
Robotics 1

Introduction

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA Automatica e Gestionale Antonio Ruberti

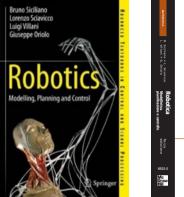
- First semester
 - Wednesday, September 27, 2023 Friday, December 22, 2023
- Courses of study (having Robotics 1 mandatory or as optional)
 - Master in Artificial Intelligence and Robotics (MARR)
 - Master in Control Engineering (MCER)
- 6 Credits
 - ~50 hours of lectures, exercises, and midterm test
 - 90 hours of individual study
- Classes (room B2, DIAG, Via Ariosto 25)
 - Wednesday 17:00-19:00
 - Friday 8:00-11:00

General information

- Prerequisites
 - self-contained course, without special prerequisites
 - elementary knowledge on kinematics, linear algebra, and feedback control is useful
- Aims
 - robot "anatomy"
 - provide tools for kinematic analysis of articulated chains of multiple rigid bodies (= robot manipulators)
 - analytical methods for planning motion trajectories
 - motion command and control algorithms
 - programming of tasks for robot manipulators in industrial and service environments

Organization and contacts

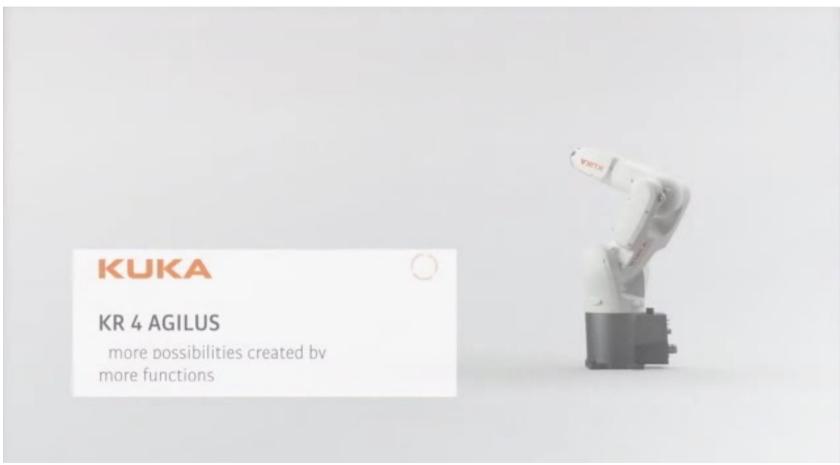
G-group


- join <u>robotics1_2023-24</u> (your **full name**, uniroma1 email, course of study)
- ask questions, comment on my replies (for the benefit of everyone!)
- Email <u>deluca@diag.uniroma1.it</u>
- Office hours for students
 - Tuesday 12:00-13:30 (check exceptions, e.g., when I'm on travel)
 - in presence: Room A-210, floor 2, left wing, DIAG, Via Ariosto 25
 - remote: Zoom (or Meet), see www.diag.uniroma1.it/deluca/Teaching.php
- YouTube
 - <u>personal channel</u>: playlists with recorded videos of selected lectures recorded during the pandemic (2019-20 and 2020-21)
 - access restricted to Sapienza students in G-group of the course!

Course materials

Textbook

- B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo: *Robotics: Modelling, Planning and Control*, 3rd Edition, Springer, 2009
- English, Italian, Chinese & Greek editions
- Course website www.diag.uniroma1.it/deluca/rob1_en.php
 - pdf of lecture slides ready (with some updates during the course)
 - all videos shown during lectures (in zipped folders by block of slides)
 - written exams (most with solutions), syllabuses, extra documents, ...
- Video DIAG channel playlist <u>Robotics 1</u> with full course of 2014-15
 - 30 (+1 index) videos in classroom (\cong 41h, >**125K** independent views)
- DIAG Robotics Lab YouTube channel with more research videos
 - www.youtube.com/user/RoboticsLabSapienza



A robot manipulator Illustrating typical features of an industrial robot

commercial video

KUKA KR 4 Agilus robot with 6 revolute joints

Industrial vs. service robots

FANUC CR35i 6R collaborative robot carrying up to 35 kg of payload and with hand guidance system

video

7

video

qbrobotics SoftHand2 dexterous robot hand with only 2 motors on board and compliant transmissions

Programming robot motion Teaching Cartesian poses and playing them back

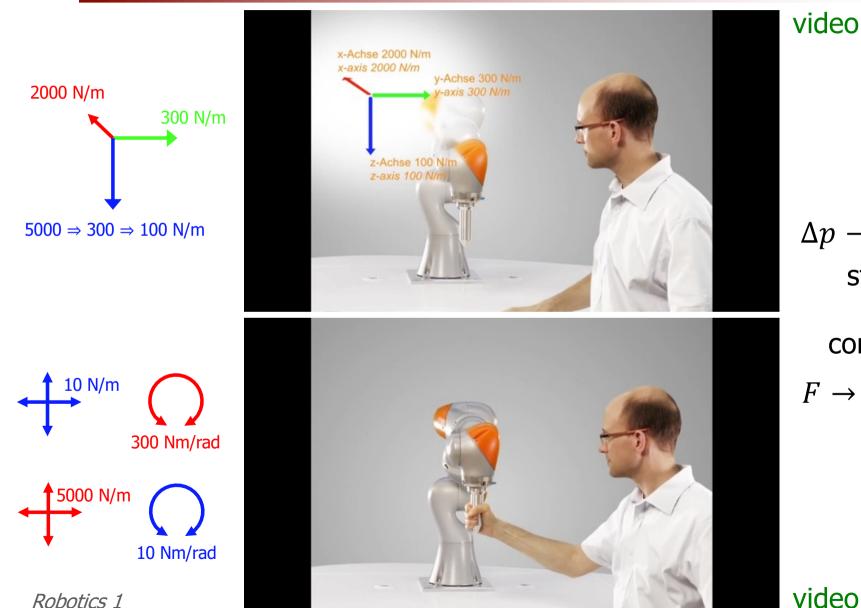
video

KUKA LBR iiwa robot with 7 revolute joints

Programming robot motion

Executing nominal trajectories and "complying" with uncertainties

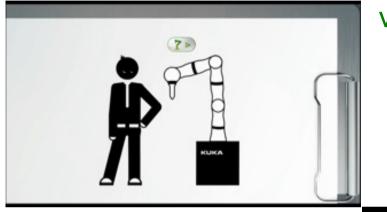
video


compliance

actual

nominal

Programming robot compliance Controlled reaction to applied forces/torques at robot end-effector


 $\Delta p \to F = K \Delta p$ stiffness VS compliance $F \rightarrow \Delta p = C F$ $=\frac{1}{-}F$

video

10

Programming robot motion Teaching tasks by demonstration (kinesthetic learning)

video

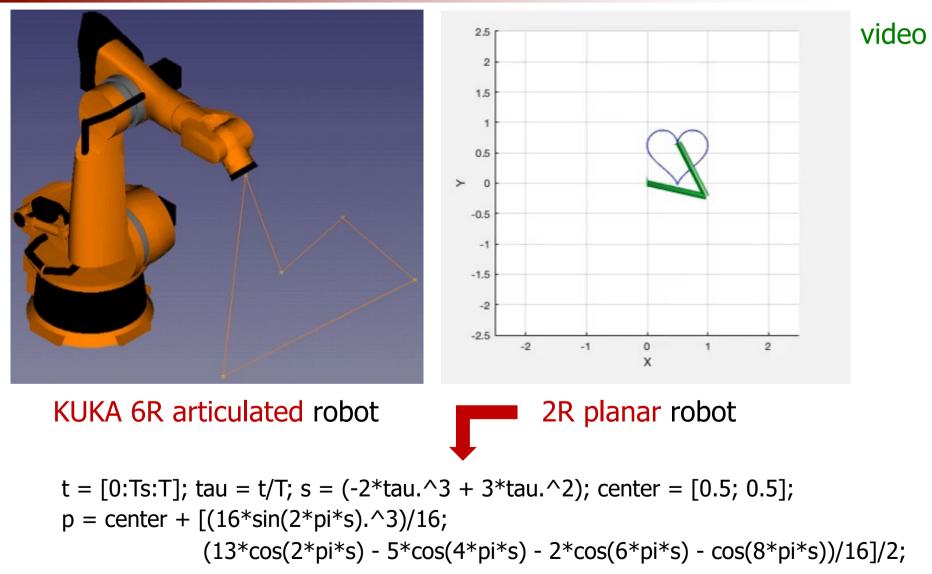
sketch of the original idea— a possible use of safephysical Human-Robot Interaction (pHRI)

video

the working industrial solution

more videos on KUKA Robotics YouTube Channel

Program



Introduction

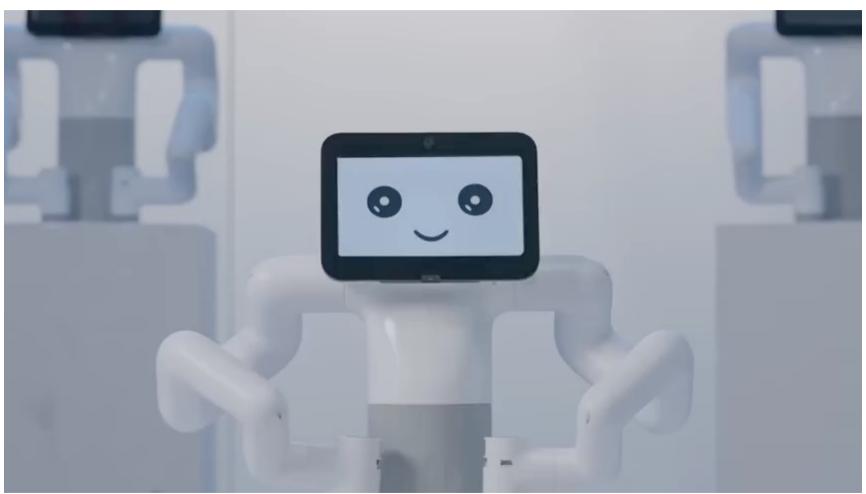
- Manipulator arms (+ some on a mobile base)
- Industrial and service applications
- Components
 - Mechanical structures
 - Actuators and transmissions
 - Sensors
 - proprioceptive (encoder, tacho)
 - exteroceptive (force/torque, depth, vision, infrared, ultrasound, laser)
- Kinematic models
 - Minimal representations of orientation
 - Direct and inverse kinematics of robot manipulators
 - Denavit-Hartenberg formalism for frame assignment
 - Differential kinematics: analytic and geometric Jacobians
 - Statics: Transformations of forces
 - Robot singularities

Planning Cartesian trajectories

MATLAB code (Diaco & Ficorilli, Sep 2021)

13

Program (continued)



- Planning of motion trajectories
 - Trajectory planning in the joint space for robot manipulators
 - Trajectory planning in the task/Cartesian space
- Motion control
 - Control system architectures
 - Kinematic control laws (in joint or in task/Cartesian space)
 - Independent joint axis control laws (P, PD, PID)
- Programming and simulation
 - Programming language for industrial robots (KRL)
 - Use of Matlab/Simulink (with Robotics Toolbox) or CoppeliaSim (V-REP)

Programming motion and behavior

video

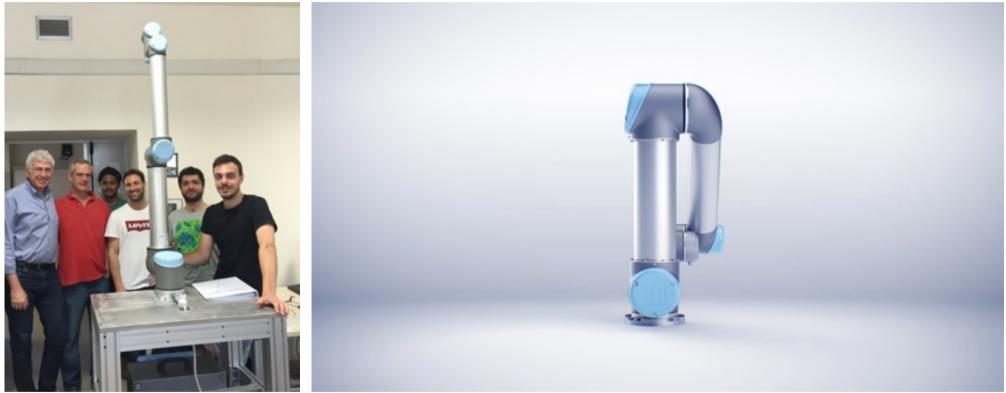
myBuddy 280-Pi dual-arm personal robot by Elephant Robotics

Robot manipulators available at DIAG Robotics Lab (S-218)

video

KUKA KR-5

KUKA LWR4+ (lightweight, about 14 kg)



video

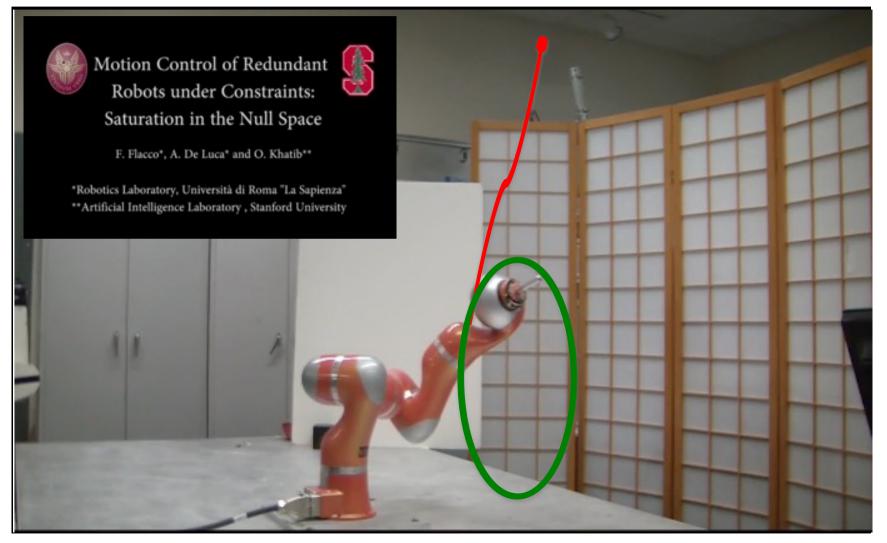
Robot manipulators available at DIAG Robotics Lab (S-218)

commercial video

upon arrival (July 2016)

Universal Robots UR-10 (= 10 kg of payload)

I-RIM conference 2023 Fiera di Roma, 20-22 October 2023



- Institute of Robotics and Intelligent Machines (I-RIM)
 - national association of academic and industrial stakeholders
 - created in 2019
 - check the web site for multiple initiatives: <u>https://i-rim.it/en</u>
- 5th national I-RIM conference
 - scientific presentations, workshops, expo, demos ...
 - in conjunction with MakerFaire Europe
 - registration for students is very low
- Student staff needed!
 - some duties and many bonuses ...
 - contact asap **Prof. Marilena Vendittelli**, General Chair of I-RIM 2023

Tracking a Cartesian trajectory with hard position/velocity bounds on robot motion

video DIAG Sapienza/Stanford, IEEE ICRA 2012

Robot control by visual servoing with limited joint motion range

Avoiding joint limits with a low-level fusion scheme Olivier Kermorgant and François Chaumette Lagadic team INRIA Rennes-Bretagne Atlantique

video INRIA Rennes, IEEE/RSJ IROS 2011

Sensor-based robot control

in dynamic environments (coexistence with human)

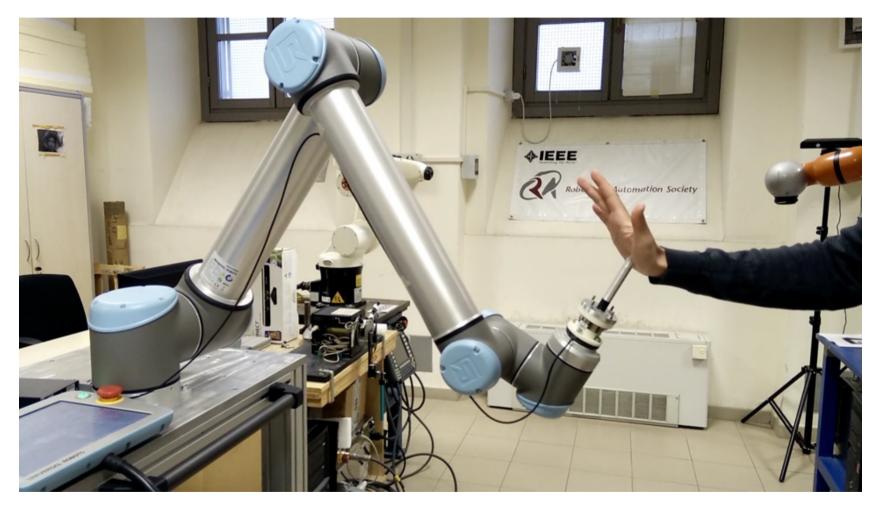
A Depth Space Approach to Human-Robot Collision Avoidance

F. Flacco*, T. Kröger**, A. De Luca* and O. Khatib**

*Robotics Laboratory, Università di Roma "La Sapienza" **Artificial Intelligence Laboratory , Stanford University

video DIAG Sapienza/Stanford, IEEE ICRA 2012

Safe physical human-robot interaction (sensor-less (!) and on a conventional industrial robot)



video DIAG Sapienza, IEEE ICRA 2013

Human-robot collaboration (with a real F/T and a "virtual" sensor to distinguish contacts)

video DIAG Sapienza, J. of Mechatronics, 2018

More robots ... @IEEE <u>https://robotsguide.com</u>

https://youtu.be/7GdiN6KmGCc

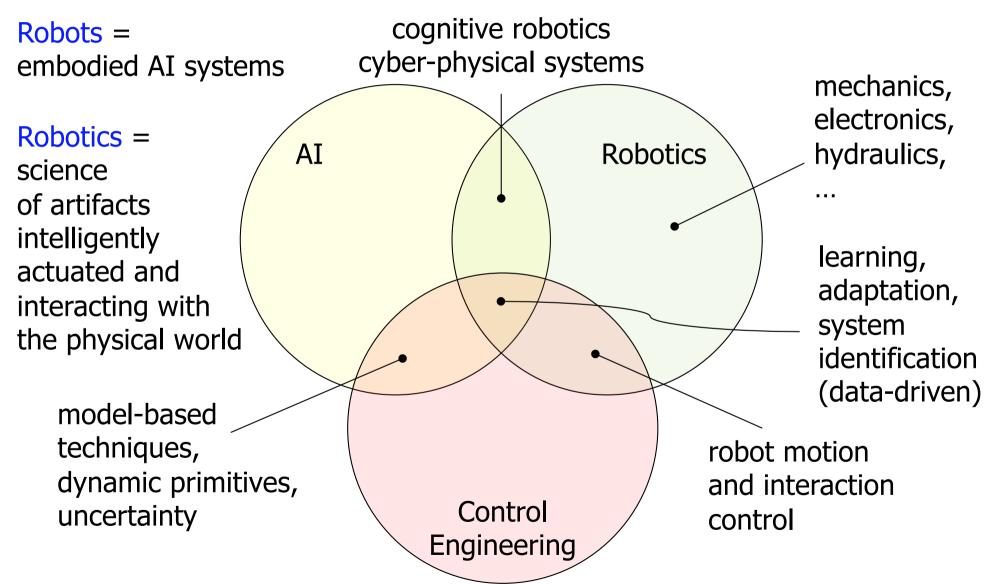
KUKA LBR iiwa 7-dof arm DE 2013

> UNIVERSAL ROBOTS UR5 6-dof arm DK 2008

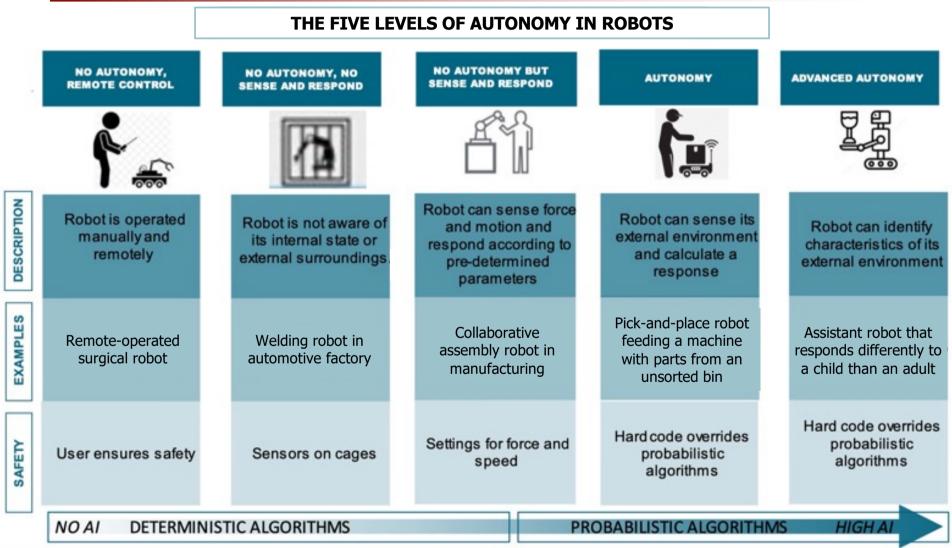
https://youtu.be/UQj-1yZFEZI

https://youtu.be/70V6J4Y8hnc

ABB YuMi-FRIDA bi-manual arm SE-CH 2011


> OCRobotics Explorer snake arm UK 2009

https://youtu.be/_gU6TWGynkU


Next generation of intelligent robots?

Levels of robot autonomy in industrial applications

source, IFR 2022

Horizon Europe (2021-27)

Strategic Research, Innovation and Deployment Agenda

Al, Data and Robotics Partnership

Third release September 2020

Se BDV CLAIRE Seillis EurAi

EU link to SRIDA AI, Data and Robotics ppp

Cross-Sectorial AI, Data and Robotics Technology Enablers

Sensing and Perception Knowledge and Learning Reasoning and Decision Making Action and Interaction Systems, Methodologies, Hardware & Tools

Robotics Deep Dive

Physical Interaction Physical and Psychological Safety Actuated Mechanical Structures Unpredictable and Unknown Environments Irreversible Actions

4 Market Prioritization in Robotics (from Horizon 2020)

Healthcare

Maintenance and Inspection of Infrastructures

Agri-Food

Agile Production

Specific to Robotics

- hard physical/real-world nature of Robotics ("AI embodied")
- wide range of technologies are integrated within robotic systems
- skill mix needed for success is broader than in AI or Data alone
- robots are realizations of advanced system-level concepts
 - such as autonomy, control, sensing, perception and programming
- robots are both producers and consumers of data
 - physical model-based approaches, generation of data-driven models
- decision makers and general public need a better understanding of what Robotics is and can achieve, and how it can be deployed
 - Fukushima, Covid19,

AI & Robotics point of views

example with one of the cross-sectorial technology enablers

one enabling technology	its relations with the other technologies					
	Sensing and Perception	Knowled Learning	ge and	Reasoning and Decision Making	J	Systems, Hardware, Methodologies and Tools
Action and Interaction	Depends on sensing of motion and mechanical properties	Gets sema knowledg around ok	ie Djects		:-	Depends on fast reactive architectures for control
	Relies on perception for interaction Uses recognition of actions and sequences of interactions in people	and human actions Gets data o objects and places	on		Safe	Relies on edge-based Al Requires assurance of safe operation and data privacy fe control of physical
Real-time interpretation of multi-modal data Safe monitoring in human environments <i>Robotics 1</i>		-making	Planning and re-planning under uncertainty and incomplete knowledge in dynamic environments Real-time control (distributed/decentralized)		Agil of c Int (ligh & so Ene	nan-interaction ity (speed and strength) collaborative robots erAction Technology htweight, compliant oft devices/materials) ergy-efficient, robust sustainable design 29

Robotics around the world...

Springer Handbook of Robotics (2nd Edition, July 2016)

robots

the journey continues

Robotics 1 full video on <u>https://vimeo.com/173394878</u> (free login)

Exams and beyond

- Type midterm test (about mid of November) + written exam
- Schedule of 2023-24 sessions
 - 2 sessions at the end of this semester
 - between January 8 and February 23, 2024
 - 2 sessions at the end of next semester
 - between June 3 and July 26, 2024
 - 1 session after the summer break
 - between September 2 and 24, 2024
 - 2 extra sessions only for students of previous years, part-time, ...
 - March 18–April 19 and October 9–November 6, 2024
- Signing up to exams
 - on infostud (up to one week before the date of the written exam)
- Master theses
 - samples at DIAG Robotics Lab <u>www.diag.uniroma1.it/labrob/theses</u>

Robotics 1

will open on infostud in early December check the course website!

Preview of Robotics 2

6 credits, II semester, year 1

Advanced kinematics / Robot dynamics

- Calibration
- Redundant robots
- Dynamic modeling: Lagrange and (recursive) Newton-Euler methods
- Identification of dynamic parameters/coefficients
- Geometrically constrained dynamics

Control techniques

- Free motion linear/nonlinear feedback control, robust control, adaptive control, iterative and online learning
- Constrained motion admittance, impedance, hybrid force-motion control
- Visual servoing (kinematic approach)
- Special topic
 - Diagnosis and isolation of robot actuator faults

Other courses on Robotics and Control

- Autonomous and Mobile Robotics (6 credits), I semester, year 2
 - kinematics, planning, control of wheeled and legged mobile robots
 - motion planning with obstacles, navigation, and exploration
 - Prof. Oriolo <u>www.diag.uniroma1.it/oriolo/amr</u>
- Medical Robotics (6 credits), II semester
 - robot surgical systems, haptics, and more ...
 - Prof. Vendittelli (follow link at <u>http://www.diag.uniroma1.it/vendittelli</u>)
- Elective in Robotics (12 credits) or Control Problems in Robotics (6 credits)
 - I-II semesters, starting this semester
 - 4 modules of 3 credits (for CPR, students take 2 modules out of the 4 in EiR)
 - research-related subjects: e.g., physical Human-Robot Interaction (pHRI)
 - multiple instructors <u>www.diag.uniroma1.it/vendittelli/EIR</u>
- Probabilistic Robotics (6 credits), I semester, year 2
 - Least Squares state estimation, Kalman filter, SLAM
 - Prof. Grisetti <u>sites.google.com/diag.uniroma1.it/probabilistic-robotics-2023-24</u>
- Robot Programming (3 credits, no mark), I semester, year 1
 - robot programming using C++, modules with ROS, embedded real-time coding
 - Prof. Grisetti <u>sites.google.com/diag.uniroma1.it/robot-programming-2023-24</u>