Robotics 1

Robot components: Introduction, Actuators, Transmissions

Prof. Alessandro De Luca

Dipartimento di Ingegneria Informatica
Automatica e Gestionale Antonio Ruberti

SAPIENZA
UNIVERSITÀ DI ROMA

Robot as a system

Functional units of a robot

- mechanical units (robot arms)
- serial manipulators: rigid links connected via rotational or prismatic joints (each giving 1 degree of freedom = DOF)
- supporting structure (mobility), wrist (dexterity), end-effector (for task execution, e.g., manipulation)
- actuation units
- motors (electrical, hydraulic, pneumatic) and transmissions
- motion control algorithms
- sensor units
- proprioceptive (internal robot state: position and velocity of the joints)
- exteroceptive (external world: force and proximity, vision, ...)
- supervision units
- task planning and control
- artificial intelligence and reasoning

Arrangement of mechanical links

Examples of industrial robots

 with brands

NAICHI

Bi-manual industrial robots with brands

COMAU

Actuation systems

power $=$ voltage \cdot current $=$ pressure \cdot flow rate $=$ force \cdot speed $=$ torque \cdot angular speed $[\mathrm{W}, \mathrm{Nm} / \mathrm{s}]$ efficiency $=$ power out/power in [\%] energy \sim work $=$ power \cdot time $[k W h, ~ N m, ~ J]$

Desired characteristics for robot servomotors

- low inertia
- high power-to-weight ratio
- high acceleration capabilities
- variable motion regime, with several stops and inversions
- large range of operational velocities
- 1 to 2000 rpm (round per min)
- high accuracy in positioning
- at least $1 / 1000$ of a turn
- Iow torque ripple
- continuous rotation at low speed

- power: 10 W to 10 kW

Servomotors

- pneumatic: pneumatic energy (compressor) \rightarrow pistons or chambers \rightarrow mechanical energy
- difficult to control accurately (change of fluid compressibility) \rightarrow no trajectory control
- used for opening/closing grippers
- ... or as artificial muscles (McKibben actuators)
- hydraulic: hydraulic energy (accumulation tank) \rightarrow pumps/valves \rightarrow mechanical energy
- advantages: no static overheating, self-lubricated, inherently safe (no sparks), excellent power-to-weight ratio, large torques at low velocity (w/o reduction)
- disadvantages: needs hydraulic supply, large size, linear motion only, low power conversion efficiency, high cost, increased maintenance (oil leaking)

Electrical servomotors

- advantages
- power supply available everywhere
- low cost
- large variety of products
- high power conversion efficiency
- easy maintenance
- no pollution in working environment
- disadvantages
- overheating in static conditions (in the presence of gravity)
- use of (emergency) brakes
- need special protection in flammable environments
- some advanced models require more complex control laws

Electrical servomotors for robots

Advantages of brushless motors

- reduced losses, both electrical (due to tension drops at the collector-brushes contacts) and mechanical (friction)
- reduced maintenance (no substitution of brushes)
- easier heat dissipation
- more compact rotor (less inertia and smaller dimensions)

but indeed a higher cost!

Principle of operation of a DC motor

DC electrical motor
 mathematical model (in the time domain)

electrical balance

(on the equivalent armature circuit)

$$
v_{a}(t)=R_{a} i_{a}(t)+L_{a} \frac{d i_{a}(t)}{d t}+v_{e m f}(t)
$$

$$
v_{e m f}(t)=k_{v} \omega(t)
$$

(back emf)
mechanical balance
(Newton law on torques)
$\tau_{m}(t)=I_{m}(t) \frac{d \omega(t)}{d t}+F_{m} \omega(t)+\tau_{\text {load }}(t)$

$$
\tau_{m}(t)=k_{t} i_{a}(t)
$$

(motor torque)

DC electrical motor

mathematical model for command and control

electrical balance

$V_{a}=\left(R_{a}+s L_{a}\right) I_{a}+V_{e m f}$
$\mathrm{V}_{\mathrm{emf}}=\mathrm{k}_{\mathrm{v}} \Omega$

Laplace domain (transfer functions)

$$
\tau_{\text {elec }}=\frac{L_{a}}{R_{a}} \ll \frac{I_{m}}{F_{m}}=\tau_{m e c c}
$$

mechanical balance

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{m}}=\left(\mathrm{sI}_{\mathrm{m}}+\mathrm{F}_{\mathrm{m}}\right) \Omega+\mathrm{T}_{\text {load }} \\
& \mathrm{T}_{\mathrm{m}}=\mathrm{k}_{\mathrm{t}} \mathrm{I}_{\mathrm{a}}
\end{aligned}
$$

current loop

$\mathrm{k}_{\mathrm{v}}=\mathrm{k}_{\mathrm{t}}$
$\mathrm{k}_{\mathrm{i}}=0 \rightarrow$ velocity generator*
$\mathrm{k}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}(0) \mathrm{G}_{\mathrm{v}} \gg \mathrm{R}_{\mathrm{a}} \rightarrow$ torque generator*

* = the motor is seen here as a steady state "generator"
in order to actually regulate velocity or torque in an efficient way against $T_{\text {load }}$, further control loops are needed!

Characteristic curves of a DC motor

Data sheet electrical motors

- DC drives

Model of actuator		RHS-14		RHS-17		RHS-20/RFS-20				RHS-25/RFS-25				RHS-32/RFS-32			
		6003	3003	6006	3006	6007	3007	6012	3012	6012	3012	6018	3018	6018	3018	6030	3030
Rated Torque	Inlb	48	69	87	177	106	212	177	266	177	354	266	531	266	531	443	885
	Nm	5.4	7.8	9.8	20	12	24	20	30	20	40	30	60	30	60	50	100
Rated Speed of Rotation	rpm	60	30	60	30	60	30	60	30	60	30	60	30	60	30	60	30
Max. Instant. Torque	Inlb	159	248	301	478	504	743	504	743	885	1416	885	1416	1947	3009	1947	3009
	Nm	18	28	34	54	57	84	57	84	100	160	100	160	220	340	220	340
Max.Speed of Rotation	rpm	100	50	80	40	80	40	80	40	80	40	80	40	80	40	80	40

nominal/peak torques and speeds

Data sheet electrical motors

- AC drives

| | unit | HKM-20-60 | HKM-20-30 | HKM-25-60 | HKM-25-30 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rated Power | Watts | 100 | | 200 | |
| Rated Torque | in-lb | 115 | 223 | 233 | 440 |
| | $\mathrm{~N}-\mathrm{m}$ | 13 | 26 | 26 | 50 |
| Maximum Torque | in-lb | 345 | 700 | 830 | 1330 |
| | $\mathrm{~N}-\mathrm{m}$ | 39 | 79 | 94 | 150 |
| Rated Speed | $\mathrm{r} / \mathrm{min}$ | 60 | 30 | 60 | 30 |
| Maximum Speed | $\mathrm{r} / \mathrm{min}$ | 80 | 40 | 80 | 40 |
| Current Rated | A | 1.8 | 1.4 | 4.8 | 3 |
| Current Max | A | 5 | 4 | 14 | 9 |
| Thermal Time Constant | min. | | | | |
| Gear Reduction Ratio | $\mathrm{R}: 1$ | 50 | 100 | 50 | 100 |
| Output Resolution | $\mathrm{P} / \mathrm{rev}$ | 50,000 | 100,000 | 75,000 | 150,000 |
| | 26 | 13 | 17 | 9 | |
| Absolute Accuracy | +/- arc sec | 75 | 40 | 60 | 40 |

- for applications requiring a rapid and accurate response (in robotics!)
- induction motors driven by alternate current (AC)
- small diameter rotors, with low inertia for fast starts, stops, and reversals

Motion transmission gears

- optimize the transfer of mechanical torque from actuating motors to driven links
- quantitative transformation (from low torque/high velocity to high torque/low velocity)
- qualitative transformation (e.g., from rotational motion of an electrical motor to a linear motion of a link along the axis of a prismatic joint)
- allow improvement of static and dynamic performance by reducing the weight of the actual robot structure in motion (locating the motors remotely, closer to the robot base)

Transmissions in robotics

- spur gears: modify direction and/or translate axis of (rotational or translational) motor displacement
- problems: deformations, backlash

- lead screws, worm gearing: convert rotational into translational motion (prismatic joints)
- problems: friction, elasticity, backlash

- toothed belts and chains: dislocate the motor w.r.t. the joint axis
- problems: compliance (belts) or vibrations induced by larger mass at high speed (chains)

- harmonic drives: compact, in-line, power efficient, with high reduction ratio (up to 150-200:1)
- problems: elasticity
- transmission shafts: long, inside the links, with flexible couplings for alignment

Transmission gears in motion

- racks and pinion
- one rack moving (or both)
- epi-cycloidal gear train
- or hypo-cycloidal (small gear inside)
- planetary gear set
- one of three components is locked: sun gear, planet carrier, ring gear

Harmonic drives

Operation of an harmonic drive

Harmonic Drive Gearing PRINCIPLE ${ }_{\text {of }}$ OPERATION

commercial video by Harmonic Drives AG
(https://www.youtube.com/watch?v=bzRh672peNk)

Optimal choice of reduction ratio

to have $\ddot{\theta}_{u}=a$ (thus $\ddot{\theta}_{m}=n$ a), the motor should provide a torque

$$
\mathrm{T}_{\mathrm{m}}=\underset{\text { inertia } \times \text { angular acceleration }}{J_{m}} \ddot{\theta}_{\mathrm{m}}+1 / \mathrm{n}\left(\mathrm{~J}_{\mathrm{u}} \ddot{\theta}_{\mathrm{u}}\right)=\left(\mathrm{J}_{\mathrm{m}} \mathrm{n}+\mathrm{J}_{\mathrm{u}} / \mathrm{n}\right) \mathrm{a}
$$

$$
\text { for minimizing } T_{m} \text {, we set: } \quad \frac{\partial T_{m}}{\partial n}=\left(J_{m}-J_{u} / n^{2}\right) a=0
$$

$$
n=\left(J_{u} / J_{m}\right)^{1 / 2}
$$

"matching" condition between inertias

Transmissions in industrial robots

- transmissions used (inside) 6-dof Unimation industrial robots with serial kinematics

Inside views on joint axes 4, 5 \& 6 of an industrial KUKA robot

- looking inside the forearm to see the transmissions of the spherical wrist
- motor rotation seen from the encoder side (small couplings exist)

video

video

Exploded view of a joint in the DLR-III robot

