

Elective in Robotics/Control Problems in Robotics

Physical Human-Robot Interaction Dependability and Safety Standards

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA Automatica e Gestionale Antonio Ruberti

Safety in pHRI

- management of risk for humans working near robots involve in general very broad considerations, including
 - potential electrical and pressurized fluid hazards
 - pinching hands or feet
 - dropping parts ...
- most dangerous risk specific to robotics is probably when, in an unspecified instant during a robot movement, a collision occurs or an unwanted force is exerted between robot and human
- even just in this situation, safety of pHRI involves several aspects and depends on many factors
 - software dependability
 - possible mechanical failures
 - human errors in interfacing with the robot ...

Safety in pHRI

traditional approaches have addressed safety by

- modifying controllers for rigid robot manipulators (stiffness, impedance control, force control)
- adding sensors (force, contact, proximity, vision, ...)

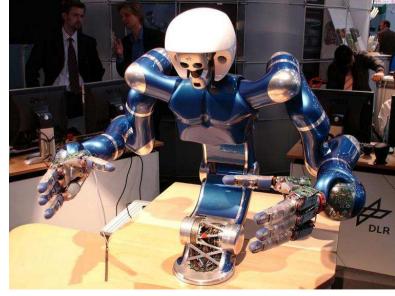
there are however intrinsic limitations to the extent by which a controller may alter the behavior of a robot

- it is critical when the mechanical bandwidth (dictated by robot inertia and friction) is not matched to the task [Townsend 1988]
- or, stated differently, ...

making a rigid/heavy robot behave gently and safely is almost hopeless, when realistic conditions are taken into account

Lightweight manipulators

technological innovations in actuators, sensors, and structural design



LWR-III with payload equal to its own weight (13.5 kg)

WAM cable-driven robot (Whole Arm Manipulation) by Barrett Technology [Salisbury, 1988]

DLR LWR generation [Hirzinger, 2001]

Justin: 2 LWR arms with torso

Compliant manipulators

- motors contribute for the most part of the effective inertia in conventional geared drives of robots
- compliant transmissions may negatively affect performance, in terms of slow response, larger oscillations and longer settling time
- not a problem for some robotic applications, e.g., entertainment
- when performance matters, co-design techniques of mechanics and control for "soft" robots that are passively compliant, yet fast, strong, and accurate enough

intentionally introduce mechanical compliance in the robot design

Dependability in pHRI

dependability is an integrated concept that encompasses various different attributes [Avizienis et al., 2004]

- safety needs to be ensured both during nominal operation of the robot, as well in the presence of faults
- survivability enforces a robot operation which is safe for the human (completion of a programmed task may even be abandoned)
- availability and reliability a robot must be always ready to carry out its intended tasks, and able to complete them successfully
- integrity relates to the robot physical and logical resources, and requires suitable protection mechanisms against malicious events
- maintainability concerns both physical and logical resources of the robot, which should be easy to repair and to upgrade
 - there is indeed a trade-off between reliability/maintainability on one side, and safety on the other

- physical (or internal) faults including both natural hardware faults and physical effects due to the environment
- interaction (or external) faults including issues related to human-to-robot collaboration and robot-to-robot cooperation, robustness issues with respect to operation in an open and unstructured environment
- development faults which may be introduced, usually accidentally, during the design or implementation
- possible faults in the robotic system need to be handled thoroughly, from prevention to diagnosis and prediction

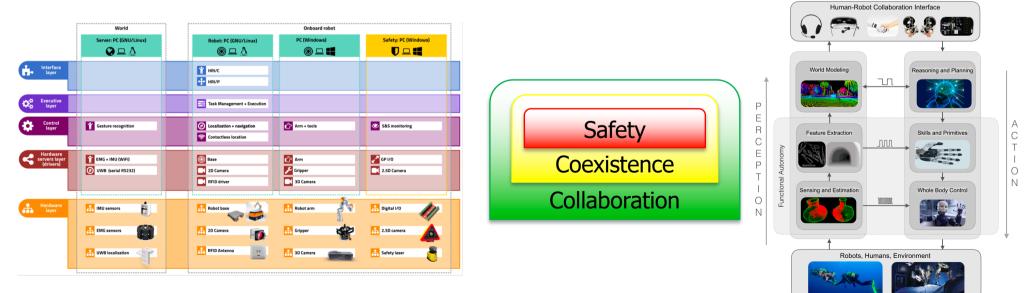
Handling of faults

- fault prevention to prevent the occurrence or introduction of faults (by design)
- fault removal to reduce the number and severity of faults
- fault detection and isolation to recognize the occurrence of a fault and characterizing its location/type
- fault tolerance to avoid service interruption (or large degradation) in the presence of faults
- fault forecasting to estimate the present number, the future incidence, and the likely consequences of faults

Fault handling and dependability

- to preserve the safety of humans interacting with robots during the execution of interaction tasks, fault handling and fault tolerant control have to be considered as fundamental functionalities
- dependability is related to the ability of the system to cope with failures
- to ensure acceptable levels of robot dependability attributes in pHRI, it is useful to explicitly define the types of faults
- achieving dependability requires the application of a sequence of activities for dealing with faults
- fault prevention and removal are collectively referred to as fault avoidance
- a complete fault diagnosis requires fault detection and isolation, and identification of the fault evolution over time
- developing a system with fault tolerance and forecasting is collectively referred as fault acceptance
- incorporation of redundancy in HW and SW plays an important role here

Sensors and dependability


- the selection, arrangement, and number of sensors (as well as their single reliability) contribute to the measure of dependability
- the construction of a good model of humans interacting with the robot is one of the main purposes of a sensory system for pHRI
- sensors must be robust to changing of environmental conditions like lighting, dust, and other sources of uncertainty
- fusion of the information coming from multiple sensors may help in providing a coherent and reliable description of the world surrounding the robot
- inference and learning systems may organize sensory sources and data, taking into account the information about the specific phases of a physical/cognitive interaction task

Control architecture and dependability

dependability of the robot control software for pHRI calls for a modular and hierarchical architecture

- advantageous for testing the single components
- allows a simpler isolation of possible faults
- achieves operating robustness
 - in terms of availability, reliability, and maintainability

Control architecture and dependability

- programmability the robot should be able to achieve multiple tasks described at an abstract level
 - its basic functionalities should therefore be easily combined according to the task to be executed
- autonomy and adaptability the robot should be able to carry out its actions and to refine or modify the task and its own behavior according to the current goal and execution context as it perceives it
- reactivity the robot has to take into account events with time bounds that are compatible with the correct and efficient achievement of its goals (including its own safety) and the dynamics of the environment
- consistent behavior the reaction of the robot to events must be guided by the objectives of its task
- robustness the control architecture should be able to cope with failures, exploiting also redundancy of the processing functions and subsystems
 - robustness will require the control to be decentralized to some extent

Standards

- standards are the most important means of addressing and solving safety problems in the workplace
- research work on pHRI has been influenced by the available standards, and has had (and will have) an impact on their evolution
- safety standards for industrial robotics have undergone in the last two decades a rather revolutionary change
- the previous situation included well established national standards (e.g., ANSI-RIA R15.06-1986 in the USA, CSA Z434:2003 in Canada, DIN ICS53 in Germany, etc.) that were collected and harmonized in the first release of the (two-part) ISO 10218 standard in 2006
- previous standards were imposing human-robot segregation as the cornerstone of safety in the workplace

- control reliability
 - former standards relied upon hardwired electro-magnetic components
 - new ones allows safety-related control circuitry to use state-of-the-art electronic, programmable, network-based technology (and wireless)
- safeguarding and clearance
 - minor changes in clearance distances (about 0.5 meters)
 - a major step towards fully removing the safeguarding requirement, provided that appropriate new/enhanced capabilities and features are possessed by the robot control system itself
- new modes of operation requirements developed for
 - synchronized robot control
 - mobile manipulators mounted on Automated Guided Vehicles (AGV)
 - assisting robots that work in collaborative workspaces with operators

Most salient changes in standards

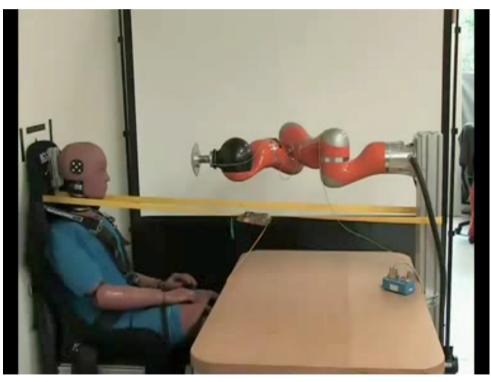
in addition, few items coming from standardization of IAD systems

- risk assessments in place of fixed rules to identify and mitigate risks in proportion to their seriousness and probability
- safety critical software software and firmware-based controllers should lead, under any single component failure, to the shutdown of the system in a safe state
 - achieved by microprocessor redundancy, diversity, and self-checking
- dynamic limits physical limitations of users are considered by requiring that operators can "outrun, overpower, or turn off" IADs
- emergency stops reliance on "red mushroom" button felt as hazard
 application-specific external devices initiate context-based safety stops
- (hu)man-machine interface IADs (& robots) should operate in few different modes (hands-off, hands-on-controls, hands-on-payload, etc) that are well communicated to/commanded by the operator

crash-tests: industrial robots-dummy

crash-tests: phases and models in a collision sequence with dummy

video


crash-tests: KUKA LWR-dummy with collision detection/reaction

video


crash-tests: singularity clamping without and with collision detection

comparative assessment of KUKA LWR-dummy impacts with and without collision detection/reaction

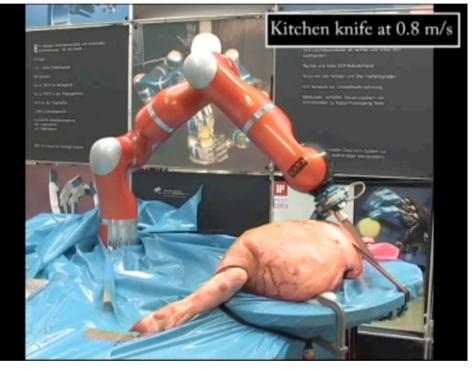
KUKA

ADAC

video

evaluation of HIC criterion in blunt and unconstrained impacts

http://handbookofrobotics.org/view-chapter/69/videodetails/608



stabbing tests

video

cutting tests

video

constrained impacts with sharp tools

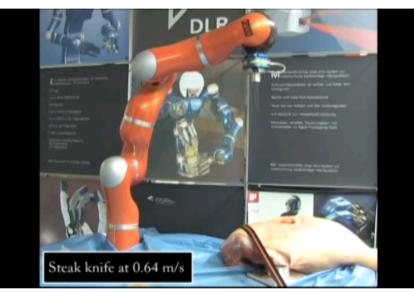
Collision detection and reaction

chest impact: human

head impact: human

video

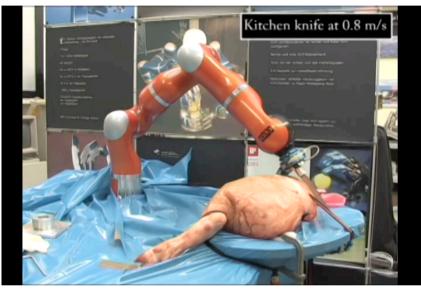
video


the method works for blunt and unconstrained impacts ...

Collision detection and reaction

A DAY NO

stabbing with collision detection



video

stabbing a human with collision detection

cutting with collision detection

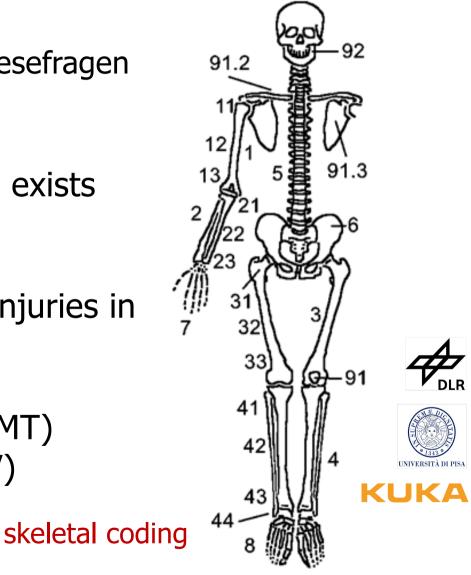
video

SAPIENZA UNIVERSITÀ DI ROMA

video

AO-classification

Arbeitsgemeinschaft für Osteosynthesefragen


Motivation

No soft-tissue injury classification exists

Proposal

AO-classification of concomitant injuries in traumatology with description of

- skin damage (I)
- muscle- and tendon-injury (MT)
- nerve- and vessel-injury (NV)

Adjusted AO-classification

skin damage in a closed fracture

- IC1: NO skin injury
- –(IC2) contusion without skin opening
- (C3) circumscribed décollement (avulsion)
- IC4: extensive, closed décollement (avulsion)
- -- IC5: necrosis by deep contusion

open skin injury

- IO2: skin puncture from outside <5cm with contused margins
- IO3: skin lesion >5cm, circumscribed decollement with marginal contusions
- IO4: skin loss, deep contusion, abrasions
- IO5: extensive, open decollement

muscle and tendon njury

- MT1: NO injury
- MT2: circumscribed muscle injury (limited to a muscle group)
- MT3: extensive muscle involvement (2 or more muscle groups)
- MT4: avulsion or loss of a whole muscle group, severed tendon-
- MT5: compartment syndrome, crush syndrome

neurovascular injuries

- NV1: NO injury
- NV2: isolated nerve lesion
- NV3: circumscribed vascular injury
- NV4: combined neurovascular injury
- NV5: subtotal- or total amputation

example: IO2 MT2 NV4

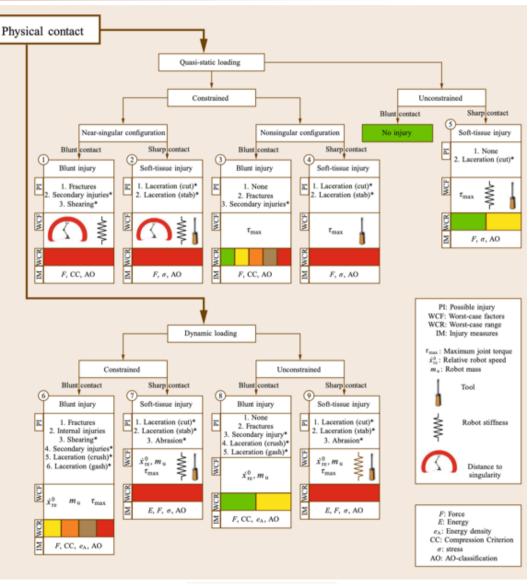
led. antibrach

Radial nerry

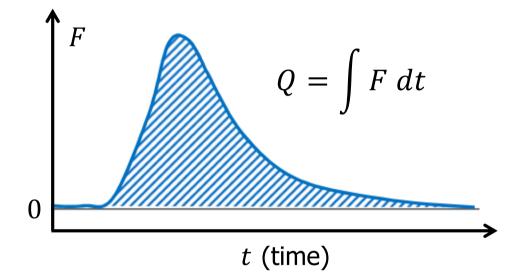
profund

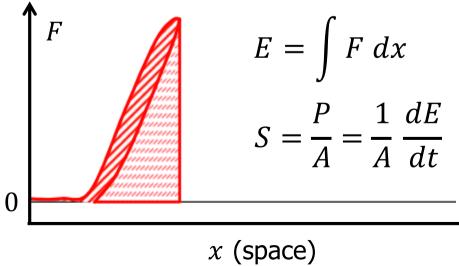
Sup. ulnar collateral

Inf. ulnar collateral

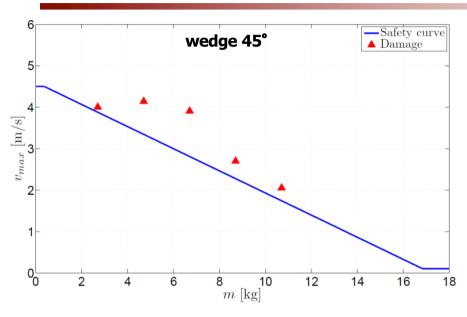

Biomechanical tests

bolt


video motor2 crossbar slide magnets table motor1 force sensor

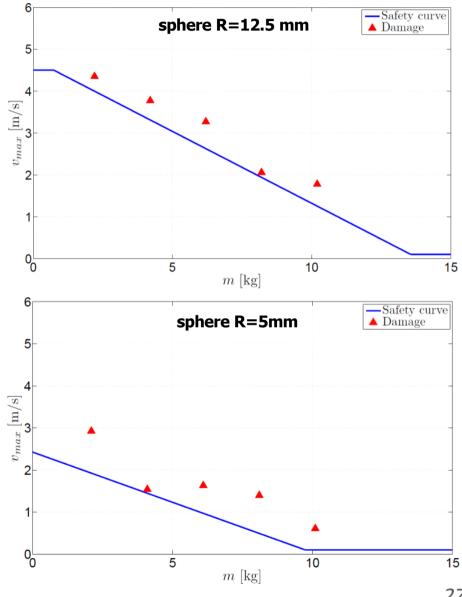

drop test impact measurements on pig skin samples + medical evaluation at the University Hospital – Technical University of Munich (TUM)

Other measures to assess transient limit criteria for impact severity



both for design and for control

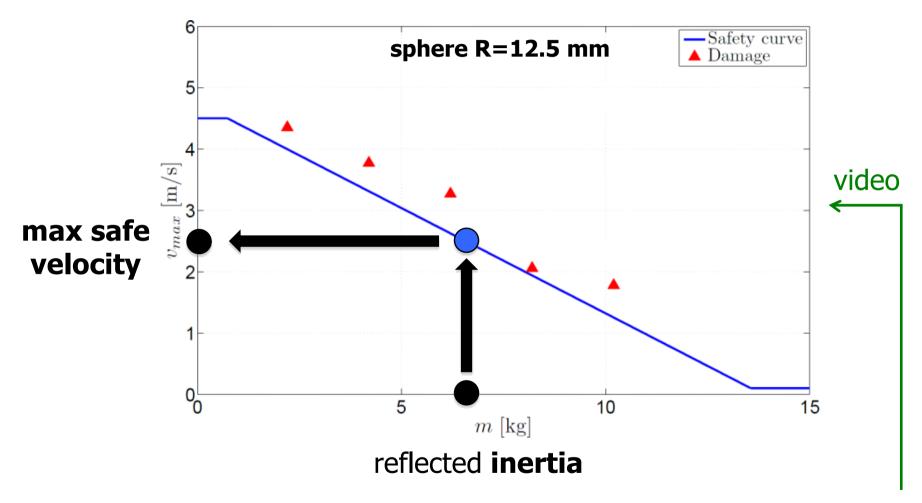
- force F [N]
- contact area A [m²]
- pressure $p [N/m^2]$
- momentum transfer Q [kgm/s]
- energy transfer E [J]
- power P[W = J/s]
- energy flux density K [J/m²]
- power flux density $S[W/m^2]$



Maximum safe velocity

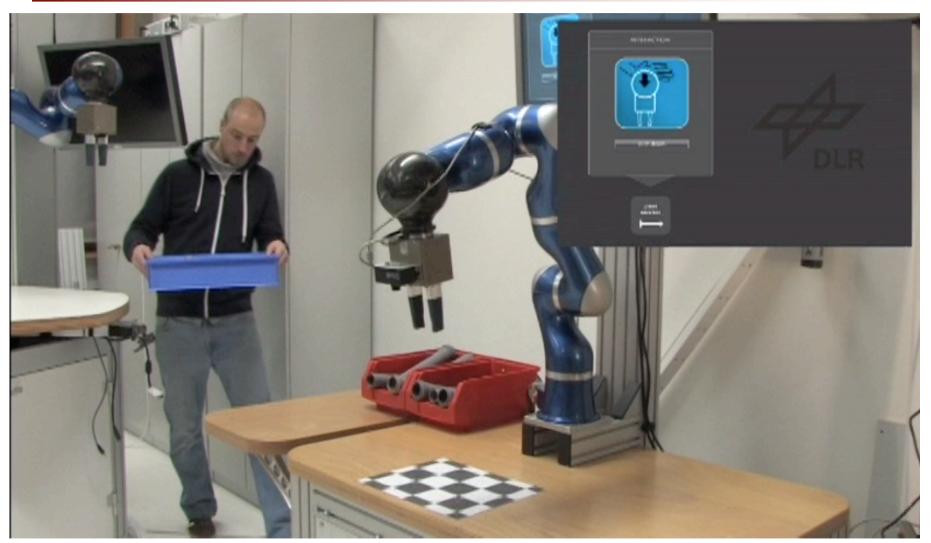
conservative limit curves/lines on pairs (m [kg], v_{max} [m/s]) associated to key impacts conditions inclusion of upper bounds to prevent high speed close to a singularity

directional information related to task: max (relative) speed, rather than velocity


Reflected inertia at the contact

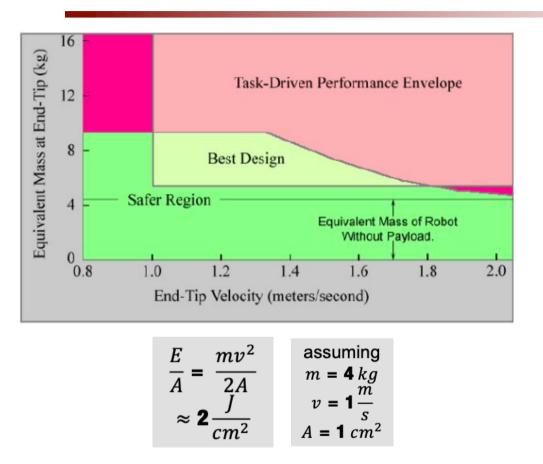
the mathematics ...

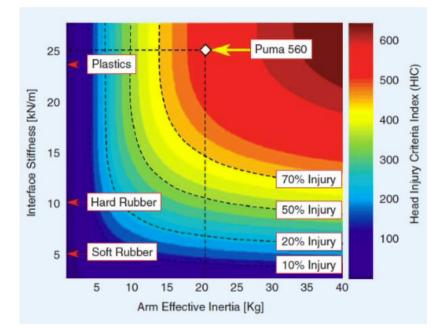
Maximum safe velocity



embedding injury knowledge into robot control: "ribbon" test

Robot reaction and HMI




video

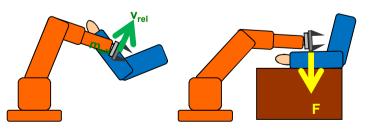
Other biomechanical studies

W. Townsend et al., Barrett Technologies NASA Kennedy Space Center Report, May 1995

$$HIC = T \left[\frac{1}{T} \int_0^T a(t) dt \right]^{2.5}$$

M. Zinn, O. Khatib et al., Stanford University IEEE Robotics and Automation Mag., June 2004

and many more: University of Ljubljana, Fraunhofer IFF, University of Nagoya (Y. Yamada), ...


Safety standards for industrial robots

- Safety Standards for Applications of Industrial Robots
 - ISO 10218-1, ISO 10218-2
 - Related standards and directives
- Safety Functions of Industrial Robot Controller
 - Review of basic safety-related functions
 - Supervision functions
- Present Standardization Projects
 - ISO/TS 15066 Safety of collaborative robots
 - Biomechanical criteria
- Collaborative operation

several of the following (partly adapted) slides are courtesy of B. Matthias, ABB Corporate Research

ISO standards 10218-1 and 10218-2

latest revisions ... :2011

Automation Section

ISO 10218-1

- Robots and robotic devices Safety requirements for industrial robots — Part 1: Robots
- Scope
 - Industrial use
 - Controller
 - Manipulator
- Main references
 - ISO 10218-2 Robot systems and integration

Common references

ISO 13849-1 / IEC 62061 – Safetyrelated parts of control systems IEC 60204-1 – Electrical equipment (stopping fnc.)

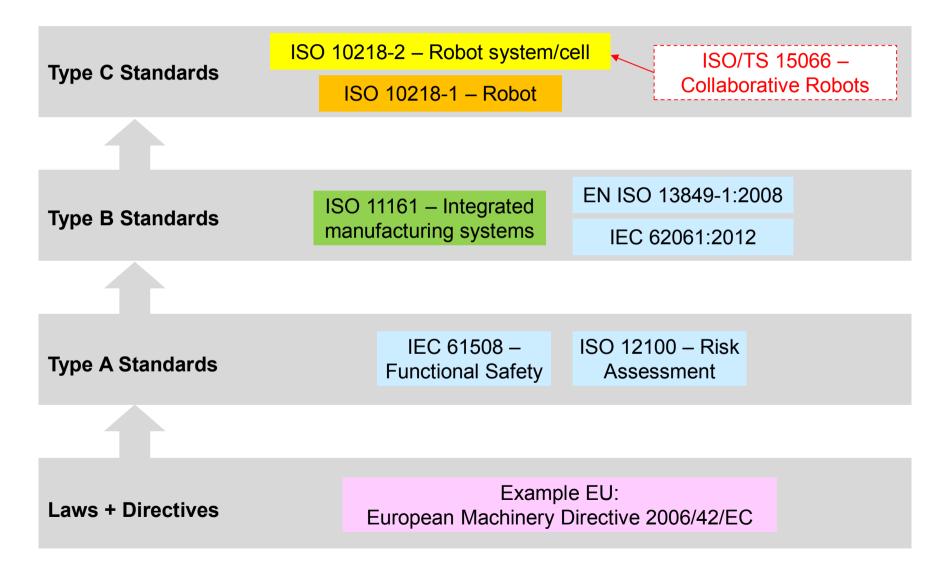
- ISO 12100 Risk assessment
- ISO 13850 E-stop

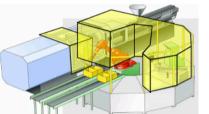
 Robots and robotic devices — Safety requirements for industrial robots — Part 2: Robot systems and integration

Scope

- Robot (see Part 1)
- Tooling
- Work pieces
- Periphery

ISO 10218-2


- Safeguarding
- Main references
 - ISO 10218-1 Robot
 - ISO 11161 Integrated manufacturing systems
 - ISO 13854 Minimum gaps to avoid crushing
 - ISO 13855 Positioning of safeguards
 - ISO 13857 Safety distances
 - ISO 14120 Fixed and movable guards


Related Standards and Directives

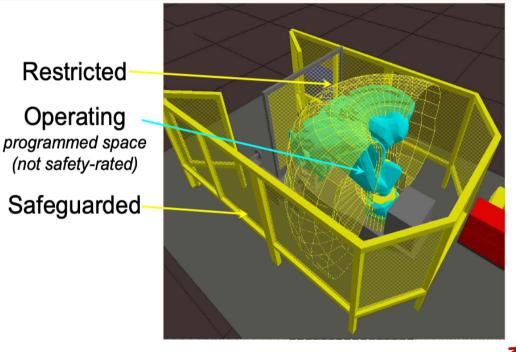
Basic safety-related functions

- E-stop
 - Protective stop
 - Stop categories (cat. 0, cat. 1, cat. 2 as per IEC 60204-1)
 - Operating modes
 - Automatic / manual / manual high-speed
 - Pendant controls
 - Enabling
 - Start / restart
 - Hold-to-run
 - Limit switches

. . .

- Muting functions
 - Enable / limits switches /

- Basic supervision of robot motion, i.e. motion executed corresponds to motion commanded
- Supervision of kinematic quantities
 - Position
 - TCPs, elbow, solid model of manipulator, tool
 - Speed
 - TCPs, elbow, …
 - Acceleration, braking
- Possibility: Supervision of dynamic quantities, esp. for collaborative operation
 - Torques
 - Forces
- Possibility: Application-related / user-defined supervision functions


ISO/TS Technical Specification 15066

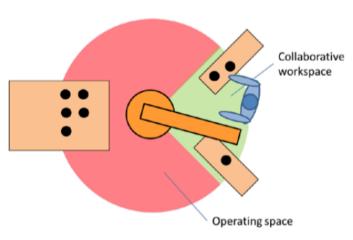
	for collaborative robots
© 180 2010 - All rights received ISO TC 184/SC 2 N Date: 2010-10-12 ISO/PDTS 15066 ISO TC 184/SC 2/WG Georetariat: 010	 Design of collaborative work space Design of collaborative operation Minimum separation distance <i>S</i> / maximum robot speed <i>K_R</i> Static (worst case) or dynamic (continuously computed) limit values Safety-rated sensing capabilities
Robots and robotic devices — Collaborative robots	 Ergonomics Methods of collaborative working
Warning This document is not an IGO international Blandard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an international Blandard. Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.	 Safety-rated monitored stop Hand-guiding Speed and separation monitoring Power and force limiting (biomechanical criteria!)
TS = a normative document representing technical consensus within an ISO committee	 Changing between Collaborative / non-collaborative Different methods of collaboration Operator controls for different methods, applications
Document type: Technical Opecfication Document subtype: Document stage: (30) Committee Document language: E	 Question is subject of debate: What if a robot is purely collaborative? Must it fulfill all of ISO 10218-1, i.e. also have mode selector, auto / manual mode, etc.?
D1800Isomacroserver- proditempIDOCX2PDFI80TCIDOCX2PDFI80TC.8Y8TEM@SRVWEB100_487116339786_1.doc STD Version 2.1c	latest version :2016 (reviewed and confirmed as such in 2019)

Robot spaces

Maximum space

– space within which a robot system can move

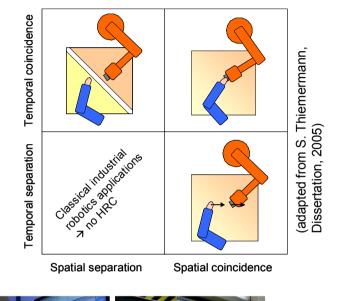
Restricted space


 portion of the maximum space restricted by limiting devices that establish limits which will not be exceeded

Operating space

 portion of the restricted space that is actually used while performing all motions commanded by the task program

Safeguarded space


- space defined by the perimeter safeguarding

true human-robot collaboration requires by-passing this last space!

Definition of collaborative operation

- ISO 10218-1:2011, clause 3.4
 - collaborative operation state in which purposely designed robots work in direct collaboration with a human within a defined workspace
- Degree of collaboration
 - 1. Once for setting up (e.g. lead-through teaching)
 - 2. Recurring isolated steps (e.g. manual gripper tending)
 - 3. <u>Regularly</u> or continuously (e.g. manual guidance)

Types of collaborative operation

according to ISO 10218-1, ISO/TS 15066

ISO 10218-1, clause	Type of collaborative operation	Main means of risk reduction	
5.10.2	Safety-rated monitored stop (Example: manual loading-station)	No robot motion when operator is in collaborative work space	
5.10.3	Hand guiding (Example: operation as assist device)	Robot motion only through direct input of operator	
5.10.4	Speed and separation monitoring (Example: replenishing parts containers)	Robot motion only when separation distance above minimum separation distance	$v < v_{max}$ $d > d_{min}$
5.10.5	Power and force limiting by inherent design or control (Example: <i>ABB YuMi</i> ® collaborative assembly robot)	In contact events, robot can only impart limited static and dynamics forces	F < F _{max}

Types of collaborative operation

according to ISO 10218-1

	Speed	Separation distance	Torques	Operator controls	Main risk reduction				
Safety-rated monitored stop	Zero while operator in CWS*	Small or zero	Gravity + load compensation only	None while operator in CWS*	No motion in presence of operator				
Hand guiding	Safety-rated monitored speed (PL d)	Small or zero	As by direct operator input	E-stop; Enabling device; Motion input	Motion only by direct operator input				
Speed and separation monitoring	Safety-rated monitored speed (PL d)	Safety-rated monitored distance (PL d)	As required to execute application and maintain min. separ. distance	None while operator in CWS*	Contact between robot and operator prevented				
Power and force limiting	Max. determined by RA+ to limit impact forces	Small or zero	Max. determined by RA ⁺ to limit static forces	As required for application	By design or control, robot cannot impart excessive force				

* CWS = Collaborative Work Space

+ RA = Risk Assessment

Emergency stop categories

Stop Categories according to IEC 60204-1 (NFPA79). Only Category 0 and 1 stops are allowed for the Estop.

- Category 0 & 1 result in the removal of drive power, with Cat 0 being IMMEDIATE & Cat 1 being a controlled stop (decelerate then removal). With all UR robots, a Category 1 stop is a controlled stop where power is removed when a monitored standstill state is detected.
- **Category 2** is a stop where drive power is NOT removed. For Category 2 stops, this specification is defined in IEC 60204-1, A description of STO, SS1 and SS2 in IEC 61800-5-2. With UR robots, a Category 2 stop maintains the trajectory then retains power to the drives after stopping.

SF #	Safety Function	Description	PFHd	What is controlled
	Emergency	Pressing the Estop PB on the pendant ¹ or the External Estop (if using the Estop Safety Input) results in a Cat 1 stop ³ .		
1	Stop 1, 2, 3	Command ¹ all joints to stop and upon all joints coming to a monitored standstill state, power is removed. This is a Cat 1 stop ³ .	1.30E-07	Robot
		See Stop Time and Stop Distance Safety Functions ⁴ and the User Manual.		
	Safeguard	This safety function is initiated by an external protective device using safety inputs which will initiate a Cat 2 stop ³ .		
2	Stop (Protective Stop	See the Stop Time and Stop Distance Safety Functions ⁴ and the User Manual.	1.20E-07	Robot
	according to ISO 10218-1)	or the functional safety of the complete integrated safety function, add the FHd of the external protective device to the PFHd of the Safeguard Stop.		

Any limit violation, or fault detected in a safety function, results in a Category 0 stop.

UR e-Series Safety Functions and Safety I/O

Types of collaborative operation - 1

Safety-rated monitored stop

(ISO 10218-1, 5.10.2, ISO/TS 15066)

- Reduce risk by ensuring robot standstill whenever a worker is in collaborative workspace
- Achieved by
 - Supervised standstill Category 2 stop (IEC 60204-1)
 - Category 0 stop in case of fault (IEC 60204-1)
- Application
 - Manual loading of end-effector with drives energized
 - Automatic resume of motion

Hand guiding (ISO 10218-1, 5.10.3, ISO/TS 15066)

- Reduce risk by providing worker with direct control over robot motion at all times in collaborative workspace
- Achieved by (controls close to end-effector)
 - Emergency stop, enabling device
 - Safety-rated monitored speed
- Application
 - Ergonomic work places
 - Coordination of manual + partially automated steps

Safety-rated monitored stop

allows direct operator-robot system interaction under specific conditions

- safety-rated stop condition before operator enters collaborative workspace
- drive power remains ON
- motion resumes after operator leaves workspace
 - robot motion resumes without additional action
- protective stop issued if stop condition is violated
- used with other collaborative modes of operation

	tem> motion	Operator's proximity to collaborative workspace			
	function	Outside	Inside		
n> orative	Outside	Continue	Continue		
 systen collabc space 	Inside and moving	Continue	Protective stop		
Robot's <system> proximity to collaborative workspace</system>	Inside, at Safety-Rated Monitored Stop	Continue	Continue		

Hand guiding

operator uses a hand-operated device to transmit motion commands

- BEFORE the operator enters the collaborative workspace, the robot achieves a safety-rated monitored stop
 - drive power remains ON
- operator grasps a hand-operated device (it includes also an enabling device), activating motion/operation
- non-collaborative operation resumes when the operator leaves
- highly variable uses: it acts like a manual "tool"

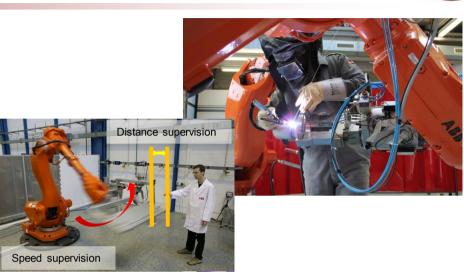
robotic lift assist

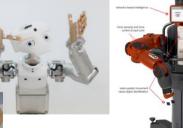
used in automatic mode not for teaching

Types of collaborative operation - 2

A COM AND

Speed and separation monitoring


(ISO 10218-1, 5.10.4, ISO/TS 15066)

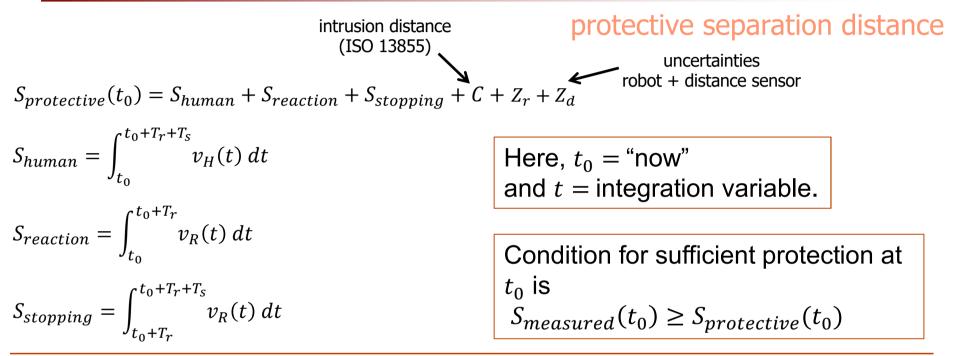

- Reduce risk by maintaining sufficient distance between worker and robot in collaborative workspace
- Achieved by
 - distance supervision, speed supervision
 - protective stop if minimum separation distance or speed limit is violated
 - taking account of the braking distance in minimum separation distance
- Additional requirements on safety-rated periphery
 - for example, safety-rated camera systems

Power and force limiting by inherent design or control

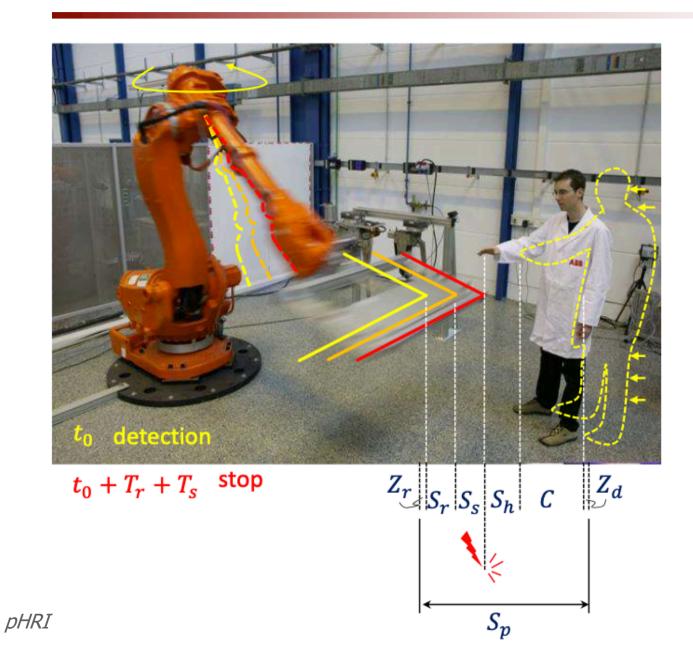
(ISO 10218-1, 5.10.5, ISO/TS 15066)

- Reduce risk by limiting mechanical loading of humanbody parts by moving parts of robot, end-effector or work piece
- Achieved by low inertia, suitable geometry and material, control functions, ...
- Applications involving transient and/or quasi-static physical contact (SPA = small parts assembly)





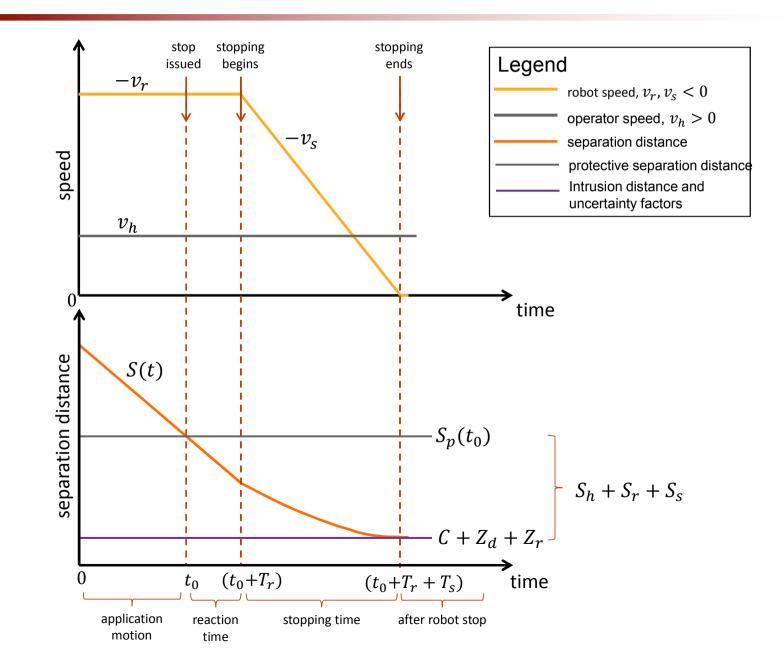
protective separation distance



Simple model assumptions (constant values) for $v_H(t)$ and for $v_R(t)$ in the reaction-phase of the robot motion can be made to give:

$$S_{human} = v_H(t_0) \cdot (T_r + T_s)$$
$$S_{reaction} = v_R(t_0) \cdot T_r$$

Values for the stopping distance $S_{stopping}$ should be obtained, as stated, from the data provided according to ISO 10218-1, Annex B



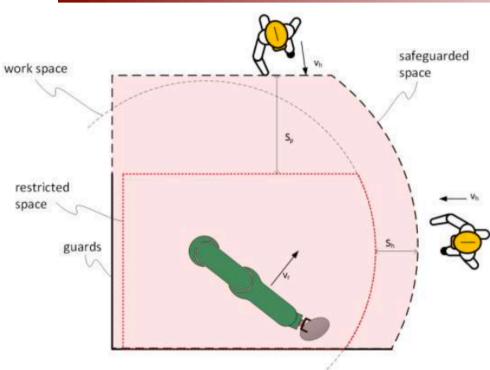
protective separation distance S_p

$$S_p = S_r + S_s + S_h + Z_r + C + Z_d$$

48

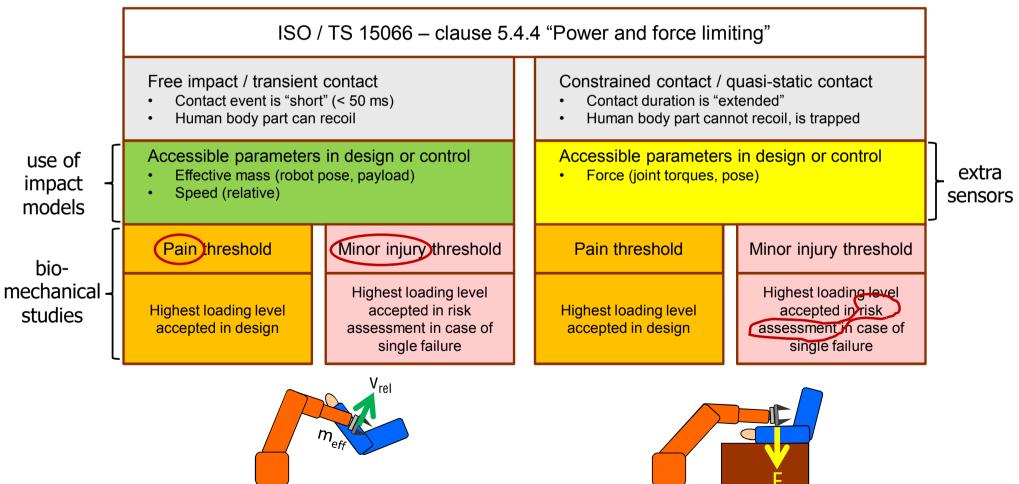
pHRI

49


Stopping a LWR arm ... having joint compliance

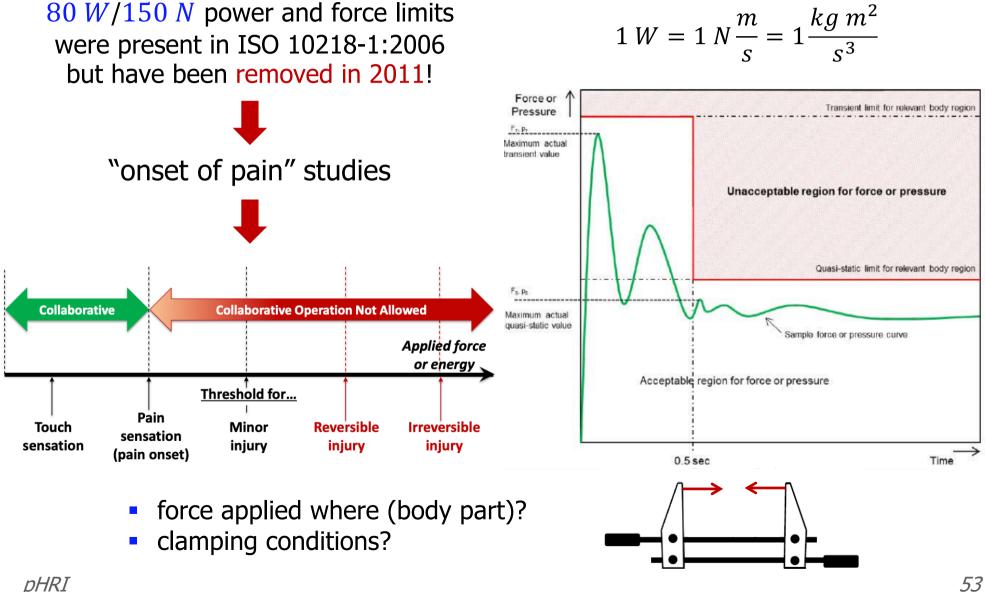
Safeguarding and collaborative SSM a simple comparison

work space

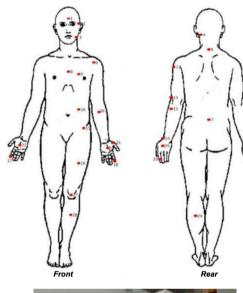

- presence sensing is a measure to prevent restart
- continuous localization and computation of distances
- frequent access, automatic restart

courtesy of F. Vicentini CNR-STIIMA

Power and force limiting

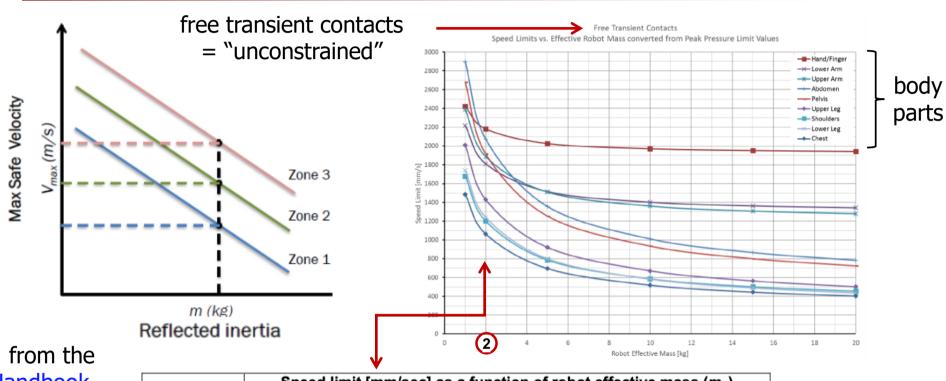


- types of contact events for robot systems specifically designed for power and force limiting
- robot-workpiece-human contacts can occur intentionally or not



Biomechanical criteria in TS 15066

Biomechanical criteria in TS 15066

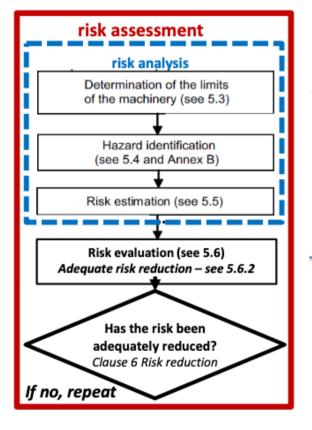


			Quasi-Stat	ic Contact	Transien	toontact	
			Maximum Allowable Pressure	Maximum Allowable Force	Maximum Allowable Pressure	Maximum Allowable Force	
Body Region		Specific Body Area	p s [N/cm2] (see NOTE 1)	[N] (see NOTE 2)	Multiplier P _T (see NOTE 3)	Multiplier F (see NOTE 3	
Skull and	1	Middle of forehead	125		N/A		
forehead	2	Temple (CRIT	$C/4\sqrt{2}$		N/A	N/A	
Face	3	Masticatory muscle			N/A	N/A	
Neck	4	Neck muscle	138	4.45	2	-	
	5	Seventh neck muscle	205	145	2	2	
Back and	6	Shoulder joint	155	210	2	2	
shoulders	7	Fifth lumbar vertebra	213	210	2	2	
Chest	8	Sternum	116	140	2	2	
	9	Pectoral muscle	166	140	2	2	
Abdomen	10	Abdominal muscle	143	110	2	2	
Pelvis	11	Pelvic bone	ric bone 209 180		2	2	
Upper arms and	12	Deltoid muscle	192	150	2	2	
elbow joints	13	Humerus	216	150	2		
	14	Radial bone	192		2	2	
Lower arms and wrist joints	15	Forearm muscle	181	160	2		
and whist joints	16	Arm nerve	179		2		
	17	Forefinger pad D	298		2		
	18	Forefinger pad ND	273		2		
	19	Forefinger end joint D	275		2		
Llanda and	20	Forefinger end joint ND	219		2		
Hands and fingers	21	Thenar eminence	203	135	2	2	
	22	Palm D	256		2		
	23	Palm ND	260		2		
	24	Back of the hand D	197		2		
	25	Back of the hand ND	193		2		
Thighs and	26	Thigh muscle	246	220	2	2	
knees	27	Kneecap	223	220	2		
Lower legs	28	Middle of shin	220	125	2	2	
	29	Calf muscle	212	120	2	~	

from studies by the University of Mainz

Biomechanical criteria in TS 15066

... from the Handbook of Injury in SAPHARI


		•									
				ion of robot							
Body	based or	based on maximum pressure value (<i>p_{max}</i>) with an area (A) of 1 cm ²									
region	1	(2)	5	10	15	20					
Hand/finger	2 400	2 200	2 000	2 000	2 000	1 900					
Lower arm	2 200	1 800	1 500	1 400	1 400	1 300					
Upper arm	2 400	1 900	1 500	1 400	1 300	1 300					
Abdomen	2 900	2 100	1 400	1 000	870	780					
Pelvis	2 700	1 900	1 300	940	800	720					
Upper leg	2 100	1 500	1 000	810	730	680					
Lower leg	1 900	1 400	1 000	900	840	810					
Shoulders	1 700	1 200	790	590	500	450					
Chest	1 500	1 100	700	520	440	400					

Risk assessment

risk assessment in evaluating a HRC application

Source: ISO 12100:2010 – Safety of machinery

- use case (tasks) identification
- hazard identification
- risk estimation
- risk reduction
- iterate until acceptable residual risk

				Г	Risk Reduction	n Risk Level						
	RISK RED	UCTION – Table 2 wit	hout E0		Measure	VERY HIGH	HIGH	MEDIUM	LOW	NEGLIGIBLE		
Severity	EXPOSURE	Probability of AVOIDANCE	Risk Level		Elimination	Use of 1		6l				
Minor	E1 low	A1 likely	Negligible		Substitution Limit Interaction	combination of these risk reduction measures are			2			
S1 M	E2 high	A2 or A3 not likely or not possible	Low	_	Safeguarding/ SRP/CS	required primary reduce	d as a mean	Use of one or a combination of any of the risk				
S2 Moderate	E1 low E2 high	A1 likely	Medium		Complementary Protective	Use of c combina			reduc			
S2		A2 or A3 not likely or not possible			Measures Warnings and	risk red measure	es may	/ be	risks t			
Serious	E1 low	A1 or A2 likely or not likely	High		Awareness Means	used in with the	e abov	e risk		table level e used.		
S3 S	E2 high	A3 not possible	Very High		Administrative Controls	reduction but shal	ll not l	be used				
					PPE	as the p reductio						

Basic hazards for contact events

ISO/TS 15066 – clause 5.5.4 "Power and force limiting"

	Transient Contact	Quasi-Static Contact
Description	 Contact event is "short" (< 50 ms) Human body part can usually recoil 	 Contact duration is "extended" Human body part cannot recoil, is trapped
Limit Criteria	Peak forces, pressures, stressesEnergy transfer, power density	 Peak forces, pressures, stresses
Accessible in Design or Control	 Effective mass (robot pose, payload) Speed (relative) Contact area, duration 	 Force (joint torques, pose) Contact area, duration

Risk estimation and reduction

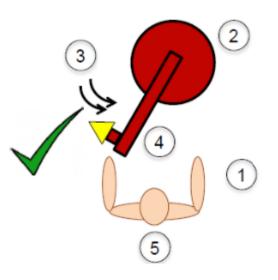
risk estimation process for each single hazard and combined

risk reduction measures exemplified

RISK related the conside hazar	l to ered	is a function of		that		an	d	PRO	Expo th a h	of tha osure o to the e occu nazardo possibl	F OCCURREN t harm of person(s) hazard rrence of ous event lity to avoid the harm	NCE		
Most prefe		Design M	leasur	'es		Safeguar Iementar Measu	y Prote	ective		Info	Least prefe	rred		
Elimination	Subs	stitution		imit action	Safe	guard Protective Measures		ective	Awa	nings & reness eans	Administrative (organizational) Controls	PPE		
Process or layout design, redesign or modification	mate	ardous erials nsically e luce	hum inter • Auto task • Mod	educe lan raction omate s lify ut or cess	 Guards Interlocks Protective Devices Safety controls, logic & functions Safety parameters & configurations 		 Fall prevention Escape & rescue Safe access Safe handling Energy isolation Enabling devices 		 Fall prevention Escape & rescue Safe access Safe handling Energy isolation Enabling 		and stro • Aud alar • Sigr labe	cons bes lible ms	 Training and SOPs Inspections Rotation of workers Changing schedules Control of Haz Energy HazCom Confined Space Management 	Clothing, footwear, glasses, respirators gloves & more for specific safety purposes

Examples of risks and mitigation plan

Item	Risks	Mitigation plan				
	sensor not safety certified	use of redundant heterogeneous sensors				
Sensing	unreliable skin sensor measurements	proprioceptive force measurements for confirmation				
Actuation	VIA not stiff or accurate enough	performance limitation, additional feedback, breaks on stop				
Actuation	actuation not safety certified	laboratory proof of concept and external safety measures				
Gesture recognition	difficulty of tracking humans in real environments	 use of markers and specific clothing (colors) special lighting (e.g., infrared) additional sensors 				
	gesture misinterpretation	restricted "vocabulary", operator training				
	difficulty for the robot to infer human motion	additional modalities, confirmation exchanges				
Human interaction	difficulty for the operator to anticipate robot actions	additional modalities, operator training				
Real-time implementation	missing capability hampers safety and renders the system unusable	reduced dynamics (robot or human speed)				


Modification of power and force limits

an example of risk critical task ... mitigated by application re-design

- 1. Eliminate pinch and crush points
- 2. Reduce robot system inertia or mass
- 3. Reduce robot system velocity
 - 2. & 3. will reduce energy transfer in a collision
- 4. Modify robot posture such that contact surface area is increased
- 5. Avoid sensitive body areas (head & neck)
- + Safe control: collision detection & reaction

Bibliography

- A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, "Basic concepts and taxonomy of dependable and secure computing," *IEEE Trans. on Dependable and Secure Computing*, vol. 1, no. 1, pp. 1-23, 2004
- S. Haddadin et al, "The «DLR Crash Report»: Towards a standard crash-testing protocol for robot safety," - Part I: Results, pp. 272–279; Part II: Discussion, pp. 280-287, *IEEE Int. Conf. on Robotics and Automation*, 2009.
- S. Haddadin et al, "Soft-tissue injuries in robotics: An experimental safety study of stab/puncture and incised wounds," *IEEE Robotics and Automation Mag.*, vol. 18, no. 4, pp. 20-34, 2011
- S. Haddadin et al, "On making robots understand safety: Embedding injury knowledge into control," Int. J. of Robotics Research, vol. 31, no. 13, pp. 1578–1602, 2012
- G. Hirzinger et al, "On a new generation of torque controlled lightweight robots," *IEEE Int. Conf. on Robotics and Automation*, pp. 3356-3363, 2001
- ISO 10218:2011. Robots and robotic devices Safety requirements for industrial robots, Part 1: Robots, <u>https://www.iso.org/standard/51330.html</u>; Safety requirements for industrial robots, Part 2: Robot systems and integration, <u>https://www.iso.org/standard/41571.html</u>, July 1, 2011
- ISO TS 15066:2016. Robots and robotic devices Collaborative robots, https://www.iso.org/standard/62996.html, February 15, 2016
- J.K. Salisbury, W. Townsend, B. Eberman, D. DiPietro, "Preliminary design of a whole-arm manipulation system (WAMS)," *IEEE Int. Conf. on Robotics and Automation*, pp. 254-260, 1988
- M. Zinn, O. Khatib, B. Roth, J.K. Salisbury, "Playing it safe: A new actuation concept for humanfriendly robot design," *IEEE Robotics and Automation Mag.*, vol. 11, no. 2, pp. 12-21, 2004