execution, e.g., manipulation)
- actuation units
 - motors (electrical, hydraulic, pneumatic) and transmissions
 - motion control algorithms
- sensor units
 - proprioceptive (internal robot state: position and velocity of the joints)
 - exteroceptive (external world: force and proximity, vision, ...)
- supervision units
 - task planning and control
 - artificial intelligence and reasoning

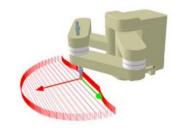

Arrangement of mechanical links

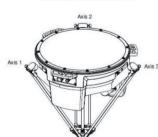
Articulated Robot

4, 5, or 6 joints (DOFs)

different kinematic types of robot arms







SCARA Robot

Parallel/Delta Robot

Robotics 1

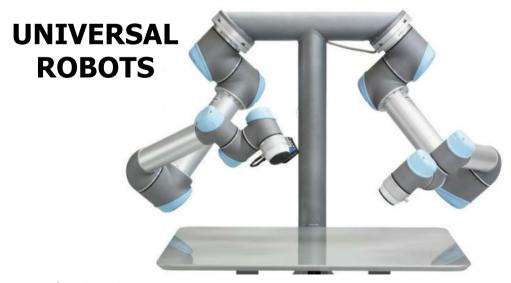
Examples of industrial robots

with brands

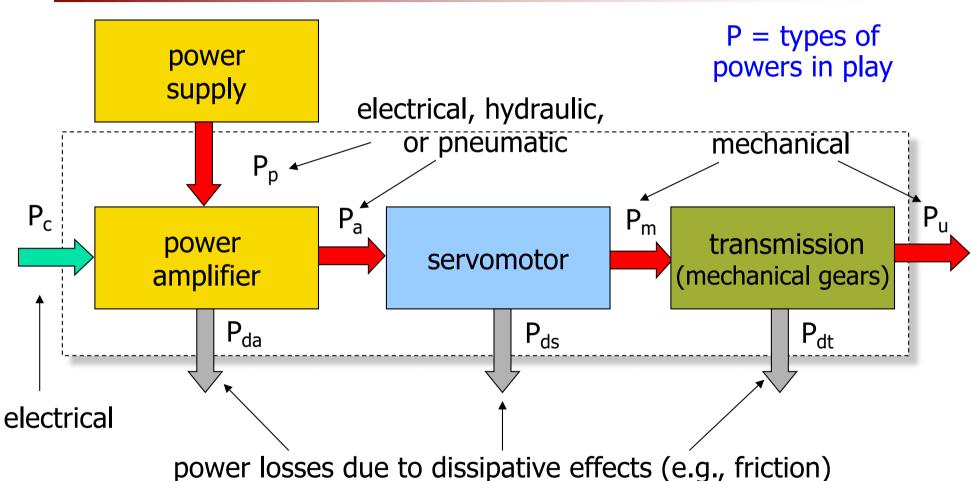
NAICHI

Bi-manual industrial robots

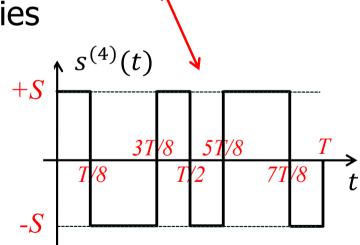
with brands



ABB

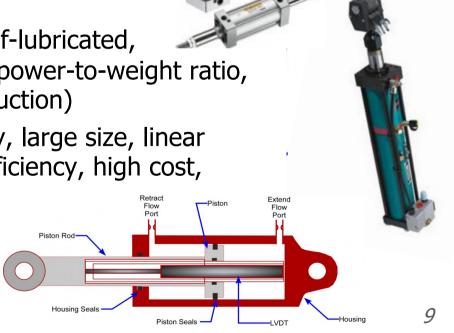

COMAU

Actuation systems


Robotics 1

Desired characteristics for robot servomotors

- low inertia
- high power-to-weight ratio
- high acceleration capabilities


- examples of computations (with reduction ratio):
- 2000 rpm ~12500 rad/min = 210 rad/s → reduction ratio $n_r = 50$ → ~4 rad/s = 240 deg/s on link side
- 1/1000 turn \sim 6 mrad = 0.36 deg \rightarrow reduction ratio n_r = 50 \rightarrow 7.2 mdeg on link side
- variable motion regime, with several stops and inversions
- large range of operational velocities
 - 1 to 2000 rpm (round per min)
- high accuracy in positioning
 - at least 1/1000 of a turn
- low torque ripple
 - continuous rotation at low speed
- power: 10 W to 10 kW
 - max 80W for HRI applications

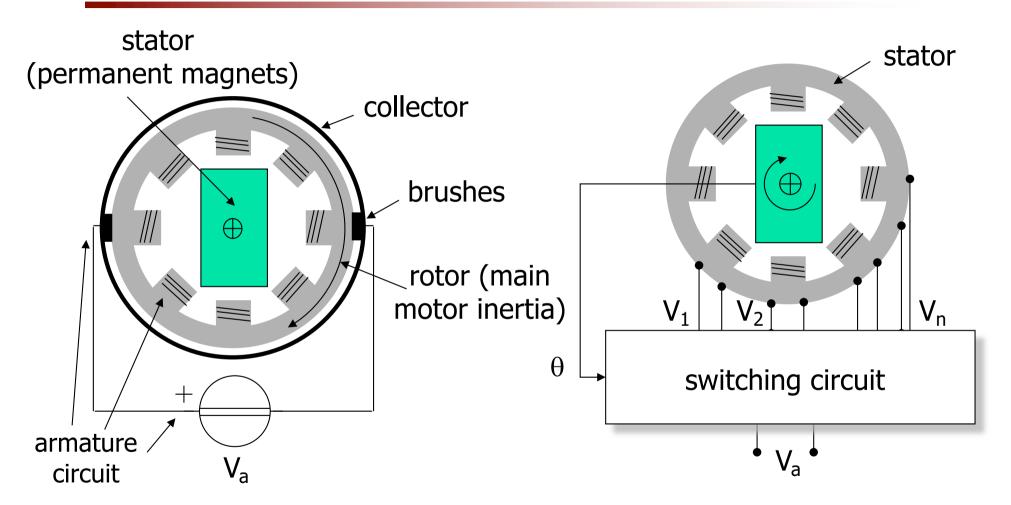
Servomotors

STATION MARK

- pneumatic: pneumatic energy (compressor) → pistons or chambers → mechanical energy
 - difficult to control accurately (change of fluid compressibility) → no trajectory control
 - used for opening/closing grippers
 - ... or as artificial muscles (McKibben actuators)
- hydraulic: hydraulic energy (accumulation tank) pumps/valves → mechanical energy
 - advantages: no static overheating, self-lubricated, inherently safe (no sparks), excellent power-to-weight ratio, large torques at low velocity (w/o reduction)
 - disadvantages: needs hydraulic supply, large size, linear motion only, low power conversion efficiency, high cost, increased maintenance (oil leaking)

advantages

- power supply available everywhere
- low cost
- large variety of products
- high power conversion efficiency
- easy maintenance
- no pollution in working environment


disadvantages

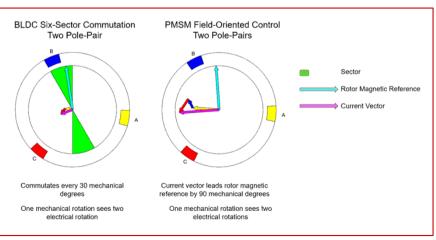
- overheating in static conditions (in the presence of gravity)
 - use of (emergency) brakes
- need special protection in flammable environments
- some advanced models require more complex control laws

STONM W

Electrical servomotors for robots

direct current (DC) motor

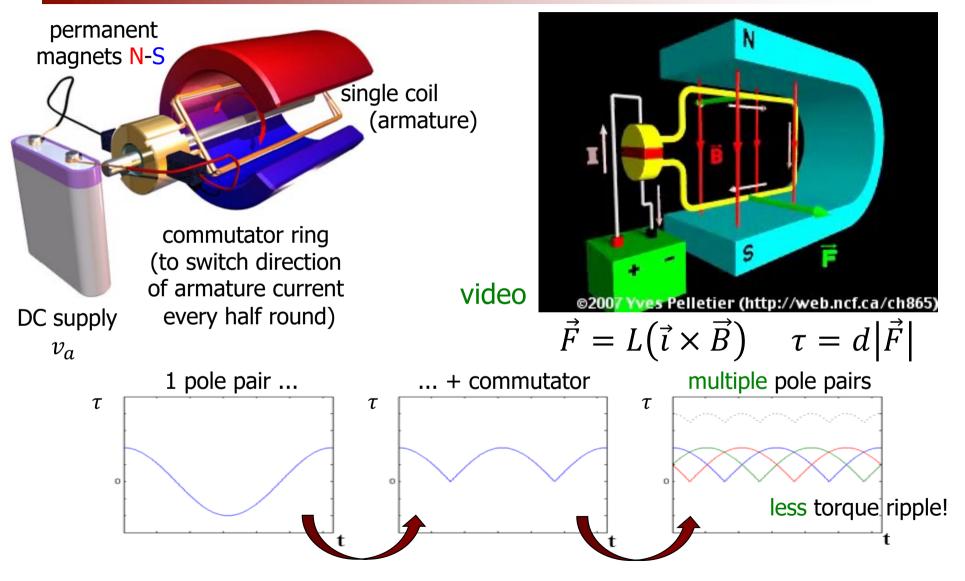
with electronic switches (brushless)


STOOK

Advantages of brushless motors

- reduced losses, both electrical (due to tension drops at the collector-brushes contacts) and mechanical (friction)
- reduced maintenance (no substitution of brushes)
- easier heat dissipation
- more compact rotor (less inertia and smaller dimensions)

... but, indeed a higher cost!



MATLAB animation

STOOM WE

Principle of operation of a DC motor

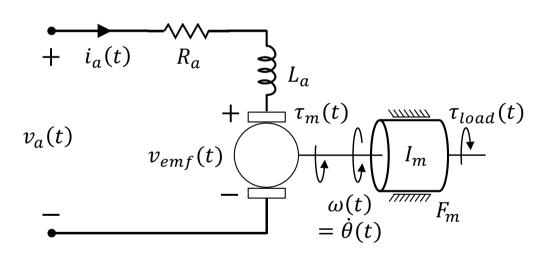
DC electrical motor

mathematical model (in the time domain)

electrical balance (on the equivalent armature circuit)

$$v_a(t) = R_a i_a(t) + L_a \frac{di_a(t)}{dt} + v_{emf}(t)$$

$$v_{emf}(t) = k_v \omega(t)$$
 (back emf)


mechanical balance (Newton law on torques)

$$\tau_m(t) = I_m \frac{d\omega(t)}{dt} + F_m \omega(t) + \tau_{load}(t)$$

$$\tau_m(t) = k_t i_a(t)$$
(motor torque)

in the absence of losses, conservation of power holds in energy transformations

$$P_{elec} = v_{emf}i_a = \tau_m\omega = P_{mecc}$$

 $\implies k_v = k_t$ (in SI units)

using Laplace transform, differential equations become algebraic relations!

$$X(s) = \mathcal{L}[x(t)] = \int_{0}^{\infty} x(t)e^{-st} dt$$

DC electrical motor

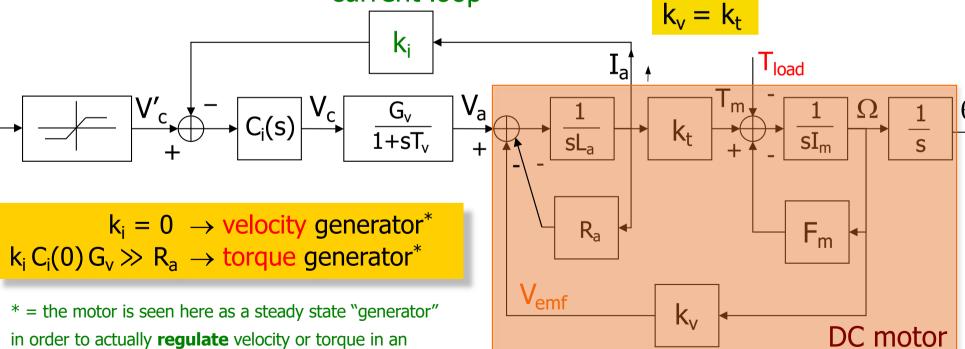
mathematical model for command and control

electrical balance

$$V_a = (R_a + sL_a) I_a + V_{emf}$$

 $V_{emf} = k_v \Omega$

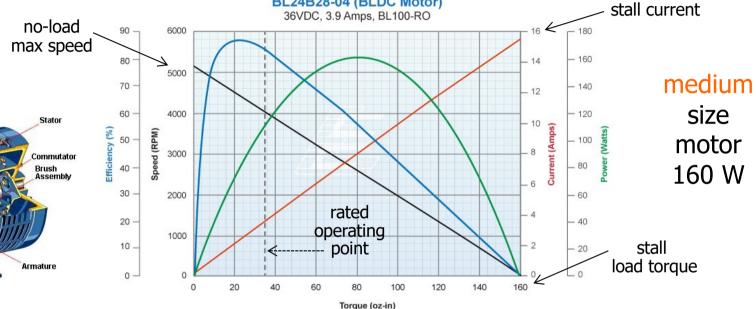
efficient way against T_{load}, further control loops are needed!


Laplace domain (transfer functions)

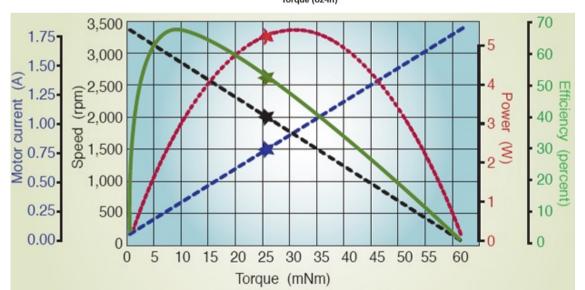
time constants $\tau_{elec} = \frac{L_a}{R_a} \ll \frac{I_m}{F_m} = \tau_{mecc}$

mechanical balance

$$T_{m} = (sI_{m} + F_{m}) \Omega + T_{load}$$
$$T_{m} = k_{t} I_{a}$$


current loop

Characteristic curves of a DC motor



BL24B28-04 (BLDC Motor)

conversion SI ⇔ US unit systems (!!) 1 Nm = 141.61 oz-in100 oz-in = 0.70 Nm

small size motor

5.5 W

End Bracket

Data sheet electrical motors

DC drives

Model of actuator		RHS-14		RHS-17		RHS-20/RFS-20				RHS-25/RFS-25			RHS-32/RFS-32				
		6003	3003	6006	3006	6007	3007	6012	3012	6012	3012	6018	3018	6018	3018	6030	3030
Rated Torque	Inlb	48	69	87	177	106	212	177	266	177	354	266	531	266	531	443	885
	Nm	5.4	7.8	9.8	20	12	24	20	30	20	40	30	60	30	60	50	100
Rated Speed of Rotation	rpm	60	30	60	30	60	30	60	30	60	30	60	30	60	30	60	30
Max. Instant. Torque	Inlb	159	248	301	478	504	743	504	743	885	1416	885	1416	1947	3009	1947	3009
	Nm	18	28	34	54	57	84	57	84	100	160	100	160	220	340	220	340
Max.Speed of Rotation	rpm	100	50	80	40	80	40	80	40	80	40	80	40	80	40	80	40

nominal/peak torques and speeds

Data sheet electrical motors

AC drives

	unit	HKM-20-60	HKM-20-30	HKM-25-60	HKM-25-30		
Rated Power	Watts	10	00	200			
Rated Torque	in-lb	115	223	233	440		
Rated Torque	N-m	13	26	26	50		
Maximum Torquo	in-lb	345	700	830	1330		
Maximum Torque	N-m	39	79	94	150		
Rated Speed	r/min	60	30	60	30		
Maximum Speed	r/min	80	40	80	40		
Current Rated	Α	1.8	1.4	4.8	3		
Current Max	Α	5	4	14	9		
Thermal Time Constant	min.						
Gear Reduction Ratio	R:1	50	100	50	100		
Output Possilution	P/rev	50,000	100,000	75,000	150,000		
Output Resolution	arc sec	26	13	17	9		
Absolute Accuracy	+/- arc sec	75	40	60	40		

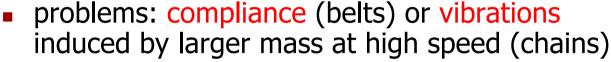
- for applications requiring a rapid and accurate response (in robotics!)
- induction motors driven by alternate current (AC)
- small diameter rotors, with low inertia for fast starts, stops, and reversals

Robotics 1

- optimize the transfer of mechanical torque from actuating motors to driven links
- quantitative transformation (from low torque/high velocity to high torque/low velocity)
- qualitative transformation (e.g., from rotational motion of an electrical motor to a linear motion of a link along the axis of a prismatic joint)
- allow improvement of static and dynamic performance by reducing the weight of the actual robot structure in motion (locating the motors remotely, closer to the robot base)

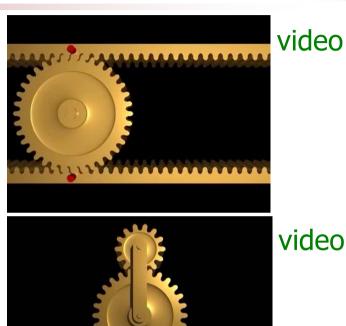
Transmissions in robotics

spur/bevel gears: modify direction and/or translate axis of motor displacement



problems: deformations, backlash

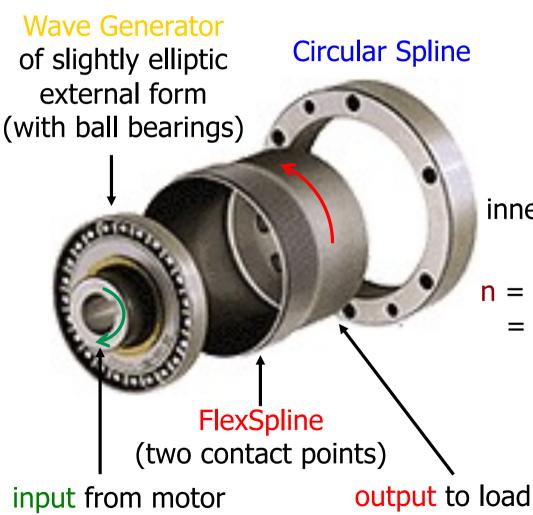
- lead screws, worm gearing: convert rotational into translational motion (prismatic joints)
 - problems: friction, elasticity, backlash


Transmission gears in motion

- racks and pinion
 - one rack moving (or both)

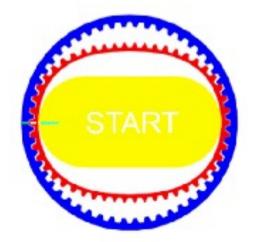
- epi-cycloidal gear train
 - or hypo-cycloidal (small gear inside)

- planetary gear set
 - one of three components is locked: sun gear, planet carrier, ring gear



video

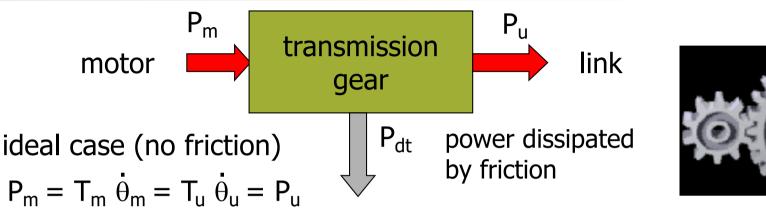
Harmonic drives



inner #teeth CS = outer #teeth FS + 2

reduction ratio

n = #teeth FS / (#teeth CS - #teeth FS)
= #teeth FS / 2


Operation of a harmonic drive

commercial video by Harmonic Drives AG (https://www.youtube.com/watch?v=bzRh672peNk)

Optimal choice of reduction ratio

torque × angular speed

$$n = reduction ratio (\gg 1)$$
 $\dot{\theta}_m = n \dot{\theta}_u$ \Longrightarrow $T_u = n T_m$

$$\dot{\theta}_{m} = n \dot{\theta}_{u}$$

$$T_u = n T_m$$

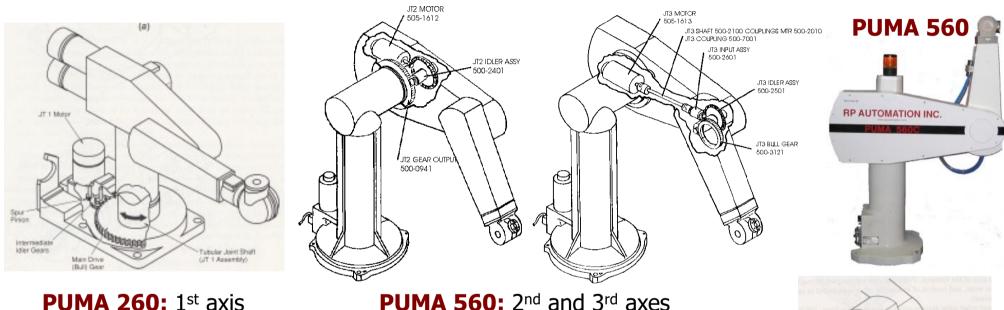
to have $\ddot{\theta}_{ij} = a$ (thus $\ddot{\theta}_{m} = n$ a), the motor should provide a torque

$$T_m = J_m \overset{\dots}{\theta}_m + 1/n (J_u \overset{\dots}{\theta}_u) = (J_m n + J_u/n) a$$

inertia × angular acceleration

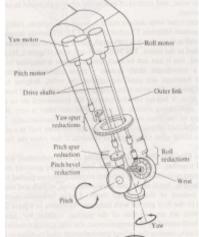
for minimizing T_m , we set:

$$\frac{\partial T_{m}}{\partial n} = (J_{m} - J_{u}/n^{2}) a = 0$$


$$n = (J_u / J_m)^{1/2}$$

"matching" condition between inertias

Transmissions in industrial robots


transmissions used (inside) 6-dof Unimation industrial robots with serial kinematics

PUMA 260: 1st axis

505-3415 500-7001 500-2601 - 500-6850 500-2501 B 500-6750

PUMA 560: inner and outer links

PUMA 560: last 3 axes

Robotics 1

Inside views on joint axes 4, 5 & 6 of an industrial KUKA robot

- looking inside the forearm to see the transmissions of the spherical wrist
- motor rotation seen from the encoder side (small couplings exist)

https://youtu.be/iRKDfknqtbc

video

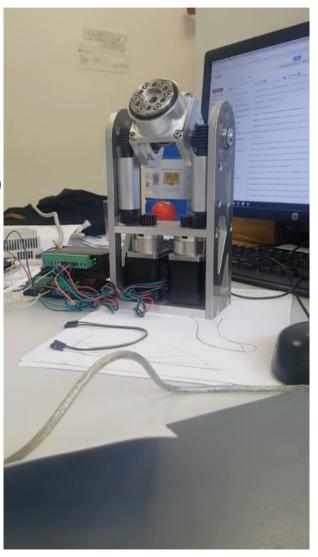
Differential drive at wrist

video

both motors are rotating in the same direction

only joint 5 moves

video

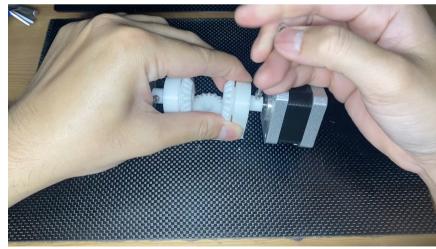

the motors are rotating in opposite directions (same speed) (same speed)

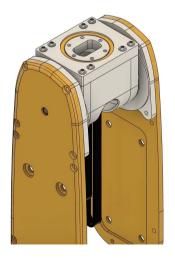
only joint 6 moves

any other combination of motor velocities

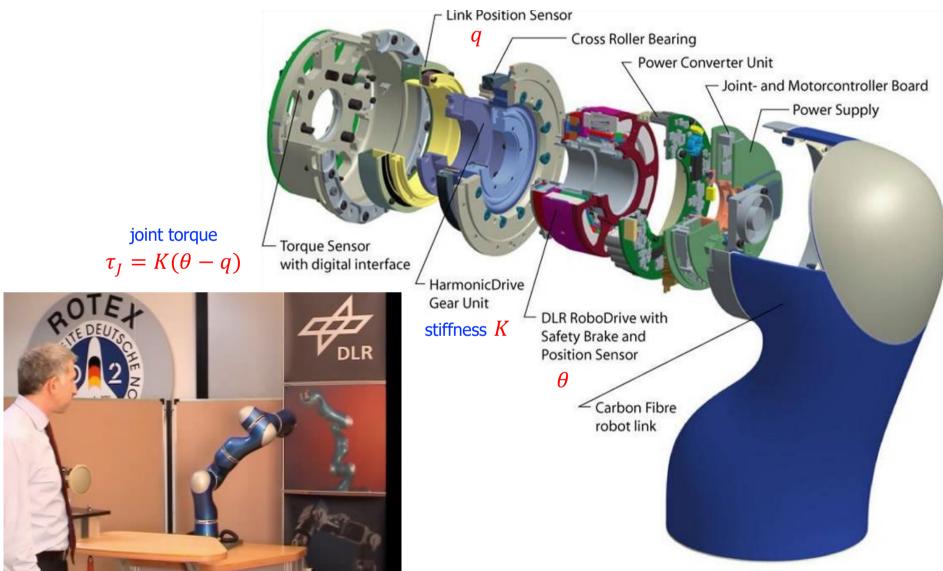
both joints move simultaneously

https://www.youtube.com/@MRBEngineering


A trivia on differential drive at wrist to achieve pitch and roll motion



4 video clips https://youtu.be/lr-Zh8kpTuo



Exploded view of a joint in the DLR-III robot

